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Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption
in a doubly resonant optical cavity
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We propose using an optical cavity to enhance the sensitivity of a magnetometer relying on the detection of
the spin state of a high-density nitrogen-vacancy ensemble in diamond using infrared optical absorption. The
role of the cavity is to obtain a contrast in the absorption-detected magnetic resonance approaching unity at room
temperature. We project an increase in the photon shot-noise limited sensitivity of two orders of magnitude in
comparison with a single-pass approach. Optical losses can limit the enhancement to one order of magnitude,
which could still enable room-temperature operation. Finally, the optical cavity also allows us to use less pumping
power when the cavity is resonant at both the pump and the infrared probe wavelength.
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I. INTRODUCTION

The negatively charged nitrogen-vacancy (NV−) center in
diamond can be used as a solid-state magnetic sensor due to its
electron spin resonance (ESR). The center can be optically spin
polarized and its polarization detected through the spin-state
dependence of the luminescence.1,2 Sensors based on a single
NV− center have the potential to achieve atomic-scale spatial
resolution.3–5 On the other hand, magnetic-field sensitivity
can be enhanced by engineering the diamond material in order
to increase the spin dephasing time, which limits the ESR
linewidth.6 The magnetic response of an ensemble of NV−
centers7–10 leads to a luminescence magnified by the number
N of the sensing spins. Such collective response also improves
the signal-to-noise ratio and the sensitivity by a factor

√
N

since the quantum spin projection noise associated with the
spin-state determination scales as2,11

√
N .

Currently, the sensitivity of practical magnetometers based
on the detection of red luminescence of the NV− ensemble
is limited by background fluorescence and poor collection
efficiency. Recent advances in diamond engineering have
enabled improvements in collection efficiency which should
improve fluorescence-based sensors,12–16 but here we consider
a different approach. In addition to the well-known transitions
leading to red fluorescence, an infrared (IR) transition related
to the singlet states has been demonstrated.17,18 This transition
can be exploited in an IR absorption scheme with an increased
sensitivity compared to the usual scheme.19 In this paper,
we show that using IR absorption detection in combination
with a high-finesse optical cavity, it is possible to tune
the absorption contrast to order unity, thereby dramatically
improving the magnetic-field sensitivity. We first recall the
parameters which set the magnetometer sensitivity. We then
theoretically investigate the extension of this detection scheme
to the case where the diamond crystal hosting the NV−
ensemble is inserted inside a high-finesse optical cavity, as

it is usually done in cavity ring-down spectroscopy.20 Finally,
we determine the improvement of the magnetometer response
associated with the cavity quality (Q) factor.

II. SINGLE-PASS PHOTON SHOT-NOISE LIMITED
MAGNETIC FIELD SENSITIVITY

The principle of the method is similar to the one used
in optical magnetometers based on the precession of spin-
polarized atomic gases.21 The applied magnetic field value
is obtained by optically measuring the Zeeman shifts of the
NV− defect spin sublevels by monitoring the absorption of
the IR probe signal. The photodynamics of NV− centers are
modeled using the level structure depicted in Fig. 1(a). The
spin sublevels ms = 0 and ms = ±1 of the 3A2 ground triplet
state are labeled |1〉 and |2〉 and separated by D = 2.87 GHz
in zero magnetic field. |3〉 and |4〉 are the respective spin
sublevels of the 3E excited level. Levels |5〉 and |6〉 are
single-state levels related to the infrared absorption transition.
The relaxation rate from state i to j is denoted kij . As k35 � k45

(see Table I), the system is optically polarized in ms = 0
while pumping the NV− centers via the phonon sideband.
Without microwaves applied, there is reduced population in
the metastable singlet state |6〉, corresponding to a minimal IR
absorption signal. Under application of resonant microwaves
with frequency D ± γB/(2π ), where B is the magnetic-
field projection along one of the four NV− orientations
and γ = 1.761 × 1011 rad s−1 T−1 is the gyromagnetic ratio,19

population is transferred from ms = 0 to ±1, resulting in
greater population in the metastable singlet and lower IR
transmission. The experimental configuration for single-pass
absorption measurements is shown in Fig. 1(b). The output
transmission is measured either with or without applying the
resonant microwaves. The contrast C is defined as the relative
difference in the IR signal detected after propagation in the
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FIG. 1. (Color online) (a) Level structure of NV− center in
diamond. The photophysical parameters related to this six-level
system are given in Tables I and II. The solid (dotted) lines correspond
to radiative (nonradiative) transitions. D ≈ 2.87 GHz is the zero-field
splitting of the ground state. (b) Diagram of the experimental
configuration used to measure the single-pass contrast of the IR
absorption under resonant microwave application (Ref. 19). I0,P and
I0,S are the pump (wavelength λP ) and the probe input intensities.

diamond crystal of thickness L:

C = Iout,S(0) − Iout,S(�R)

Iout,S(0)
, (1)

where Iout,S(0) [Iout,S(�R)] denotes the IR probe intensity
without (with) the application of the microwave field whose
Rabi angular frequency is denoted �R . We can estimate the
photon shot-noise limited sensitivity at room temperature for
an optical power compatible with the IR saturation intensity.
For an ESR full-width at half-maximum (FWHM) �mw,
the magnetic-field sensitivity (or the minimum detectable
magnetic field) limited by the photon shot-noise of a mag-

TABLE I. Photophysical parameters of the six-level system
sketched in Fig. 1(a). The transition rates kij are obtained by averaging
data given in Ref. 36. 1/� is the lifetime of level |5〉. γIR is the spectral
width of the 1042-nm zero-phonon line at room temperature.

Parameter Value Reference

λP 532 nm 19
λS 1042 nm 19
σP 3 × 10−21 m2 37
k31 = k42 (66 ± 5) μs−1 36
k35 (7.9 ± 4.1) μs−1 36
k45 (53 ± 7) μs−1 36
k61 (1.0 ± 0.8) μs−1 36
k62 (0.7 ± 0.5) μs−1 36
� 1 ns−1 18
γIR ≈2π × 4 THz

TABLE II. Physical parameters used in the single-pass NV−-
center IR absorption measurements (Ref. 19) at room temperature.
Optical losses are estimated from the transmission spectrum given in
Ref. 38. The large value of T1 shows that spin relaxation is negligible.
Thus, this is not taken into account in the rate-equation modeling of
the six-level system.

Parameter Value Reference

n 28 × 1023 m−3 19
T ∗

2 150 ns 19
T1 2.9 ms 39 (T = 300 K)
I0,P 400 MW/m2 19
I0,S 10 MW/m2

PS 16 mW
L 300 μm 19
�R 2π × 1.5 MHz 19
C 0.003 19 (T = 300 K)
αS 0.1–0.5 cm−1 38

netometer based on IR single-pass absorption measurement is
given by19,22,23

δBsp = �mw

γ C

√
hc

PStmλS

, (2)

where PS is the measured IR probe beam signal output power
(wavelength λS), and tm is the measurement time. Assuming
no power broadening from either pump or microwaves, the
ESR FWHM is related to the electron spin dephasing time
by �mw = 2/T ∗

2 (in rad/s). For a detected IR probe power
PS = 300 mW using Eq. (2) with parameter values given in
Table II, we obtain a shot-noise limited magnetic field sensi-
tivity of δBsp = 20 pT/

√
Hz in a single-pass configuration

at room temperature. Note that considering this IR probe
power and a beam waist diameter of 2w0 = 50 μm, there is
no saturation of the IR absorption (see Appendix B). For this
single-pass configuration, the contrast can not be improved by
increasing the thickness of the sample since for L larger than
the pump penetration depth (≈120 μm from the absorption
cross section and NV−-center density of Tables I and II) its
absorption becomes too strong. The photon shot-noise limited
sensitivity can be compared to the spin-noise limited sensitivity

δBq = 2

γ
√

nV T ∗
2 tm

, (3)

where we take into account through the factor of 2 that
only one fourth of the NV− centers are oriented along the
magnetic field,24 n is the NV−-center density and V is the
illuminated diamond volume. In the single-pass configuration
of Ref. 19, the spin-noise limited sensitivity is about δBq =
0.02 pT/

√
Hz.

III. SENSITIVITY ENHANCEMENT

According to Eq. (2), the magnetic-field sensitivity is
limited by the contrast C. In particular, at room temperature
the contrast is an order of magnitude smaller than at 75 K due
to homogeneous broadening of the IR line.19 It is also limited
by the IR optical depth, estimated to be 2.2 × 10−2 for the
experimental demonstration reported in Ref. 19. However, the
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FIG. 2. (Color online) (a) All-pass cavity (we consider a perfectly
reflecting backside mirror |ρback,S | = 1) used for magnetic-field
sensitivity enhancement. ρin,i is the amplitude reflectivity of the input
coated mirror. The cavity can be doubly resonant for the pump and
the probe. C: optical circulator, F: optical filter rejecting the pump
beam, D: optical detector. fi , bi (i ∈ {S,P }) denote, respectively, the
forward and backward fields in the cavity. (b) Reflected spectrum
from the cavity for switched-on or switched-off microwaves (mw)
resonant at the level |1〉-|2〉 transition. λ0 is the IR cavity resonance
wavelength. λ1 − λ0 denotes the shift of the cavity resonance in case
of a nonlinear dispersive effect in the diamond crystal. (c) Maximal
intracavity pump beam optical power magnification factor for a given
value of intracavity absorption and two values of cavity thickness
L = L0 and 10L0. The finesse of the cavity at the pump wavelength is
denoted FP . L0 is the cavity thickness which gives a critical coupling
(and thus the the optimal magnification factor) for FP ≈ 100. Note
that even with ρin,P = 0, the all-pass configuration gives a maximal
magnification around 4 due to reflection on the backside mirror.

optical IR depth can be increased by using a cavity resonant
at the IR wavelength, resulting in an increase of the optical
path length by a factor proportional to the finesse of the cavity.
Moreover, using a diamond crystal thickness smaller than the
pump absorption length allows us to overcome the issue of
the pump depletion and to obtain a good microwave field
homogeneity along the crystal. We consider the Fabry-Perot
cavity configuration depicted in Fig. 2(a), consisting of a two-
side coated bulk-diamond plate containing a high NV−-center
density (larger than 4 × 1023 m−3). We consider an all-pass
Fabry-Perot cavity for the IR probe. This means that the
amplitude reflectivity of the back mirror is ρback,S = 1 and of
the input mirror reflectivity is ρin,S < 1. Regarding the pump,
we consider either single-pass propagation (ρin,P = ρback,P =
0) or all-pass cavities (ρback,P = 1). Cavity resonances exist
wherever the host material permits transmission; for diamond,
this is from IR to UV (ultraviolet) due to the wide band gap.
While here we focused on all-pass Fabry-Perot cavities, the
waveguide-coupled ring, disk, and racetrack cavities that have
been successfully fabricated in diamond25,26 behave similarly
to a one-sided Fabry-Perot cavity. The doubly resonant opera-
tion can also be obtained using external-mirror cavities with the
diamond located in the middle. Here, the diamond would re-
quire a suitable antireflection coating,27 and one could exploit

the techniques that have been developed for continuous optical
parametric oscillators.28 We define the reflection of the cavity
at optical resonance by Ri = Iout,i/I0,i with (with i ∈ {P,S}).

A. Basic principle of the cavity effect

The complete analysis of the cavity has to be performed
numerically. In order to allow a simple interpretation of the
results, we first derive analytical expressions for the sensitivity
assuming no saturation of the IR probe absorption. The
absorption of the IR probe due to levels |5〉 and |6〉 and the spin
polarization due to the pump beam is taken into account by
AS , the single-pass round-trip amplitude transmission. We also
assume a good finesse cavity at the IR probe wavelength and
thus the input mirror reflectivity can be written ρin,S = 1 − ε

with ε � 1. With the application of the resonant microwave
field we have AS(�R) = 1 − a�R

(a�R
� 1), whereas for

an off-resonance microwave field we have AS(0) = 1 − a0

(a0 � 1). We define the optically resonant reflectivity for
respectively off- and on-resonance microwave fields using the
results given in Appendix C at the first order:

RS(0) =
(

ε − a0

ε + a0

)2

,

(4)

RS(�R) =
(

ε − a�R

ε + a�R

)2

.

The finesse of the cavity given in Eq. (C5) can also be written
at the first order in ε and ai :

FS = π

ε + ai

, (5)

where i = 0 for off-resonance microwaves and i = �R for
on-resonance microwaves.

1. Optimal cavity coupling

Assuming a perfect spin polarization and no additional
optical losses, we have a0 = 0. In this case, RS(0) = 1 and thus
the off-resonance reflected detected signal is equal to the input
probe power P0,S . The contrast reads as C = 1 − RS(�R) and
the magnetic-field sensitivity for a cavity with no additional
losses is given by

δBc,nl = �mw

γ [1 − RS(�R)]

√
hc

P0,S tmλS

. (6)

For ε = a�R
, the incoming and outgoing fields destructively

interfere at the resonant wavelength and RS(�R) = 0. The
laser probe beam is then critically coupled29 to the cavity-
NV− ensemble system and the contrast is equal to 1. For this
particular value, the optimal sensitivity of the magnetometer
is reached.

2. Effects of the microwave off-resonance absorption

Now, we consider the more realistic case of a nonideal spin
polarization and material with parasitic IR losses which gives
a�R

> a0 > 0. There are three possible cases:

(i) ε >
√

a0a�R
RS(0) > RS(�R),

(ii) ε = √
a0a�R

RS(0) = RS(�R), (7)

(iii) ε <
√

a0a�R
RS(0) < RS(�R).
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Consequently, depending on the relative value of RS(0) and
RS(�R), the expression of the contrast is different. This can
be taken into account by writing

C = |RS(0) − RS(�R)|
max[RS(�R),RS(0)]

. (8)

This relation can be used to write the expression of the
minimum detectable magnetic field taking into account the
detrimental effect of the residual IR absorption due to nonideal
branching ratio to the metastable state by multiplying P0,S by
max[RS(�R),RS(0)] to obtain the detected IR power PS of
Eq. (2). The fundamental advantage of the present method is
that this quantity falls under the square root. For methods
based on the visible-fluorescence monitoring, the nonideal
branching ratio reduces the contrast C by a similar amount, but
this quantity falls outside the square root. One can estimate that
under the same conditions, the minimum detectable magnetic
field for an optimized cavity δBc is reduced by a factor of ≈5 in
comparison with δBf obtained via fluorescence method with
a collection efficiency η ≈ 0.47 (see details and discussion
in Appendix E). The sensitivity for a cavity with additional
optical losses thus reads as

δBc,l = �mw

γ |RS(0) − RS(�R)|

√
hc × max[RS(�R),RS(0)]

P0,S tmλS

.

(9)

In the present case, there are two critical-coupling conditions,
thus the sensitivity δBc,l can reach two optimal values obtained
for ε = a�R

[solid line in Fig. 2(b)] or ε = a0. Note that due to
the factor

√
max[RS(�R),RS(0)] in the numerator of Eq. (9),

the minimum values of δBc,l are actually reached for values
of ε slightly different from the exact critical-coupling finesse.
This will be accurately described in the numerical calculations.
We first consider the case (i) of Eqs. (7). Assuming ε � a�R

(overcoupling of the cavity), we have

δBoc ≈ ε�mw

4γ (a�R
− a0)

√
hc

P0,S tmλS

. (10)

This means that for low-cavity finesses, the effect of the cavity
is to reduce the minimum detectable magnetic field value by a
factor of the order of the finesse FS ≈ π/ε. For ε = √

a0a�R

[case (ii)], the contrast is equal to zero and δBc,l reaches a
singular value as shown in Eq. (2). Finally, for ε <

√
a0a�R

[case (iii)], assuming ε � a0 (undercoupling of the cavity),
the sensitivity reads as

δBuc ≈ a�R
a0�mw

4γ ε(a�R
− a0)

√
hc

P0,S tmλS

. (11)

This shows that the sensitivity can be greatly impaired (i.e.,
δBc,l increases) if the empty cavity finesse (π/ε) is larger than
that of a critically coupled cavity given by π/(2a0). Moreover,
Eqs. (10) and (11) show that if the off- and on-resonance
loss values a0 and a�R

are too close, the sensitivity is also
impaired.

As a conclusion, the level |6〉 is always partly populated
due to the nonideal branching ratio to the dark singlet state

(k35 	= 0). This results in absorption of the IR probe beam,
even in the microwave-off state (i.e., no resonant microwaves
applied) and the implementation of a cavity will also increase
this absorption and reduce the detected IR photon number
Iout,S . Thus, the cavity induces simultaneously an increase
in the contrast C and a reduction of the detected photon
number in the IR beam. Consequently, for a given single-pass
absorption, the cavity finesse can not be arbitrarily increased
and the magnetic field sensitivity δBc,l reaches a minimum
value intrinsically limited by NV− photophysical parameters
and by diamond intrinsic IR optical losses. Those effects are
quantitatively described in the next section where numerical
results are reported.

B. Numerical calculations

The output fields Eout,i both for the pump and IR probes are
deduced from the input and intracavity forward and backward
propagating fields fi(z) and bi(z) described in Fig. 2(a) using
the slowly varying envelope approximation. Note that the
intracavity absorption (obtained by solving the six-level rate
equations) depends nonlinearly on the intracavity intensity
Ii(z) and thus a numerical optimization routine on fi(L) must
be used to deduce the reflected powers both at pump and probe
wavelengths for the target values30 of I0,i (see Appendix D for
details on the calculation method).

We consider two high NV−-center concentrations reported
in Refs. 19 and 31: (i) Configuration 1: n = 4.4 × 1023 m−3

and T ∗
2 = 390 ns; (ii) Configuration 2: n = 28 × 1023 m−3

and T ∗
2 = 150 ns. For high NV−-center density, single-pass

absorption is high and the system is less sensitive to parasitic
optical losses, but the electron spin dephasing time is shorter
than for lower density samples. In the calculations, we used
a Rabi frequency of �R = 2π × 10 MHz (larger that the
inhomogeneous width of the transition) for the microwave
transition to avoid spectral hole burning. For each of these
configurations, we analyze (i) the effect of the diamond crystal
sample thickness, (ii) the effect of the input power, and
(iii) that of the Q factor of the cavity. The Q factors are
defined by Qi = 2ndLFi/λi (i ∈ {P,S}), nd = 2.4 being the
diamond refractive index and where we recall [see Eq. (C5) in
Appendix C] that the finesse Fi is defined by

Fi = π
√

ρin,iAi

1 − ρin,iAi

(12)

with Ai the single-pass round-trip amplitude transmission.
Note that in the case of a resonant pump field, the cavity
is designed in order to reach exactly the critical coupling
AP = ρin,P which gives the maximal intracavity pump field
enhancement and the optimal pump energy transfer to the
NV− ensemble.

Figure 3 shows the magnetic-field sensitivity as a function
of the cavity Q factor QS at the IR probe wavelength for two
cavity thicknesses and three values of αS which represent the
IR probe optical-loss due to the bulk diamond material alone.
In the rate-equation approximation, the sensitivity reaches
two maxima (minima of δBc,l), the first corresponding to a
cavity critically coupled when the microwaves are switched
on and the second corresponding to a cavity critically coupled
when the microwaves are switched off. Between these two
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FIG. 3. (Color online) Shot-noise limited magnetic-field sensi-
tivity vs Q factor of the cavity at the probe wavelength and for
different values of IR probe optical losses (αS). Calculations are done
for �R = 2π × 10 MHz, P0,S = 300 mW with I0,S = 150 MW/m2

and no optical losses for the pump (αP = 0). For configuration 2
and L = 100 μm displayed in panel (c), we assume a single-pass
pumping. For each plot, the value of δBc,l obtained for low Qs is
about half compared to that obtained for single-pass propagation as
expected from the use of a high-reflectivity backside mirror.

optimal coupling configurations, we observe a sharp decrease
of the sensitivity corresponding to a cancellation of the
contrast. For this particular situation, the reflections for the
microwave switched-on and switched-off cases are equal. The
IR optical losses reduce the sensitivity of the cavity, but for
αS = 0.5 cm−1 (αS = 0.1 cm−1) the best sensitivity can reach
δBc,l = 0.6 pT/

√
Hz (δBc,l = 0.3 pT/

√
Hz) corresponding to

almost two-orders-of-magnitude enhancement in comparison
to single-pass approaches. For strong optical losses (αS =
3 cm−1), the sensitivity is still enhanced by more than one
order of magnitude and the performance of the cavity system
is comparable with that of the same sample in a single-pass
configuration at low temperature.19

We now discuss the results for IR optical losses set to
αS = 0.5 cm−1. For n = 4.4 × 1023 m−3, it is possible to use a
doubly resonant cavity to increase the intracavity optical pump
intensity and thus to reduce the required external intensity as

FIG. 4. (Color online) Shot-noise limited magnetic-field sensitiv-
ity calculated for �R = 2π × 10 MHz, αS = 0.5 cm−1, αP = 0, and
2w0 = 50 μm varying the input IR probe power. We consider several
cases: (i) Configuration 1: (n = 4.4 × 1023 m−3), L = 10 μm, QS =
7.6 × 104, FP = 160, and IP = 8 MW/cm2. (ii) Configuration 1:
(n = 4.4 × 1023 m−3), L = 100 μm, QS = 7.2 × 104, FP = 23, and
IP = 80 MW/cm2. (iii) Configuration 2: (n = 28 × 1023 m−3), L =
10 μm, QS = 2.5 × 104, FP = 31, and IP = 40 MW/cm2. (iv) Con-
figuration 2: (n = 28 × 1023 m−3), L = 100 μm, QS = 3.5 × 104,
single-pass propagation for the pump, IP = 400 MW/cm2. The
cavity parameters have been optimized using the results given in
Fig. 3.

illustrated in Fig. 2(c). Reducing the cavity thickness also
reduces the single-pass pump attenuation, and increases the
pump cavity finesse. This reduces the required amount of
pump intensity from 80 MW/m2 (single-pass propagation)
to 8 MW/m2. For n = 28 × 1023 m−3, the pump absorption
is so high that for L = 100 μm, a doubly resonant approach
does not give any improvement in the required pump power
(I0,P = 400 MW/m2). Nevertheless, for short cavities (L =
10 μm) a modest-finesse cavity for the pump (FP = 31)
leads to a reduction of the external pump power (down to
I0,P = 40 MW/m2). In Fig. 4, we plot the magnetic-field
sensitivity as a function of the IR probe input power P0,S for a
beam-waist diameter 2w0 = 50 μm. For thick diamond slabs,
the saturation is obtained at high power (�10 W). For thin di-
amond slabs, the use of high-finesse cavities reduces the probe
saturation power. In the highest-Q-factor case (configuration
1 and L = 10 μm), saturation starts around P0,S ≈ 300 mW.
For high probe input power, thermal effects must be taken into
account. Note that these effects would improve the sensitivity
via the thermo-optic effects. More generally, any nonlinear
dispersive effect would increase the sensitivity of the device. In
this case, a change in the absorption for the probe would induce
a shift of the cavity resonance. In the example of Fig. 2(b),
if we denote λ1 − λ0 the shift of the cavity, the contrast
would be given by [RS(0,λ1) − RS(�R)]/RS(0,λ1) and would
have approximately the same value than without nonlinear
effects. However, the detected reflected power would be
RS(0,λ1) × P0,S and would be greatly increased in comparison
with RS(0) × P0,S , which could reduce the value of the min-
imum of the detectable magnetic field as shown for example
by Eq. (2).
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We can check that all of the results given here are consistent
with the quantum-noise limited sensitivity: (i) Configuration
1: δBq = 0.2 pT/

√
Hz and δBq = 0.06 pT/

√
Hz. (ii) Config-

uration 2: δBq = 0.13 pT/
√

Hz and δBq = 0.04 pT/
√

Hz for
L = 10 and 100 μm, respectively. The choice of parameters
for each case considered above results from an optimiza-
tion depending on the crystal thickness and NV−-center
concentration. Note that in the most resonant configuration
(Configuration 1 and L = 10 μm), the optimal overall Q

factor of the cavity for the probe is around 7.2 × 104,
giving a cavity bandwidth γcav = 2π × 4.0 GHz much larger
than the probe-laser linewidth (γL ≈ 2π × 10 MHz) used
for single-pass experiments reported in Ref. 19. For high
NV− concentrations (Configuration 2), the optimal IR Q

factor can be low (≈ 3 × 104) and thus the total optical path
length  = λSQS/(2πnd ) ( ≈ 2 mm) is smaller or almost
equal to the Rayleigh range obtained for a waist diameter
2w0 = 50 μm (2ZR ≈ 3.8 mm). Consequently, the simple
planar Fabry-Perot geometry32 depicted in Fig. 2(a) can be
used. Finally, considering highly concentrated thin samples,
the required Q factor can be around 2.5 × 104, which is
compatible with recent measurements reported on integrated
diamond microcavities.26,33

C. External-mirror cavities

For the highest-finesse cavities, appropriate for a concen-
tration of n = 4.4 × 1023 m−3, the total optical path length
 is longer than the Rayleigh range for the chosen beam
waist value (2w0 = 50 μm). Consequently, external spherical
mirrors should be used. If we consider for example a confocal
cavity, the distance between the mirrors is Lcav = 2ZR =
3.8 mm. For a 100-μm- (10-μm-) thick diamond plate,
the finesse of the cavity would be FS = 155 (FS = 1650).
Consequently, in the case of the highest-finesse cavity, the
Q factor would be 1.2 × 107 corresponding to a cavity
bandwidth γcav = 2π × 24 MHz still larger than the probe-
laser linewidth. We have assumed here distributed optical
losses such as αS = 0.5 cm−1; if we consider that optical
losses mainly come from diamond interface roughness, it
implies that in the more unfavorable case (for the 10-μm-thick
diamond plate), the root-mean-square deviation of the surface
to planarity of the diamond interfaces34 has to be less than
2 nm, which is attainable with state-of-the-art fabrication
techniques.35

IV. CONCLUSION

Including a cavity for boosting the optical path length,
the use of a cavity can enhance the sensitivity of an optical
magnetometer based on IR absorption in NV− centers in
diamond at room temperature. We found that for diamond
samples with a high density of defects (NV−-center concentra-
tion larger than n � 4.4 × 1023 m−3), our configuration allows
an enhancement of two orders of magnitude in comparison
with single-pass configurations. In the presence of high IR
optical losses, the enhancement is reduced to one order of
magnitude. The use of a cavity compensates for the reduction
of the optical depth due to homogeneous broadening at room
temperature.19 Moreover, doubly resonant (for the pump and
the probe) cavities can be used to reduce the amount of required
pump intensity (down to 8 MW/m2). Using diamond samples
with a very high density of defects (n ≈ 28 × 1023 m−3),
this approach could be implemented using monolithic planar
Fabry-Perot cavities or integrated diamond photonic structures
such as microdisk or microring resonators. For smaller de-
fect concentrations (n ≈ 4.4 × 1023 m−3), external spherical-
mirror cavities should be used.
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APPENDIX A: NV− SIX-LEVEL MODELING

The local density nj (z) [with j ∈ [1,6], see Fig. 1(a)] of
the centers of each level are calculated by solving the rate
equations assuming dnj/dt = 0. We consider spin-conserving
optical transitions. The pump excites a vibronic sideband
which decays quickly via phonon emission to levels |3〉 and
|4〉. This allows us to neglect the down-transition rates due to
the pump light. At z, the relation between the optical intensity
and the center densities is given by

M(z) · N (z) = N0, (A1)

where N0 = (0,0,0,0,0,n)T , N contains the values of the
center densities N = (n1,n2,n3,n4,n5,n6)T , and the matrix
M(z) can be written as

M(z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−[WP (z) + Wmw] Wmw k31 0 0 k61

Wmw −[WP (z) + Wmw] 0 k42 0 k62

WP (z) 0 −(k31 + k35) 0 0 0

0 WP (z) 0 −(k42 + k45) 0 0

0 0 k35 k45 −[WS(z) + �] +WS(z)

1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

We assume here a closed system:
∑6

j=1 nj = n. The transition
rates Wi (i = P for the pump and i = S for the IR probe) are

related to the optical intensity Ii , the wavelength λi , and the
absorption cross section σi by Wi = σiIiλi/(hc). Assuming
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a low Rabi angular frequency �R , in the rate-equation
approximation, the microwave transition rate is calculated as
Wmw = �2

RT ∗
2 /2 where T ∗

2 is the electron spin dephasing time.
The center density in each level is calculated byN = M−1N0.

APPENDIX B: IR ABSORPTION CROSS-SECTION
ESTIMATION

In order to model the system, we have to evaluate the
IR absorption (due to singlet states) cross section σS which
has not been measured so far. With the aim of designing a
cavity-based magnetometer, the value of σS is important to
evaluate the intracavity IR probe intensity saturation. This
completes the already reported list of photophysical properties
of the NV− centers in diamonds that are summarized in
Table I. Here, we estimate σS by using the single-pass IR
absorption measurements described in Ref. 19. We assume
that the measured magnetic field is oriented in such a way
that the microwaves are only resonant with NV− centers
of a particular orientation, i.e., one quarter of all the NV−
centers.24 In the single-pass configuration, C can be calculated
by integrating the two differential equations considering
off-resonance pumping and a resonant excitation (including
stimulated emission) for the probe

dIP

dz
= −{σP [n1(z) + n2(z)] + αP }IP (z),

(B1)
dIS

dz
= −{σS[n6(z) − n5(z)] + αS}IS(z),

where the densities ni(z) with i ∈ [1,6] are the stationary
solutions of the rate equations corresponding to Fig. 1(a) (see
Appendix A). αi with i ∈ {P,S} are the optical losses due
to light scattering or parasitic absorption. Calculations are
carried out using the parameters given in Ref. 19 recalled
in Table II. The two unknown values are the IR absorption
cross section σS and the optical losses αP at the pump
wavelength. The method consists in numerically finding the
values of σS which gives the contrast value defined in Eq. (1)
and reported in Ref. 19. We have then deduced that for a
monochromatic excitation (the linewidth of the IR laser is
γL ≈ 2π × 10 MHz � γIR), the IR absorption cross section
due to the metastable level is σS = (2.0 ± 0.3) × 10−22 m2.
The uncertainties come from the value of αP which has been
assumed to vary from 0 to 10 cm−1. The associated saturation
intensity is Isat,S = hc�/(2λSσS) ≈ 500 GW/m2.

APPENDIX C: ANALYTIC EXPRESSION OF THE CAVITY
REFLECTIVITY IN THE LINEAR REGIME

Here, we consider the cavity described in Fig. 2(a) with
ρback,S = 1. We denote the probe input field E0,S , the reflected
field Eout,S , and the forward propagating field inside the cavity
at the input mirror FS(0). Introducing the amplitude mirror IR
transmission coefficient κin,S verifying κ2

in,S + ρ2
in,S = 1 and

the round-trip phase ϕ, we can write

FS(0) = jκin,SE0,S + ρin,SASFS(0)ejϕ,
(C1)

Eout,S = ρin,SE0,S + jκin,SASFS(0)ejϕ.

By eliminating FS(0), we can deduce the amplitude transfer
function of the cavity

Eout,S

E0,S

= ρin,S − ASe
jϕ

1 − ρin,SASejϕ
. (C2)

The intensity reflectivity of the cavity is thus given by∣∣∣∣Eout,S

E0,S

∣∣∣∣
2

= ρ2
in,S + A2

S − 2ρin,SAS cos ϕ

1 + ρ2
in,SA

2
S − 2ρin,SAS cos ϕ

. (C3)

At resonance ϕ = 0(2π ), the reflectivity of the cavity can be
written as

RS =
(

ρin,S − AS

1 − ρin,SAS

)2

. (C4)

In the all-pass configuration, the finesse of the cavity is
given by

FS = π
√

ρin,SAS

1 − ρin,SAS

. (C5)

APPENDIX D: NUMERICAL CAVITY-REFLECTIVITY
CALCULATION

For i ∈ {S,P }, if Fi and Bi denote the forward and
backward propagating fields, the intracavity field Ei can be
written as

Ei(z) = Fi(z) + Bi(z). (D1)

With fi and bi , the slowly varying envelope amplitudes of the
forward and backward propagating fields shown in Fig. 2(a),
we obtain

Ei(z) = fi(z)e−jβiz + bi(z)ejβiz, (D2)

with βi = 2πnd/λi . The field amplitudes are normalized in
order to have Ii(z) = |Ei(z)|2. The calculation of the cavity
reflection is a two-point boundary value problem. It can be
solved by a shooting method. The first boundary condition
is that there is no incoming field from the z > 0. This can
be written by the following relation between the forward and
backward propagating field values at the back mirror:

bi(L) = ρback,ifi(L)e−2jβiL. (D3)

From this starting value, we can deduce the values of the
envelope amplitudes at the input mirror by integrating the
following differential coupled equations:

dfP

dz
= −1

2
{σP [n1(z) + n2(z)] + αP }fP (z),

dbP

dz
= 1

2
{σP [n1(z) + n2(z)] + αP }bP (z),

(D4)
dfS

dz
= −1

2
{σS[n6(z) − n5(z)] + αS}fS(z),

dbS

dz
= 1

2
{σS[n6(z) − n5(z)] + αS}bS(z),

where the values of the NV−-center density are deduced from
Eq. (A1). We can obtain the input I0,i = |E0,i |2 and output
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Iout,i = |Eout,i |2 intensities from

E0,i = 1

jκin,i

[fi(0) − ρin,ibi(0)],

(D5)
Eout,i = ρin,iE0,i + jκin,ibi(0),

where κin,i for i ∈ {P,S} (κ2
in,i + ρ2

in,i = 1) are the amplitude
mirror transmission coefficients. The calculation method
consists in numerically optimizing the values of fi(L) to obtain
the target values of I0,i . The value of RS = Iout,S/I0,S is then
deduced with and without the microwave field applied. This is
used to calculate the contrast C using Eq. (8) and the effective
detected power max[RS(�R),RS(0)] × PS . Finally, the mini-
mum detectable magnetic field δBc,l is evaluated using Eq. (9).

APPENDIX E: SENSITIVITY FUNDAMENTAL LIMIT

In this appendix, we derive the fundamental limit of the
minimal detectable magnetic field value for methods based on
IR absorption or visible fluorescence monitoring considering
that the methods are limited by the photon shot noise.

1. IR-absorption-based magnetometer

Using the expression of the ESR FWHM and Eq. (2), the
minimal detectable magnetic field in single-pass configuration
becomes

δBsp = 2

γ C
√

Nph(T ∗
2 )2tm

, (E1)

where Nph = PSλS/(hc) is the number of detected IR photons
per second. With NS the number of IR photons collected per
T ∗

2 , we have

δBsp = 2

γ C
√

NST
∗

2 tm
. (E2)

Now, we estimate the maximal NS value. Assuming an optimal
contrast C = 1. When microwaves are switched on, every
photon is absorbed. We assume that one NV− center absorbs
MS IR photons per T ∗

2 . In many high-density samples, T ∗
2 �

1/(k61 + k62), and therefore we can consider that MS < �T ∗
2 .

We can thus write

NS = MS

(
N sing

on − N
sing
off

)
, (E3)

where N
sing
on is the number of NV− centers in the singlet state

when the microwaves are switched on and N
sing
off the number of

NV− centers in the singlet for switched-off microwaves. This
gives the number of photons which can be detected when the
microwaves are switched off:

NS = MSN
[(

3
4 × P35 + 1

4 × P45
) − P35

]
, (E4)

where N = nV is the number of centers with P35 = k35/(k35 +
k31) being the probability that NV− centers in level |3〉
(ms = 0) decay to the singlet and P45 = k45/(k45 + k42) the

probability that NV− centers in level |4〉 (ms = ±1) decay to
the singlet. The 1

4 and 3
4 allow us to take into account that

only one quarter of the NV− centers are resonant with the
microwaves.24 We then have NS = RSMSN with

RS = 1

4

(
k45

k45 + k42
− k35

k35 + k31

)
, (E5)

which is an approximated value for RS(�R) defined in
Sec. III A2. Note that if the IR power is such as RSMS � 1,
the sensitivity is limited by the spin noise.

2. Fluorescence-measurement-based magnetometer

For a magnetometer using the fluorescence signal monitor-
ing and assuming that the ESR FWHM is 2/T ∗

2 , the sensitivity
is given by22,23

δBf = 2

γ Cf
√

NfT
∗

2 tm
, (E6)

where Cf is the contrast of the fluorescence signal and Nf the
number of collected photons per T ∗

2 . When the microwaves
are switched off, the fluorescence signal is proportional to
P31 = k31/(k31 + k35), the probability that NV− centers in
level |3〉 decay immediately to level |1〉. When the microwaves
are switched on, the fluorescence signal is proportional to
P42/4 + 3P31/4 where P42 = k42/(k42 + k45) is the probabil-
ity that NV− centers in level |4〉 decay to level |2〉. Assuming
that P31 ≈ 1 (k35 � k31), the contrast Cf is given by

Cf = 1

4

(
k31

k31 + k35
− k42

k42 + k45

)
. (E7)

The number of collected photons per T ∗
2 is Nf = ηNMf where

η is the collection efficiency and Mf the number of emitted
photons per T ∗

2 by one NV− center. Since 1/k35 < T ∗
2 , we

have Mf < k31/k35.

3. Comparison

The two techniques can be compared by calculating

δBf

δBc
≈ 1

Cf

√
RSMS

ηMf
, (E8)

where we assume C ≈ 1, δBc is thus obtained for an optimized
cavity. For k35 � k31 and k42 ≈ k45, we haveRS ≈ Cf and thus

δBf

δBc
≈

√
MS

Mf

1

ηRS

. (E9)

Note that with values recalled in Table II, we obtain RS ≈
8.5%, which corresponds to the optimal case assuming a
total spin polarization. We deduce that MS � 11 and Mf � 8.
Assuming that MS = Mf and considering a high value of the
collection efficiency (η ≈ 0.47 has been reported in Ref. 15),
we obtain δBf/δBc ≈ 5.
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