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Analytical description of spin-Rabi oscillation controlled electronic transitions rates
between weakly coupled pairs of paramagnetic states with S = 1

2
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We report on the theoretical and experimental study of spin-dependent electronic transition rates which
are controlled by a radiation-induced spin-Rabi oscillation of weakly spin-exchange and spin-dipolar coupled
paramagnetic states (S = 1

2 ). The oscillation components [the Fourier content, F(s)] of the net transition rates
within spin-pair ensembles are derived for randomly distributed spin resonances, with an account of a possible
correlation between the two distributions corresponding to individual pair partners. Our study shows that when
electrically detected Rabi spectroscopy is conducted under an increasing driving field B1, the Rabi spectrum,
F(s), evolves from a single peak at s = �R , where �R = γB1 is the Rabi frequency (γ is the gyromagnetic
ratio), to three peaks at s = �R , s = 2�R , and low s � �R . The crossover between the two regimes takes place
when �R exceeds the expectation value δ0 of the difference in the Zeeman energies within the pairs, which
corresponds to the broadening of the magnetic resonance by disorder caused by a hyperfine field or distributions
of Landé g factors. We capture this crossover by analytically calculating the shapes of all three peaks at an
arbitrary relation between �R and δ0. When the peaks are well developed their widths are �s ∼ δ2

0/�R . We find
a good quantitative agreement between the theory and experiment.

DOI: 10.1103/PhysRevB.87.155208 PACS number(s): 42.50.Md, 76.30.−v, 71.35.Gg

I. INTRODUCTION

The dynamics of a single spin in a magnetic field, B0,
under a resonantly driven excitation is described by a standard
Hamiltonian,

Ĥσ = γB0σ̂z + γB1(σ̂+eiω0t + σ̂−e−iω0t ), (1)

where ω0 = γB0 is the Larmor frequency of the spin, γ is
the gyromagnetic ratio, and B1 is the amplitude of the driving
field. This dynamics represents the seminal Rabi oscillations.
In the course of these oscillations, the occupation, n(t), of
a Zeeman level which was populated at t = 0 oscillates as
n(t) = cos2(�Rt/2), where �R = γB1 is the Rabi frequency.
Naturally, the Fourier transform, F(s), of n(t) is simply a δ

peak at s = �R . In the ensemble of isolated spins this peak
will be broadened due to disorder, caused, e.g., by a random
hyperfine field.

If we consider a pair of weakly coupled spins, a and b

(Fig. 1), it is described by the Hamiltonian Ĥσ a
+ Ĥσ b

.
Since the coupling is weak, both pair partners oscillate
independently, so the Fourier spectrum of the Rabi oscillations
of the pair is also a δ peak. It is very important that the
latter is not the case when the Rabi oscillations are detected
electrically by means of pulsed electrically detected electron
spin resonance (pEDMR) techniques. Within this technique,
the change, �σ (τ ), in the conductivity of the sample is
measured upon application of a pulse of duration τ . The key
idea why, despite the weak coupling, the Fourier transform of
�σ (τ ) is not a single δ peak is that only those pairs for which
the Rabi oscillations of the partners have a correlated character
contribute to �σ (τ ). The simplest way to understand this
correlation is the following: if, at the end of the pulse, the pair
is in the singlet state, it will recombine rather than contribute
to �σ . The fact that a spin pair is a crucial entity for electrical
detection of magnetic resonance has been appreciated since
1978.1 The theoretical background of pEDMR based on spin

FIG. 1. (Color online) Schematic of Rabi oscillations with fre-
quency �R in a spin- 1

2 pair. Components of the pair, a and b, have
different environments, causing random shifts, δa and δb, from the
resonant frequency, ω0. Relevant for pEDMR are the initial and final
spin configurations |↑↑〉 and |↓↓〉 only.

pairs was developed in Ref. 2. The correlated character of
the Rabi oscillations in pairs contributing to �σ results in a
peculiar character of the Fourier transform F(s). This quantity
is the subject of theoretical and experimental study reported in
the present paper. As we demonstrate below, F(s) evolves in a
nontrivial way upon increasing the driving field. This evolution
is governed by the relation between �R and the magnitude of
disorder. We find good quantitative agreement between the
theory and experimental results, which allows us to infer the
magnitude of disorder from the fit of the experimental data.

The paper is organized as follows. In Sec. II we discuss
the context of the pEDMR spectroscopy technique in relation
to the work that this study is focused on. In Sec. III, a
qualitative derivation of conductivity changes, �σ (τ ), in
pEDMR experiments is given which reproduces the result of
rigorous consideration in Ref. 2. In Sec. IV, the analytical
expression for a disorder averaged Fourier transform of �σ (τ )
is presented. In Sec. V, the theory is extended to the case where
disorders for two pair partners are correlated. An analysis and
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discussion of the results are given in Sec. VI. In Sec. VII,
the experimental results are presented and compared to the
theoretical predictions.

II. pEDMR SPECTROSCOPY ON WEAKLY
COUPLED SPIN PAIRS

Over the past decade, pEDMR spectroscopy has been used
increasingly for investigation of the physical nature of spin-
dependent electronic transitions which influence conductivity
such as excess charge carrier recombination or transport
transitions through localized paramagnetic states as seen in
amorphous inorganic,3,4 crystalline,5–8 and organic9–13 semi-
conductor materials. In most of these experimental studies,
pEDMR experiments are conducted within a pulse-probe
scheme14,15 where the current through the host materials
of the spin systems of interest is measured while short
and intensive magnetic resonant pulses are imposed. The
pulsed magnetic resonant radiation prepares coherent spin
noneigenstates from initial, well-defined eigenstates before the
pulse. As the changed spin states will also cause changes in the
spin–dependent conductivity, one can gain information about
the prepared coherent spin state by integration of the electric
current transient after the pulse, which eventually, on long time
scales (compared to the length of the coherent excitation),
will return to its prepulse steady state. The probed charge
(obtained from the integrated current transient) depends on
the coherent spin state after the pulse, which in turn depends
on the pulse parameters (length, frequency, intensity).14

Therefore, a measurement of the charge as a function of the
applied pulse length can reveal the propagation of a spin
state in the presence of the resonant radiation pulse. Thus,
current detectable observations of spin-Rabi oscillations are
possible.

Most EDMR-detectable spin-dependent electronic transi-
tions reported in the literature are due to Pauli–blockade
effects which occur for transitions between two paramagnetic
states with S = 1

2 . These systems, illustrated in Fig. 1, usually
require weak spin-orbit coupling as found in materials with
low atomic order numbers (this means silicon and carbon
materials) as well as sufficiently weak spin-spin coupling
(which means exchange and dipolar interaction) within the
formed pairs. In order to allow one of the electrons within
this pair of paramagnetic states to undergo a transition into
the other paramagnetic state (thereby forming a singlet spin
manifold due to the Pauli exclusion principle), the spin pair
state |ψ〉 before the transition requires non-negligible singlet
content (〈ψ |S〉 �= 0) for the transition to have a non-negligible
probability. The special nature of such intermediate-pair
controlled spin-dependent transition rates was first recognized
by Kaplan, Solomon, and Mott,1 who explained the magnitude
of continuous-wave EDMR experiments at the time. With
the advent of pEDMR about a decade ago, this model also
became most significant for the understanding of many of the
EDMR-detected coherent spin motion experiments.

When pEDMR is applied to the intermediate-pair processes
described by Kaplan et al., the observable applied to the spin
ensemble is permutation symmetry (the singlet operator); it is
not the magnetic polarization of the spin ensemble as is the case
for conventional magnetic resonance spectroscopies, which

are based on the detection of radiation. Some implications of
this observable change have been discussed theoretically in
previous studies on intermediate pairs for cases of no intrapair
interactions,14,16 cases of weak but non-negligible exchange
interaction17 (weak here means that the exchange interaction
is much smaller than the spin-Zeeman splitting of the pair
partners but not necessarily weaker than the difference of the
pair partners’ Larmor frequencies), and cases where disorder
within the spin ensemble18 is significant. These numerical
studies have shown that an electrically detectable spin-Rabi
oscillation can contain various harmonic components which
can essentially form a “fingerprint” for the spin Hamiltonian
of the observed pairs. Thus, conducting a Fourier analysis
of an observed spin-Rabi signal (one could call this Rabi
spectroscopy) can give microscopic information on the nature
of charge carrier states or of paramagnetic defects.

Most of the previously published pEDMR studies have
been conducted as Rabi spectroscopy experiments.4,6,9,10,12,13

For most of these experimental data, a correct interpretation
would be impossible without the information provided by the
existing theoretical studies.14,16–18 Nevertheless, these studies
can only provide limited support for an experimental analysis
since numerical simulations can only provide answers about
the behavior of a simulated system for a fixed set of parameters;
they do not reveal analytical expressions that can be fit or
directly compared to experimental data, and most importantly,
they oftentimes do not enhance the qualitative understanding
of a simulated system. It has been the goal of this study to
overcome this problem by finding a closed analytical form
for the description of spin-Rabi oscillation controlled spin-
dependent transition rates within spin pairs with S = 1

2 . The
expressions derived in the following reveal the dependence of
all harmonic components found with electrically, and similarly,
with intermediate spin-pair-controlled optically detected tran-
sition rates on the parameters of both, the observed physical
system as well as the performed Rabi-oscillation experiment.

The parameters characterizing the observed spin pair are
given by the spin-orbit-controlled respective g factors for each
pair partner as well as local and hyperfine fields, which in
general are different for the two pair partners as well. For
our purposes, all these parameters can be taken into account
by the difference δ of the pair partners’ Larmor frequencies.
Taking this into account, we anticipate from the previously
reported numerical simulations14,16 that in the weak-driving
regime where �R � δ, the Fourier transformation F(s) of a
Rabi oscillation transient exhibits only one peak at s = �R ,
while in the strong-driving regime (�R 	 δ) there is one peak
at s = 2�R and no peak at s = �R . The crossover between
these two situations occurs around �R ≈ δ.

This crossover with increasing �R was demonstrated
experimentally for spin-dependent polaron pair recombination
processes in different organic semiconductor materials.12,13

Currently, it is rather difficult (if not impossible) to extract
quantitative information from such experimentally measured
Rabi spectra F(s) due to the lack of theoretical predictions. On
the other hand, the theoretical problem is well posed. When
the exchange and dipolar coupling strength within a pair are
smaller than δ0 (which we assume), the shape of the Fourier
transform depends on only two parameters: δ0, which is the
r.m.s. value of δ; and �R .
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In the following, the Fourier components of the Rabi
spectrum F(s) are calculated analytically. We find that the
width of the crossover region is broad and extends from
�R

δ0
≈ 0.3, where the s = 2�R peak appears, to �R

δ0
≈ 2, where

it dominates over the s = �R peak. Most importantly, the
analytical treatment reveals that F(s) consists not of just two
peaks (as discussed in most experimental studies) but, rather,
of three peaks. The origin of the third peak, which occurs at
frequencies s � �R , is due to a disorder-induced distribution
of δ, which implies that even at strong �R , the two spins in the
pair do not precess entirely in phase. This third peak is harder
to observe experimentally compared to the two with higher
frequencies, yet a prediction of its shape and evolution with
�R is provided. Also, a correlation study of disorder within
pairs affects the shape of an ensemble average of F(s). This
follows from a previous numerical study of the ratio between
the magnitudes of the s = �R and s = 2�R Rabi oscillation
peaks,18 which was conducted for particular value sets of δ0

and �R .

III. DEPENDENCE OF pEDMR-INDUCED
CONDUCTIVITY CHANGES ON

THE PULSE DURATION τ

The pair partners within a spin pair are denoted a and b,
respectively. Before a pulse is applied to a spin pair, it will
rest in one of its four spin eigenstates, as both a and b can
be either in a |↓〉 or in a |↑〉 state. The important qualitative
observation made in Ref. 2 is that only initial configurations
|↓↓〉 and |↑↑〉 of the pair exist, as the other two eigenstates
with singlet content are very short-lived. The |↓↓〉 and |↑↑〉
states are therefore responsible for the change in conductivity
after the end of the pulse. Without confinement of generality,
one can assume that at t = 0 both a and b are in the |↓〉 state.
The respective populations of the |↓〉 states will then evolve
according to the Rabi formula,

na,b(t) = 1 − �2
R

�2
R + δ2

a,b

sin2

√
1

4

(
�2

R + δ2
a,b

)
t, (2)

where δa = ωa − ω and δb = ωb − ω are the detuning fre-
quencies of a and b, respectively. A detuning frequency
is the difference between a Larmor frequency ωa or ωb

and the frequency ω of the driving field. After the pulse
ends at t = τ the pair is in the |↓↓〉 state with probability
P↓↓ = na(τ )nb(τ ) and in the |↑↑〉 state with probability
P↑↑ = (1 − na(τ ))(1 − nb(τ )). Then the probability of finding
the pair in one of the states |↓↓〉 or |↑↑〉 is equal to

P (τ ) = P↑↑ + P↓↓
= 1 − na(τ ) − nb(τ ) + 2na(τ )nb(τ ). (3)

It is easy to see that Eq. (3) also applies when the pair is initially
in the |↑↑〉 state. Equation (3) coincides with the corresponding
expression for the τ -dependent part of the diagonal elements
of the density matrix of the pair derived in Ref. 14. The
probability P (τ ) serves as the initial condition for the transient
restoration of the steady-state current after the pulse.14 Thus,
�σ can be identified with P (τ ) within a factor. An expression
for �σ (τ ) averaged over the contributions from all pairs within

a pair ensemble is then obtained from

〈�σ (τ )〉 = 1

2πδ2
0

∫
dδadδb exp

[
−δ2

a + δ2
b

2δ2
0

]
�σ (δa,δb,τ ).

(4)

Note that this expression for 〈�σ (τ )〉 can also be written as

〈�σ (τ )〉 = 1 − 2T (τ ) + 2T 2(τ ), (5)

where the function T (τ ) is defined as

T (τ ) = 1√
2πδ0

∫
dδ e−δ2/2δ2

0

(
�2

R

�2
R + δ2

)

× sin2

√
1

4

(
�2

R + δ2
)
τ. (6)

In the limit of long pulses, T (τ ) approaches a constant in an
oscillatory fashion; the amplitude of the oscillations falls off
slowly, as τ−1/2, with the length of the pulse.19 For strong disor-
der (δ 	 �R) the derivative can be expressed through the zero-
order Bessel function10 T ′(τ ) = 2−3/2π1/2�3

Rδ−1
0 J0(�Rτ ).

While the second term in Eq. (5) describes Rabi oscillations
within either component a or component b of the pair, the
third term “knows” about the collective spin precession of
a and b. However, the T 2 term also contains contributions
from the individual precessions of pair partners a and b. We
therefore subtract these contributions and group them with the
T term in Eq. (5) prior to performing the Fourier transform.
By substituting Eqs. (2) into (3), we get

�σ (τ ) = 1

2
+ δ2

aδ
2
b

2
(
�2

R + δ2
a

)(
�2

R + δ2
b

) + [G1(δa,δb,τ )

+G1(δb,δa,τ )] + G−(δa,δb,τ ) + G+(δa,δb,τ ),

(7)

where the functions describing the three harmonic Rabi-
oscillation peaks are defined as

G1(δa,δb,τ ) = �2
Rδ2

b

2

[
cos

(√
�2

R + δ2
a τ

)
(
�2

R + δ2
a

)(
�2

R + δ2
b

)
]

, (8)

G−(δa,δb,τ ) = �4
R

4

[
cos

{(√
�2

R + δ2
a −

√
�2

R + δ2
b

)
τ
}(

�2
R + δ2

a

)(
�2

R + δ2
b

)
]

,

(9)

G+(δa,δb,τ ) = �4
R

4

[
cos

{(√
�2

R + δ2
a +

√
�2

R + δ2
b

)
τ
}(

�2
R + δ2

a

)(
�2

R + δ2
b

)
]

.

(10)

The above terms G1, G+, and G− describe the peaks s = �R ,
s = 2�R , and s � �R , contained in the Fourier transform
F(s), respectively.

IV. AVERAGING OVER DISORDER WITHIN
A SPIN PAIR ENSEMBLE

Variations of the magnetic resonance frequency of each pair
partner in each individual pair can occur due to (i) variations
in the spin-orbit coupling, which change the g factor.20 This is
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seen in disordered materials, where the lengths and angles of
chemical bonds can vary strongly.3,4 Variations can also occur
due to (ii) random hyperfine fields, which can strongly fluctuate
throughout a material because of the small polarization nuclear
spins even at low temperature and high magnetic fields.12,21

We define the Fourier spectrum of the conductivity change
from the steady state as

F(s) =
∫ ∞

0
dτ cos(sτ )〈(�σ (τ ) − �σ (0))〉. (11)

The expression can be decomposed into three contributions—
F(s) = F1(s) + F0(s) + F2(s)—which derive from the terms
G1, G−, and G+ terms in Eq. (7). Obviously, the time
integration of each term yields a δ function.

Our task is to perform the averaging of each δ function over
disorder, as in Eq. (4). We start from F1(s), which describes
a peak near s = �R . For this contribution, the averaging over
δa , δb reduces to the product of averages:

F1(s) = �2
R

8δ2
0

∫
dδa e−δ2

a/2δ2
0

⎡
⎣δ

(
s −

√
�2

R + δ2
a

)
�2

R + δ2
a

⎤
⎦

×
∫

dδb e−δ2
b/δ

2
0

(
δ2
b

�2
R + δ2

b

)
. (12)

It is convenient to evaluate the integral over δa with the help
of the δ function. The second integral can be reduced to the
error function, leading to

F1(s) =
⎛
⎝ �3

R

4δ2
0s

√
s2 − �2

R

⎞
⎠ exp

[
− s2 − �2

R

2δ2
0

]
f

(
�2

R

2δ2
0

)
,

(13)

where the function f is defined as

f (b) =
∫ ∞

−∞
dy e−y2b

(
y2

1 + y2

)

= √
π

[
1

b1/2
− √

πeb erfc(
√

b)

]
. (14)

For F2(s), it is convenient, after substituting (10) into (11), to
perform an integration over δa , δb in polar coordinates. Upon
introducing the new variables

δa =
√

2v cos φ, δb =
√

2v sin φ, (15)

the expression for F2(s) acquires the form

F2(s) = �4
R

8δ2
0

∫ ∞

0
dv v e−v2/δ2

0

∫ 2π

0
dφ

×
δ
(
s −

√
�2

R + 2v2 cos2 φ −
√

�2
R + 2v2 sin2 φ

)
(
�2

R + 2v2 cos2 φ
)(

�2
R + 2v2 sin2 φ

) .

(16)

Without the denominator, it is straightforward to perform an
integration over φ, which yields∫ 2π

0
dφ δ

(
s −

√
�2

R + 2v2 cos2 φ −
√

�2
R + 2v2 sin2 φ

)

= 2
∣∣2�2

R + 2v2 − s2
∣∣√[(

s2

2 − v2
)2 − �2

Rs2
][(

�2
R + v2

) − s2

4

] . (17)

With the denominator, Eq. (17) is to be divided by the value
1
4 (s2 − 2�2

R − 2v2)2 of the denominator, where the argument
of the δ function is 0, which yields

F2(s) = �4
R

δ2
0

∫ √
s2
2 −s�R

0

dv v e−v2/δ2
0∣∣s2 − 2�2

R − 2v2
∣∣

× 1√[(
s2

2 − v2
)2 − �2

Rs2
][(

�2
R + v2

) − s2

4

] . (18)

Equation (18) is defined only for s > 2�R . As s approaches
2�R , both brackets under the square root turn to 0. At the
same time, the integration interval also shrinks to 0. However,
the factor |s2 − 2�2

R − 2v2| in the denominator is nonsingular
near s = 2�R . To illuminate the behavior of F2(s) near the
threshold, it is convenient to make the substitution w = v2 −
s2

4 + �2
R in the integral of Eq. (18). It then assumes the form

F2(s) =
(

�4
R

2δ2
0

)
e
−

s2
4 −�2

R

δ2
0

∫ ( s
2 −�R)2

0

dw e−w/δ2
0√

w
[(

s
2 − �R

)2 − w
]

× 1∣∣ s2

2 − 2w
∣∣√[(

s
2 + �R

)2 − w
] . (19)

Now we see that only the first two factors in the denominator
are singular when s is close to 2�R , where the s = 2�R peak
occurs. In this domain we can set w = 0 in the last two factors
and take them out of the integrand. Then the remaining integral
readily reduces to the modified Bessel function, I0(y), and we
get

F2(s) =
(

2�4
R

δ2
0s

2

)⎛
⎜⎝e

− s2/4−�2
R

δ2
0

s + 2�R

⎞
⎟⎠ G

[
(s − 2�R)2

4δ2
0

]
, (20)

where

G(b) =
∫ b

0

dx e−x

√
x(b − x)

= πe−b/2 I0

(
b

2

)
. (21)

The analysis of the shape of the s = 2�R peak, given in Sec. V,
reveals that the approximation in Eq. (20) describes not only
the vicinity (s − 2�R) � �R but the entire peak when �R is
bigger than 0.3δ0.

Finally, we turn our attention to the peak at s � �R . The
initial expression for F2(s) differs from Eq. (16) for F0(s) in
only one respect. Instead of the sum,

√
�2

R + δ2
a +

√
�2

R + δ2
a ,

in the argument of the δ function it contains a difference,√
�2

R + δ2
a −

√
�2

R + δ2
a . The angular integration in polar
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coordinates is therefore performed in a similar way as Eq. (17):∫ 2π

0
dφ δ

(
s −

√
�2

R + 2v2 cos2 φ +
√

�2
R + 2v2 sin2 φ

)

=
∣∣2�2

R + 2v2 − s2
∣∣√[(

s2

2 − v2
)2 − �2

Rs2
][(

�2
R + v2

) − s2

4

] . (22)

Note that, compared to Eq. (22), the integral in Eq. (17) has
an extra factor of 2. This is because the argument of the δ

function in Eq. (22) turns to 0 at two values of φ, while in
Eq. (17), it turns to 0 at four values of φ. To get the final
expression for F0 one again has to divide Eq. (22) by the value
of the denominator at the zero points of the δ function, which
is equal to 1

4 (s2 − 2�2
R − 2v2)2, i.e., the same as in F2(s). This

leads to

F0(s) = �4
R

2δ2
0

∫ ∞
√

s2
2 +s�R

dv v e−v2/δ2
0√(

s2

2 − v2
)2 − �2

Rs2

× 1∣∣s2 − 2�2
R − 2v2

∣∣√(
�2

R + v2
) − s2

4

. (23)

We see again that only the first factor in the denominator is
singular at the lower limit v = ( s2

2 + s�R)1/2. Thus, for small
s, the peak is described by substituting s = 0 into the second
and third factors in the denominator, which leads to

F0(s) = �R

4δ2
0

∫ ∞
√

s2
2 +s�R

dv v e−v2/δ2
0√(

s2

2 − v2
)2 − �2

Rs2
. (24)

The remaining integral can be expressed via the Macdonald
function, K0(y), which yields

F0(s) =
(

�R

8δ2
0

)
e−s2/2δ2

0 K0

(
s�R

δ2
0

)
. (25)

We see in Sec. V that the expression in Eq. (25) describes the
entire peak when �R is big enough: �R � δ0.

V. CORRELATION BETWEEN THE PAIR
PARTNER DISORDER

Due to the proximity of the pair partners in each pair, the
disorder-related randomness of δa and δb may be correlated.
Examples of such a correlation are the common exposure of
the polaronic state in organic semiconductors to an overlapping
nuclear spin bath and the correlation of the spin-orbit interac-
tion in a disordered semiconductor due to local strain fields.22

In such cases, δa and δb are not statistically independent and the
degree of overlap can be expressed by a correlation parameter,
x (0 < x < 1). Then the joint distribution function of δa , δb

assumes the form

�(δa,δb) = 1

2πδ2
0

√
1 − x2

exp

[
−δ2

a + δ2
b − 2xδaδb

2δ2
0(1 − x2)

]
. (26)

We study the effect of correlation for the limit �R 	 δ0 when
all three peaks are well developed and do not overlap. In

this limit, we can use the expansion
√

�2
R + δ2

a,b ≈ �R + δ2
a,b

2�R

in the arguments of the δ functions. We can also replace√
�2

R + δ2
a,b with �R in the denominators of Eqs. (8) to (10).

With these simplifications the expression for F1(s) assumes
the form

F1(s) = 1

8δ2
0�

2
R

√
1 − x2

∫
dδb

∫
dδa δ2

b

× exp

[
−δ2

a + δ2
b − 2xδbδa

2δ2
0(1 − x2)

]
δ

(
s − �R − δ2

a

2�R

)
.

(27)

Integrating over δa with the help of the δ function yields

F1(s) =
exp

[−�R(s−�R )
δ2

0 (1−x2)

]
(
4�Rδ2

0

√
1 − x2

)√
2�R(s − �R)

×
∫

dδbδ
2
b exp

[
− δ2

b

2δ2
0(1 − x2)

]

× cosh

(
δbx

√
2�R(s − �R)

δ2
0(1 − x2)

)
. (28)

Subsequent integration over δb is straightforward, leading to

F1(s) =
√

πδ0(1 − x2)

4�R

√
�R(s − �R)

[
1 + 2x2�R(s − �R)

δ2
0(1 − x2)

]

× exp

[
−�R(s − �R)

δ2
0

]
. (29)

We see that the correlation parameter, x, enters this expression
only in the prefactor. In the limit of x → 0, Eq. (29) matches
Eq. (13), as can be seen when �R 	 δ0 is assumed and Eq. (13)
is expanded around s = �R .

In the limit of large �R the definition of F2(s) becomes

F2(s) =
(

1

16δ2
0

√
1 − x2

) ∫
dδa dδb

× exp

[
−δ2

a + δ2
b − 2xδbδa

2δ2
0(1 − x2)

]
δ

(
s − 2�R − δ2

a + δ2
b

2�R

)
.

(30)

Both integrals over δa and δb can be taken explicitly upon the
introduction of polar coordinates,

r =
√

2
(
δ2
a + δ2

b

)
, φ = arctan

(
δa − δb

δa + δb

)
, (31)

so that Eq. (30) assumes the form

F2(s) =
(

1

32δ2
0

√
1 − x2

) ∫
dr r dφ

× exp

[
− r2(1 + x cos 2φ)

4δ2
0(1 − x2)

]
δ

(
s − 2�R − r2

4�R

)
.

(32)

After integrating over r by using the δ function, the remaining
integral over φ reduces to I0(y), and we arrive at

F2(s) =
(

π�R

8δ2
0

√
1 − x2

)
exp

[
−�R(s − 2�R)

δ2
0(1 − x2)

]

× I0

[
�Rx(s − 2�R)

δ2
0(1 − x2)

]
. (33)
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Similarly to the noncorrelated case, F2(s) is expressed through
I0(y). However, note that the argument of I0(y) in Eq. (33)
is completely different from Eq. (20). In fact, Eq. (33) was
derived for the case where I0( b

2 ) in Eq. (21) should be replaced
by 1.

In the presence of a disorder correlation, the shape of F0(s)
can also be expressed via the Macdonald function with an
x-dependent argument. To see this, we take the definition

F0(s) =
(

1

16δ2
0

√
1 − x2

) ∫
dδadδb

× exp

[
−δ2

a + δ2
b − 2xδbδa

2δ2
0(1 − x2)

]
δ

(
s − δ2

a − δ2
b

2�R

)
(34)

and introduce polar coordinates,

r =
√

δ2
a + δ2

b − 2xδbδa

2δ2
0(1 − x2)

,

φ = arctan

[√
1 + x

1 − x

(
δa − δb

δa + δb

)]
. (35)

Equation (34) then becomes

F0(s) = 1

8

∫
dr r e−r2

∫
dφ δ

(
s − δ2

0r
2
√

1 − x2

�R

sin 2φ

)
.

(36)

The integration over φ can be done explicitly by using the δ

function, yielding

F0(s) = 1

4s

∫ ∞

( s�R

δ2
0

√
1−x2

)1/2

dr r e−r2√
δ4

0 (1−x2)
�2

Rs2 r4 − 1

. (37)

The reduction to the Macdonald function can then be achieved
by the substitution r2 = s�R

δ2
0

√
1−x2 r1, which reveals

F0(s) =
(

�R

8δ2
0

√
1 − x2

)
K0

[
s�R

δ2
0

√
1 − x2

]
. (38)

VI. ANALYSIS AND DISCUSSION

The most important results of this study are the analytical
expressions for the line shapes of Rabi-oscillation peaks as
they can be found in the Fourier analysis (the Rabi spectra)
of the pulse-length-dependent conductivity changes �σ (τ )
that are measured with pEDMR experiments. For the case
of uncorrelated disorder, Eqs. (13), (20), and (25) reveal these
peak shapes for the oscillation peaks F1(s), F0(s), and F2(s),
respectively. For the case of correlated disorder, the same peaks
are described by Eqs. (29), (33), and (38). We consider now
the limit �R 	 δ0, when all three peaks are well developed.
It is easy to see that, for uncorrelated disorder, all three peaks

exhibit the same exponential tail,

F1(s) ≈ π1/2

4�R

√
�s

s − �R

e− s−�R
�s ,

F0(s) ≈
√

π

8
√

2s�s
e− s

�s , F2(s) ≈ π

8�s
e− s−2�R

�s , (39)

where the characteristic width of the tail is given by

�s = δ2
0

�R

. (40)

Naturally, all three peaks shrink with increasing �R . It is less
trivial to realize that, for the same deviation from the origin, the
peaks F0 and F2 have a larger magnitude than F1, whose terms
contain �R 	 �s in the denominator. This relation between
the peaks is illustrated in Fig. 2(c).

We consider now the opposite limit of strong but uncor-
related disorder where δ0 	 �R and x = 0. Equation (20)
implies that F2(2�R) = �R

16δ2
0

is always finite at its peak. At

FIG. 2. (Color online) The shapes of the three peaks s � �R (left;
red), s = �R (center; blue), and s = 2�R (right; green) in the Fourier
transform of �σ (τ ) are plotted for three values of the dimensionless
Rabi frequency w = �R/δ0: (a) w = 0.3, (b) w = 1.1, and (c) w = 2.
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FIG. 3. (Color online) Illustration of the effect of an intrapair
correlation of disorder on the shapes of the three peaks, s � �R (left;
red), s = �R (center; blue), and s = 2�R (right; green), in the Fourier
transform of �σ (τ ). Dashed lines correspond to uncorrelated disorder
(x = 0), while solid lines correspond to strongly correlated disorder
(x = 0.95). The dimensionless Rabi frequency is w = �R/δ0 = 1.8.

the same time, the value of F1(s) at s = 2�R is π3/2

4
√

6δ0
; i.e.,

it is bigger than F2(2�R). Therefore, the s = 2�R peak is
indistinguishable on the background of the s = �R peak. This
behavior reflects the physics of the weak-driving regime,14

where only one component of the pair can be in resonance
with the driving field at any time. Numerically, however, the
s = 2�R peak is already pronounced at �R > 0.3δ0, as shown
in Fig. 2(a). For the given strength of �R , the approximation,
Eq. (20), using the modified Bessel function is already justified.

The low-frequency Rabi-oscillation peak which is de-
scribed by Eq. (25) diverges logarithmically in the limit of
s → 0 when F0(s) ∝ ln(1/s). Nevertheless, the peak still loses
to F1(s) in the weak-driving regime due to its small prefactor,
�R

8δ2
0
. The line shape of this peak is described by Eq. (25) when

the ratio �R/δ0 exceeds 1. This could be the reason why this
peak has not received much attention in previous experimental
studies since this regime is hard (yet not impossible) to attain
experimentally.

Figure 3 illustrates how the intrapair correlation of disorder
affects the shapes of the peaks in the strong-driving regime.
One can see that the prime effect of the correlation is a
dramatic narrowing of the low-frequency peak. This narrowing
reflects the fact that the low-frequency peak is entirely due to
inequivalences of the pair partners, which are suppressed by the
correlation. Another effect of strong correlation is that F1(s)
develops a maximum at (s − �R) = �s/2 and a minimum at
(s − �R) = (1 − x)�s. The origin of the maximum is that,
for a full correlation (x = 1), the portion of resonant pairs in
which only one partner participates in the Rabi oscillations
vanishes. More precisely, F1(s) ∝ (s − �R)1/2 exp [− s−�R

�s
]

at x = 1, giving rise to a maximum. For a small but finite
(1 − x) such pairs exist and cause “normal” divergent behavior,
F1(s) ∝ 1−x√

s−�R
at s → �R , resulting in a minimum. Finally,

the s = 2�R peak becomes enhanced by a correlation near
the origin for the same reason that F1(s) gets depleted.
Conservation of the total area, which applies for all three peaks,
is achieved due to depletion in the body.

We note that disorder broadens the peaks in F(s) only to
the right (higher frequencies) from corresponding thresholds.
This is due to the adopted definition [Eq. (11)] of the Fourier

FIG. 4. (Color online) Solid lines: Fourier transform of the central
peak plotted using the definition [F2(s) + F̃2(s)]1/2 from Eqs. (11) and
(41) for two values of the dimensionless Rabi frequency w = �R/δ0.
Dashed lines show the corresponding Fourier transform plotted using
F(s) only.

transform. If we use the standard definition, [F2(s) + F̃2(s)]1/2,
where F̃(s) is defined as

F̃(s) =
∫ ∞

0
dτ sin(sτ )〈(�σ (τ ) − �σ (0))〉, (41)

the disorder will broaden the peaks both to the left and to the
right (to higher and lower frequencies) from the threshold.
This is illustrated in Fig. 4 for the central peak at s = �R . A
formal expression,

F̃1(s) =
(

�3
R

2πδ2
0s

)∫
dδ

e−δ2/2δ2
0

s2 − �2
R − δ2

f

(
�2

R

2δ2
0

)
, (42)

emerges as an obvious modification of Eq. (13). This integral
in Eq. (42) can be expressed through the error function. It is
nonzero for s < �R and for s > �R . Near s = �R it diverges
as |s − �R|−1/2. As shown in Fig. 4, the inclusion of F̃(s) in
the Fourier transform (as done for most previously published
pEDMR and pulsed optically detected magnetic resonance
(pODMR) Rabi spectroscopy studies) leads to a significant
unnecessary increase in the peak width, which complicates
the analysis of experimental data.

VII. EXPERIMENT AND COMPARISON TO THE THEORY

For an illustration of the artificial broadening effect, we
refer to an experimental data set which is displayed in the
inset in Fig. 5. The data show electrically detected spin-Rabi
oscillation in a π -conjugated polymer diode measured at room
temperature in identically prepared samples and conditions
as for the experiments described in Ref. 23. The diode
consisted of a device stack made of a glass substrate on
which a transparent indium tin oxide (ITO) was deposited
as the anode contact, followed by a layer of poly(3,4-
ethylenedioxythiophene):poly(styrenesulfonate) that served as
a hole injection layer, an active layer consisting of an approx-
imately 100-nm-thick poly[2-methoxy-5-(2-ethylhexyloxy)-
p-phenylenevinylene] (MEH-PPV) film, a calcium electron
injection layer, and an aluminium top contact. MEH-PPV is a
prototypical π -conjugated polymer semiconductor that, tech-
nologically, has been used for organic electronics, especially
organic light-emitting diodes.
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FIG. 5. (Color online) Fourier transformation of an electrically
detected spin-Rabi oscillation measured in an organic polymer diode.
Inset: Measured data set; for details on the measurement see the text
as well as Ref. 23. The black curve displays the absolute Fourier
transform,

√
F (s)2 + F̃ (s)2, of the data in the inset. The red curve

displays the real part, F (s), of the Fourier transform of the data in
the inset. The blue curve represents a fit of the experimental data with
the analytical function F (s) = F0(s) + F1(s) + F2(s).

The signal was measured by detection of changes to a
forward steady-state current of I = 100 μA, under application
of a 4-V bias at room temperature. The experiment was
conducted under an applied magnetic field of 344 mT; the
applied magnetic resonant excitation had a frequency of
9.6606 GHz and a driving-field strength B1 = 0.519(36) mT
produced by a 27-W coherent pulsed microwave source. The
inset in Fig. 5 shows the measured raw data. It displays a
rapidly dephasing oscillation which is due to inhomogeneities
of the applied B1 field.23 Figure 5 shows two Fourier
transformations of the data displayed in the inset plotted
on a normalized scale as a function of the frequency in
units of �R = γB1. The black curve displays the absolute
Fourier transform of the experimental data, while the red
[F (s)experimental] curve displays the in-phase (cos) component
of the Fourier transform. From these curves, it becomes
evident that the absolute Fourier transform displays significant
broadening of the Rabi spectrum without providing additional
insight. It is noted that the peak widths of the plot in Fig. 5
are too close to the frequency resolution of the Fourier
transform to unambiguously identify that the peaks of the
red [F (s)experimental] curve are more asymmetric compared to
those of the black curve. With the given length of the original
data set (500 ns), an additional symmetric broadening effect
that overlaps the intrinsic peak shapes is introduced to both
Fourier transforms. However, for the data sets displayed in
Fig. 5, one can conclude that the analysis of experimental

spin-Rabi spectra measured with pEDMR and pODMR should
be conducted on Fourier data obtained from Eq. (11).

In order to scrutinize the analytical description of the Rabi
spectrum of a pair process given above, we can now fit the
experimentally obtained Fourier transform of the electrically
detected electron spin pair Rabi oscillation displayed in Fig. 5
with the analytical expressions in Eqs. (13), (20), and (25) for
the Fourier transforms of an uncorrelated spin pair ensemble,
F1(s), F2(s), and F0(s), respectively. It is known that weakly
coupled polaron pairs in MEH-PPV do not exhibit a correlation
of their local hyperfine fields,14 so an agreement between the
experimental data set and the sum of Eqs. (13), (20), and (25)
is expected. Since the expressions for Fi(s) are absolute, the fit
of F (s) = F0(s) + F1(s) + F2(s) has only three fit parameters:
(i) a global scaling factor of the unitless ordinate, (ii) the
disorder factor �R/δ0, and (iii) a third fit variable which is
the width of a homogeneous (Lorentzian) broadening of F (s).
This broadening is due to an experimental artifact, coming
from a Fourier transformation of a finite time interval as well
as the measured decay of the Rabi oscillation which is known
to be due to inhomogeneities of the experimentally generated
B1 field.23 Thus, the length (500 ns) of the experimentally
recorded Rabi oscillation determines the frequency resolution
of the resulting Fourier transform, while the decay (≈150 ns)
of the Rabi oscillation further contributes to homoge-
neous broadening of the experimental Fourier-transformed
data.

Using the three fit variables for F (s) mentioned above, we
obtain a good fit of the experimental data as displayed by
the blue (calculated) curve in Fig. 5. In this fit, the disorder
parameter δ0/�R = 1.54, with an estimated error of less
than 0.2. Given the Rabi nutation frequency �R = γB1 =
14.5(1.0) MHz, we obtain δ0 = 22.3(3.3) MHz. This value
is equivalent to a hyperfine broadened polaron line width
of δ0/γ = 0.80(14) mT, a value that is in good agreement
with the widths of EDMR-detected polaron spin resonances
in MEH-PPV.13,14,23 We conclude from this that the analytical
expressions, Eqs. (13), (20), and (25), capture adequately the
Rabi oscillations in weakly coupled spin pairs and should
therefore be used for the fit of pEDMR data governed by
noncorrelated spin pair ensembles.
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