Generalized mechanism of the resistance switching in binary-oxide-based resistive random-access memories

Katsumasa Kamiya,^{1,*} Moon Young Yang,¹ Takahiro Nagata,² Seong-Geon Park,³ Blanka Magyari-Köpe,³ Toyohiro Chikyow,²

Keisaku Yamada,¹ Masaaki Niwa,¹ Yoshio Nishi,³ and Kenji Shiraishi¹

¹Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8571, Japan

²International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki,

Tsukuba, Ibaraki 305-0044, Japan

³Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA

(Received 6 November 2012; published 8 April 2013)

We report that V_0 cohesion-isolation transition caused by carrier injection/removal is a generalized resistance switching mechanism of binary-oxide-based resistive random-access memories (ReRAMs). We propose universal guiding principles by which ReRAM with unipolar and bipolar operations can be designed by controlling electrode work functions. We found by first-principles calculations that structural phase transition with V_0 cohesion-isolation is the physical origin of the resistance switching mechanism of binary-oxide-based ReRAM. Based on our theory, we can propose a guiding principle toward bipolar switching ReRAM with stable high work function metal electrodes.

DOI: 10.1103/PhysRevB.87.155201

PACS number(s): 77.84.Bw, 71.15.Mb

I. INTRODUCTION

Binary metal oxides are known to be a material exhibiting nonvolatile resistance switching by an applied electric filed.¹⁻³ With the advance of oxide nanotechnologies, its practical application for memory devices, so-called resistive randomaccess memories (ReRAMs), has recently emerged.⁴⁻⁶ The ReRAM has a capacitorlike structure with a metal/oxide/metal stack, and switches between low- and high-resistance states with the application of short voltage pulses. Because the device has the excellent scaling merit as well as its highspeed and low-power operations, it has attracted increased attention as a promising candidate for the next generation nonvolatile memories.^{7–10} Thus, clarification of the resistance switching in ReRAMs is not only imperative to realize highquality ReRAMs, but also important to advance oxide-material sciences.^{11,12}

The ON-OFF switching mechanism in binary-oxide-based ReRAM is, however, not fully elucidated. The resistance switching in the ReRAM is phenomenologically categorized into two modes; the switching is dependent (bipolar) or independent (unipolar) on the polarity of an applied voltage. More microscopically, it has been pointed out both experimentally and theoretically in TiO₂-based ReRAMs that the ON-OFF switching is governed by the formation and disruption of conducting filaments of oxygen vacancies (V_O).^{13,14} Very recently, the same type of switching mechanism has been suggested experimentally for HfO₂-ReRAMs.¹⁶ Yet, the main factors of the V_O-filament creation disruption and the mechanism of the electrode dependency of the bipolar and unipolar switching in such binary-oxide ReRAMs are still unclear.

In our previous works, it has been proposed that oxygen vacancy cohesion isolation upon carrier injection/removal is a strong driving force in the ON-OFF switching of TiO₂-based ReRAM.¹⁵ The aim of this study is, in contrast, to verify whether or not the V_O cohesion-isolation process is related to inherent properties of V_O appearing in other binary oxides, and thus generalized to binary-oxide-based ReRAMs. We here focus on HfO₂, because it has been shown to exhibit

good ReRAM behavior^{16–27} as well as excellent compatibility with silicon technology; moreover, HfO₂ has the conduction band offset on Si larger than 1 eV,²⁸ showing high insulating property as compared with TiO₂. Our density functional theory (DFT) calculations demonstrated that V_O in both HfO₂ and TiO₂ shows the same type of a reversible cohesion-isolation transition that can be controlled by carrier injection and removal, indicating a common physics related inherently to the V_O properties in binary oxides. Based on these results, we found the importance of the matching between the V_O levels and Fermi levels of electrodes for effective carrier injection and removal, giving a general guideline for the realization of the desirable bipolar switching of binary-oxide-based ReRAMs.

II. CALCULATION METHODS

To study the properties of a monovacancy, we used one V_0 in $2 \times 2 \times 2$ of a 12-atom unit cell of cubic HfO₂, hereafter indicated as the isolated- V_0 model [Fig. 1(a)]. To simulate the ON and OFF states in HfO2 based ReRAMs, we considered three different V_O configurations in the vacancy model, constructed by introducing four Vo into a 96-atom supercell of cubic HfO₂; (1) the V₀-chain model [Fig. 1(b)], (2) the partial- V_O -chain model [Fig. 1(c)], and (3) the disrupted- V_O chain model [Fig. 1(d)]. The first model involves an ordered V_0 filament, where a conductive channel is formed, corresponding to the ON state. The conductive channel is partially and fully ruptured in the second and last model, respectively, corresponding to the OFF state. The 96-atom supercell was constructed with three primitive vectors of $\mathbf{a}_1 = 2\sqrt{2}a(\cos 45^\circ \mathbf{\hat{x}} - \mathbf{\hat{x}})$ $\sin 45^{\circ} \hat{\mathbf{y}}$), $\mathbf{a}_2 = \sqrt{2}a(\sin 45^{\circ} \hat{\mathbf{x}} + \cos 45^{\circ} \hat{\mathbf{y}})$, and $\mathbf{a}_3 = 2a\hat{\mathbf{z}}$. The cell parameter a of 4.99 Å was optimized for the 12-atom unit cell, which is in good agreement with the experimental value of 5.08 Å. All calculations were performed using DFT within the local-density approximation (LDA), as implemented in the Vienna *ab initio* simulation package code.^{29–31} It has been recently pointed out that quantitative description of V_0 by DFT requires more accurate exchange-correlation functionals

FIG. 1. (Color online) Atomistic structures of the (a) isolated- V_0 , (b) V_0 -chain, (c) partial- V_0 -chain, and (d) disrupted- V_0 -chain models in cubic HfO₂.

than LDA.^{32,33} However, the use of the LDA could provide a qualitatively reasonable description of the V₀. For example, all of the LDA and other functionals show that an isolated V_O takes 2+ charge state for a wide range of the Fermi energy. A quantitative error by using LDA is estimated to be about 20% in terms of the formation energy of neutral oxygen vacancy. Taking into account this change, the resulting cohesive energy for V_0 [defined by Eq. (1), see below], however, would still be qualitatively describing the stability transition as a function of the charge state, since the values are still larger than a typical DFT calculation error of tens of meV. Furthermore, the characteristic feature of the electronic structure for the V₀-chain model was also confirmed by the LDA with the addition of the on-site Coulomb corrections (LDA + U) method.³⁴ Therefore, the use of LDA could not change qualitative features of the physics of the vacancy cohesion-isolation transition upon carrier injection/removal, discussed in this study.

The valence configurations of the pseudopotentials are $5p^65d^26s^2$ for Hf and $2s^22p^4$ for O. We used the projectoraugmented-wave pseudopotentials with a plane wave cutoff energy of 37 Ry. Monkhorst-Pack *k*-point sets of $2 \times 2 \times 2$ and $2 \times 4 \times 4$ were used for the isolated-V_O model and the other three models, respectively. After the geometry optimizations, all the atomic forces were less than 0.005 eV/Å.

III. RESULTS AND DISCUSSION

Figure 2(a) displays cohesive energy $E_c(q)$ per one V_O as a function of charge state q for the V_O-chain model with respect to the isolated-V_O model, defined as

$$E_c(q) = \frac{1}{4} \left\{ E \left(V_{\rm O}^q \text{-chain} \right) + 3 \times E(\text{bulk}) - 4 \times E(\text{isolated-V}_{\rm O}^q) \right\}, \tag{1}$$

where $E(V_{O}^{q}$ -chain) and $E(\text{isolated}-V_{O}^{q})$ are the total energy of the V_O-chain model and the isolated-V_O model in charge state q, respectively. E(bulk) is the total energy of HfO₂ bulk crystal, and the factors 3 and 4 are used because the V_O-chain model has four V_O in the supercell.

We found in Fig. 2(a) that $E_c \leq 0$ for the V_O-chain model with q = 0 and 1+. This trend is exactly the same as in the case of rutile TiO₂, as reported in our previous work.¹⁵ Furthermore, the calculated cohesive energy is -0.6 eV and -0.3 eV per one V_O for 0 and 1+ charge states, respectively, which are also comparable with that for rutile TiO₂, -0.9 eV and -0.5 eV for 0 and 1+ charge states, respectively.¹⁵ These results indicate clearly that V_Os undertake cohesion-isolation transition by carrier injection and removal, which is universal phenomena in both HfO₂ and TiO₂.

The V_O cohesion-isolation transition is also observed in the formation energy diagram of HfO₂ as a function of the Fermi energy E_F [Fig. 2(b)]. The formation energy for the system involving *n* oxygen vacancies in charge state *q*, $E_{\text{form}}(nV_{\text{O}}^q)$, was calculated using the following formula:³⁵

$$E_{\text{form}}(nV_{\text{O}}^{q}) = \left[E(nV_{\text{O}}^{q}) + E(\text{bulk}^{0})\right] - \left[E(nV_{\text{O}}^{0}) + E(\text{bulk}^{nq})\right] + nqE_{F} + \frac{3(nq)^{2}}{10\epsilon r_{0}},$$
(2)

where $E(nV_{O}^{q})$ is the total energy of crystal containing *n* oxygen vacancies in charge state *q*, and $E(\text{bulk}^{nq})$ is the total energy of HfO₂ bulk crystal in charge state *nq*. The last term is a background charge correction proposed by Blöchl,³⁶ where ϵ of 20 is the relative permittivity for cubic HfO₂, and r_0 of 6.19 Å is the radius of a sphere of the same volume as the supercell.

FIG. 2. (Color online) (a) V_0 cohesive energy as a function of charge state q for the V_0 -chain model with respect to the isolated- V_0 model, and (b) formation energy diagram per one V_0 for the isolated- V_0 and V_0 -chain models as a function of Fermi energy.

FIG. 3. (Color online) Energy band structures and density of states for the (a) V_0 -chain model in the one-electron-captured state, (b) partial- V_0 -chain model in the intrinsic state, and (c) disrupted- V_0 model in the intrinsic state. The horizontal lines indicate the position of the Fermi level. DOS is shown in arbitrary units.

We found in Fig. 2(b) that an isolated V₀ takes the 2+ charge state [intrinsic state (V₀²⁺)]. However, when V₀ form a cohesive chain, the one- and two-electron-captured states (V₀¹⁺ and V₀⁰) become energetically favorable in the V₀-chain model for the upper range of the Fermi energy, i.e., $E_F \ge 2 \text{ eV}$. This energy range is expected to be in the Si band gap region, because the Si valence band offset can be estimated to be 2.3 eV on HfO₂ valence band top.³⁷ These results clearly indicate that the energetics of the V₀ cohesion-isolation transition depend on the V₀ charged states. The similar charge-state dependency has also been confirmed in TiO₂.¹⁵

A detailed analysis of the electronic structures of HfO_2 reveals two significant roles of electrons injected into V_0 in the cohesion-isolation transition. Figure 3(a) shows the electronic energy bands and density of states (DOS) for the V_0 -chain model. We found that defect energy levels have a significant dispersion only along the Γ -T/Y lines. Obviously, this large dispersion is ascribed to the formation of the [010] ordered V_0 -chain [Fig. 1(b)]. It is thus believed from this band structure that the V_0 -chain model corresponds to the ON state (metallic). In sharp contrast, when one V_0 is isolated from the chain [Fig. 1(c)], the amount of the band dispersion becomes smaller than that in the V_O-chain model [Fig. 3(b)]. This trend is enhanced further by the isolation of two V_O from the chain (the filament disruption) [Figs. 1(d) and 3(c)]. These band structures show the insulating feature, corresponding to the OFF state.

Figure 4 shows partial DOS of d orbitals of aligned Hf atoms for the three V_O configurations. It can be seen that the Hf d orbitals form the V_O conducting channel bands. The figure also shows representative partial charge densities corresponding to the bands. We see that the defect states have a character of Hf d orbitals parallel to the (010) direction. These d orbitals form an electron conduction path in a V_0 chain [Figs. 4(a) and 4(b)], but it can be broken easily by V_0 isolation [Fig. 4(c)]. In the perfect V₀-chain case [Fig. 4(a)], four O²⁻ ions are coordinated to one Hf⁴⁺ ion and form a square planer (the xy plane) [Fig. 1(b)]; five d orbitals are spitted into the energetically lower d_{z^2} , d_{yz} , and d_{zx} orbitals, and the energetically higher $d_{x^2-y^2}$ and d_{xy} orbitals due to the crystal field. The former three d states can contribute to the hybridization in successive Hf ions, leading to the formation of bonding and antibonding states [upper inset in Fig. 4(a)]. The bonding orbitals are eventually occupied in the cases of

FIG. 4. (Color online) Partial density of states (PDOS) of d orbitals in aligned Hf atoms for the three V₀ configurations. The panels (a)–(c) correspond to the ones shown in Fig. 3. The insets show the representative partial charge densities of defect states; the Hf ions for PDOS are highlighted by dotted circles, and moved O atoms are indicated by arrows. The upper inset in the panel (a) is a schematic picture of d hybridization.

the one-electron captured and two-electron captured states, thereby leading to a larger amount of electron energy gain.

In addition to this band energy gain, electron injection into the positively charged V₀ cohesive filament also reduces the Coulomb repulsion between ordering Hf⁴⁺ ions. When V₀ is isolated in HfO₂, positively charged Hf⁴⁺ ions can move outward to reduce their Coulomb repulsion, leading to the stabilization of the intrinsic V₀²⁺ state. When V₀s form a cohesive filament, the previously mentioned outward displacement of Hf⁴⁺ ions are strongly suppressed due to the geometrical restriction caused by an ordered V₀ cohesive filament structure. Thus, electrons should be incorporated to neutralize the positively charged V₀ cohesive filament for reducing the repulsive Coulomb energy.

Binary oxides such as HfO2, TiO2, and Al2O3 are characterized by their ionic bonding and coordination number that are strongly related to defect concentration in the materials.^{38,39} HfO₂ is a material that has both higher ionic character of the bonding and higher atomic coordination numbers. If a defect is created in this compound, it is thus not easily able to relax to remove the defect. The nonequilibrium concentration of defects is, therefore, high in HfO₂.³⁹ The present study clearly shows that such existing Vo are able to be condensed and dispersed by V_O cohesion-isolation transition induced by electron injection and removal. It has been recently shown by our previous works that the same mechanism takes place even in other types of binary oxides such as TiO2 and Al₂O₃.^{15,40,41} TiO₂ is a nonstoichiometric compound where the equilibrium concentration of nonstoichiometric defects is naturally high. On the other hand, Al₂O₃ has both lower bond ionicity and lower coordination numbers than those of HfO_2 and TiO_2 , and it is thus known as a poor V_0 former. Combining the results from the present and previous works provides a comprehensive picture for the switching mechanism for binary-oxide-based ReRAM operation, where the V_O cohesion-isolation transition triggered by electron injection and removal generally occurs if Vo are created in these binary oxides.

It is worthwhile to note the energetics of the V₀ cohesionisolation transition in binary oxide, versus the energy scale of applied voltage. As stated above, the calculated V₀ cohesive energy for both HfO₂ and TiO₂ is on the order of 1 eV per V₀. This value is comparable to the typical energy scale in binary-oxide-based ReRAMs, i.e., the order of ~1 eV which is estimated from the typical value for applied voltage of the ReRAMs, ~1 V. Thus, we conclude that the electron injection and removal by applying electric field can induce the V₀ cohesion-isolation transition via the generalized mechanism, thereby being one of the main driving factors responsible for binary-oxide-based ReRAM operation.

How electrons are injected into V_O in binary oxide is one of the crucial factors that determines a switching mechanism of ReRAMs. We have already proposed that bipolar or unipolar behavior is determined by how the carriers are injected into V_O .¹⁵ In this theory, when the system Fermi level is well matched with V_O defect levels, both electron injection and removal occur via electrodes [Figs. 6(a) and 6(b) in Ref. 15], leading to a bipolar operation. On the other hand, if the system Fermi level is not matched with V_O defect levels, electrons can be injected only from the filament [Fig. 6(c) in Ref. 15].

FIG. 5. (a) Work function for typical top electrodes (TE) of TE/HfO₂/TiN-ReRAMs. Solid and open circles indicate experimentally observed bipolar and unipolar operation, respectively. The data of work function are taken from Ref. 42. The arrow in the figure illustrates work function modulation of electrodes by bond engineering. (b) Hybridization of metal and oxygen orbitals. The closed circles represent occupation by electrons.

Based on this theory, low work function metals are suitable for bipolar operation, since typical V_O levels are around 4.0 eV from the vacuum level. This is schematically shown in the universal diagram (Fig. 5), where work function for typical top electrodes (TE) of TE/HfO₂/TiN-ReRAMs are plotted according to experimentally determined bipolar and unipolar behaviors.^{17-21,23,26} This diagram indicates that highreactivity metals (Hf, Al, Ti, and Ta) are suitable for bipolar operation, but low-reactivity (stable) metals such as Ru, Cu, Au, and Pt are appropriate to unipolar operation. Based on this figure, we propose a guideline to realize bipolar switching ReRAM with high work function metal electrodes. Recently, bipolar operation was observed even in ReRAMs with stable high work function metal electrodes such as Cu and Pt.^{22,24} Moreover, Pt-O bonds are really observed by HX-PES.²² It is well known that partial oxidation lowers the metal work function, since high-energy antibonding levels are occupied by electrons [the inset in Fig. 5]. Accordingly, we can propose a guiding principle toward high quality bipolar switching ReRAM; bond-engineering such as metal-O bond formations can sufficiently modify work function of metal electrodes, leading to the bipolar operation in ReRAM with stable high work function metal electrodes.

IV. CONCLUSION

In conclusion, our DFT calculations have clarified that structural phase transition with V_0 cohesion-isolation is the physical origin of the ON-OFF switching mechanism of binary-oxide-based ReRAM. Based on our theory, we can propose a guiding principle toward bipolar switching ReRAM with stable high work function metal electrodes.

ACKNOWLEDGMENTS

Computations were performed on a NEC SX-9 at the Institute for Solid-State Physics, The University of Tokyo, and a Fujitsu PrimeQuest at the Research Center for Computational Science, Okazaki Research Facilities, National Institutes of Natural Sciences. This research was supported by a Grant-in-Aid for Young Scientists (B) (No. 22740259) from the Japan Society for the Promotion of Science. GENERALIZED MECHANISM OF THE RESISTANCE ...

- ¹T. W. Hickmott, J. Appl. Phys. **33**, 2669 (1962).
- ²G. Dearnaley, A. M. Stoneham, and D. V. Morgan, Rep. Prog. Phys. **33**, 1129 (1970).
- ³J. F. Gibbons and W. E. Beadle, Solid-State Electron. 7, 785 (1964).
- ⁴W. W. Zhuang, W. Pan, B. D. Ulrich, J. J. Lee, L. Stecker, A. Burmaster, D. R. Evans, S. T. Hsu, M. Tajiri, A. Shimaoka, K. Inoue, T. Naka, N. Awaya, A. Sakiyama, Y. Wang, S. Q. Liu, N. J. Wu, and A. Ignatiev, in *Electron Devices Meeting*, 2002 (*IEDM*) (IEEE, New York, 2002), pp. 193–196.
- ⁵T. Sakamoto, H. Sunamura, H. Kawamura, H. Hasegawa, T. Nakayama, and M. Aono, Appl. Phys. Lett. **82**, 3032 (2003).
- ⁶I. G. Baek, M. S. Lee, S. Seo, M.-J. Lee, D. H. Seo, D.-S. Suh,
- J. C. Park, S. O. Park, T. I. Kim, I. K. Yoo, U-In Chung, and
- J. T. Moon, in *Electron Devices Meeting*, 2004 (*IEDM*) (IEEE, New York, 2004), pp. 587–590.
- ⁷R. Waser and M. Aono, Nat. Mater. **6**, 833 (2007).
- ⁸A. Sawa, Mater. Today **11**, 28 (2008).
- ⁹H. Akinaga and H. Shima, Proc. IEEE **98**, 2237 (2010).
- ¹⁰Y. Nishi, Curr. Appl. Phys. Lett. **11**, e101 (2011).
- ¹¹E. Dagotto, Science **309**, 257 (2005).
- ¹²H. Takagi and H. Y. Hwang, Science **327**, 1601 (2010).
- ¹³D.-H. Kwon, K.-M. Kim, J.-H. Jang, J.-M. Jeon, M.-H. Lee, G.-H. Kim, X.-S. Li, G.-S. Park, B. Lee, S. Han, M. Kim, and C.-S. Hwang, Nat. Nanotech. 5, 148 (2010).
- ¹⁴S.-G. Park, B. M.-Köpe, and Y. Nishi, in *IEEE Symposium on VLSI Technology* (IEEE, New York, 2011), pp. 46–47.
- ¹⁵K. Kamiya, M. Y. Yang, S-G. Park, B. Magyari-Köpe, Y. Nishi, M. Niwa, and K. Shiraishi, Appl. Phys. Lett. **100**, 073502 (2012).
- ¹⁶C. Cagli, J. Buckley, V. Jousseaume, T. Cabout, A. Salaun, H. Grampeix, J. F. Nodin, H. Feldis, A. Persico, J. Cluzel, P. Lorenzi, L. Massari, R. Rao, F. Irrera, F. Aussenac, C. Carabasse, M. Coue, P. Calka, E. Martinez, L. Perniola, P. Blaise, Z. Fang, Y. H. Yu, G. Ghibaudo, D. Deleruyelle, M. Bocquet, C. Muller, A. Padovani, O. Pirrotta, L. Vandelli, L. Larcher, G. Reimbold, and B. De Salvo, in *Electron Devices Meeting*, 2011 (IEDM) (IEEE, New York, 2011), pp. 28.7.1–28.7.4.
- ¹⁷H-Y. Lee, P-S. Chen, C-C. Wang, S. Maikap, P-J. Tzeng, C-H. Lin, L-S. Lee, and M-J. Tsai, Jpn. J. Appl. Phys. 46, 2175 (2007).
- ¹⁸H. Y. Lee, P. S. Chen, T. Y. Wu, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, M-J. Tsai, and C. Lien, Appl. Phys. Lett. **92**, 142911 (2008).
- ¹⁹H. Y. Lee, P. S. Chen, T. Y. Wu, Y. S. Chen, C. C. Wang, P. J. Tzeng, C. H. Lin, F. Chen, C. H. Lien, and M.-J. Tsai, in *Electron Devices Meeting*, 2008 (*IEDM*) (IEEE, New York, 2008), pp. 1–4.
- ²⁰Ch. Walczyk, Ch. Wenger, R. Sohal, M. Lukosius, A. Fox, J. Dąbrowski, D. Wolansky, B. Tillack, H.-J. Müssig, and T. Schroeder, J. Appl. Phys. **105**, 114103 (2009).

- ²¹Y. S. Chen, H. Y. Lee, P. S. Chen, P. Y. Gu, C. W. Chen, W. P. Lin, W. H. Liu, Y. Y. Hsu, S. S. Sheu, P. C. Chiang, W. S. Chen, F. T. Chen, C. H. Lien, and M.-J. Tsai, in *Electron Devices Meeting*, 2009 (*IEDM*) (IEEE, New York, 2009), pp. 1–4.
- ²²M. Haemori, T. Nagata, and T. Chikyow, Appl. Phys. Express **2**, 061401 (2009).
- ²³P-S. Chen, H-Y. Lee, Y-S. Chen, F. Chen, and M-J. Tsai, Jpn. J. Appl. Phys. **49**, 04DD18 (2010).
- ²⁴T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, Appl. Phys. Lett. **97**, 082902 (2010).
- ²⁵T. Nagata, M. Haemori, Y. Yamashita, H. Yoshikawa, Y. Iwashita, K. Kobayashi, and T. Chikyow, Appl. Phys. Lett. **99**, 223517 (2011).
- ²⁶T. Bertaud, D. Walczyk, Ch. Walczyk, S. Kubotsch, M. Sowinska, T. Schroeder, Ch. Wenger, C. Vallée, P. Gonon, C. Mannequin, V. Jousseaume, and H. Grampeix, Thin Solid Films **520**, 4551 (2012).
- ²⁷Y. S. Chen, H. Y. Lee, P. S. Chen, C. H. Tsai, P. Y. Gu, T. Y. Wu, K. H. Tsai, S. S. Sheu, W. P. Lin, C. H. Lin, P. F. Chiu, W. S. Chen, F. T. Chen, C. Lien, and M.-J. Tsai, in *Electron Devices Meeting*, 2011 (*IEDM*) (IEEE, New York, 2011), pp. 31.3.1–31.3.4.
- ²⁸J. Robertson, J. Vac. Sci. Technol. B **18**, 1785 (2000).
- ²⁹P. Hohenberg and W. Kohn, Phys. Rev. **136**, B864 (1964).
- ³⁰W. Kohn and L. J. Sham, Phys. Rev. **140**, A1133 (1965).
- ³¹G. Kresse and J. Hafner, Phys. Rev. B **49**, 14251 (1994).
- ³²J. L. Lyons, A. Janotti, and C. G. Van de Walle, Microelectron. Eng. 88, 1452 (2011).
- ³³R. Gillen, J. Robertson, and S. J. Clark, Appl. Phys. Lett. 101, 102904 (2012).
- ³⁴B. Magyari-Köpe and Y. Nishi (unpublished).
- ³⁵K. Yamaguchi, A. Otake, K. Kamiya, Y. Shigeta, and K. Shiraishi, Jpn. J. Appl. Phys. **50**, 04DD05 (2011).
- ³⁶P. E. Blöchl, Phys. Rev. B **62**, 6158 (2000).
- ³⁷We assumed that conduction band offset on Si for HfO₂ is 1.5 eV, according to Ref. 28. The corresponding valence band offset is thus 3.4 eV. Considering the systematic gap narrowing by DFT-LDA, we simply multiplied these values by the ratio of the calculated band gap, 4 eV, and the experimental one, 6 eV, for HfO₂.
- ³⁸G. Lucovsky, J. Vac. Sci. Technol. A **19**, 1553 (2001).
- ³⁹J. Robertson, Solid-State Electronics **49**, 283 (2005).
- ⁴⁰K. Kamiya, M. Y. Yang, B. Magyari-Köpe, M. Niwa, Y. Nishi, and K. Shiraishi, in *Electron Devices Meeting*, 2012 (*IEDM*) (IEEE, New York, 2012), pp. 20.2.1–20.2.4.
- ⁴¹M. Y. Yang, K. Kamiya, B. Magyari-Köpe, H. Momida, T. Ohno, M. Niwa, Y. Nishi, and K. Shiraishi, Jpn. J. Appl. Phys. (to be published).
- ⁴²*CRC Handbook of Chemistry and Physics*, edited by D. R. Lide, 89th ed. (CRC, Boca Raton, FL, 2008).