
PHYSICAL REVIEW B 87, 155156 (2013)

Thermally induced phases in an Ising Kondo lattice model on a triangular lattice:
Partial disorder and Kosterlitz-Thouless state
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Magnetic and electronic properties of a Kondo lattice model with Ising localized spins are studied on an
isotropic triangular lattice. By using Monte Carlo simulation, we present that the model shows a rich phase
diagram with four dominant states: two-sublattice stripe, three-sublattice ferrimganetic, partially disordered,
and Kosterlitz-Thouless-like quasi-long-range ordered states. Among them, the partially disordered state and
Kosterlitz-Thouless-like state are intermediate phases induced by thermal fluctuations in the phase competing
regime; they are present only at finite temperatures and eventually taken over by another phases as the temperature
is further lowered. Although the Kosterlitz-Thouless-like state was found also in triangular Ising antiferromagnets
with further-neighbor interactions, the partially disordered state has not been reported in the localized spin-only
models in two dimensions. The partially disordered phase is also peculiar in the charge degree of freedom of
itinerant electrons; it is insulating and accompanied by charge disproportionation. From a combined analysis of
a mean-field calculation of the band structure and Monte Carlo simulation, we conclude that the partial disorder
in the present model is stabilized by the Slater mechanism.
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I. INTRODUCTION

The antiferromagnetic (AF) Ising model on a triangular
lattice is one of the most fundamental models for geometrically
frustrated systems. When the interaction is restricted to
the nearest-neighbor (NN) pairs, frustration in each triangle
prevents the system from forming a long-range order (LRO)
down to zero temperature and the ground state has extensive
degeneracy and associated residual entropy.1–3 The degenerate
ground state is extremely sensitive to perturbations. For
instance, an infinitesimal second-neighbor interaction lifts
the degeneracy and induces a LRO in the ground state;
a two-sublattice stripe order [Fig. 1(a)] is selected as the
ground state when the additional interaction is AF, while a
three-sublattice ferrimagnetic (FR) order [Fig. 1(b)] is selected
for the ferromagnetic (FM) interaction.

In such a degenerate situation, thermal fluctuations also
play an interesting role. In general, there is a possibility that a
high-entropic state is selected out of the ground state manifold
by raising temperature—this is called the order by disorder.4

For the AF Ising model, a candidate for such an emergent
state is a partially disordered (PD) state. The PD state is
the peculiar coexistence of magnetically ordered moments
and thermally fluctuating paramagnetic moments. Such a
possibility was first discussed by the mean-field study in the
presence of second-neighbor FM interaction;5 the mean-field
study predicted that a three-sublattice PD phase with an AF
ordering on the honeycomb subnetwork and paramagnetic
moments at the remaining sites [Fig. 1(c)] was induced at
finite temperature from the degenerate manifold in the limit
of vanishing second-neighbor interaction. Although such a PD
state was experimentally observed in several Co compounds6,7

and theoretically shown to present in a stacked triangular lattice
model,8 Monte Carlo (MC) simulations in two-dimensional
triangular lattice models have indicated that PD is fragile and
remains at most as a quasi-LRO; namely, in most cases, the
PD state is taken over by another peculiar intermediate state,
the Kosterlitz-Thouless (KT) state.9–14

On the other hand, recently, the authors have studied
Ising-spin Kondo lattice models on a triangular lattice15

and kagome lattice16 by MC simulation, and showed the
presence of the PD state in the purely two-dimensional models.
In these models, the interplay between localized moments
and itinerant electrons plays a crucial role in the following
points. First, the kinetic motion of electrons induces effective
interactions known as the Ruderman-Kittel-Kasuya-Yosida
(RKKY) mechanism.17–19 The long-ranged and oscillating
nature of the interactions drives keen competition between
different magnetic states. Furthermore, the change of the
magnetic states affects the electronic state in a self-consistent
manner through the spin-charge coupling; the system can
gain the energy by forming some particular electronic state
associated with magnetic ordering. In a previous study, the
authors suggested that the PD state is stabilized by the
nonperturbative role of itinerant electrons.15

In this paper, we present our comprehensive numerical
results on the magnetic and electronic properties of the Ising-
spin Kondo lattice model on a triangular lattice. To further
clarify the stabilization mechanism of PD, we analyze the
evolution of band structure under the PD-type magnetic texture
on the basis of a simple mean-field argument. The analysis
suggests that the spin-charge coupling can stabilize the PD
state by the Slater mechanism. Bearing this mean-field picture
in mind, we present and discuss the results of MC simulation
in detail. We distinguish the two intermediate-temperature
states, PD and KT-like states, from the two-sublattice stripe
and three-sublattice FR LRO states, and identify the range
of the phases by varying the electron filling and the strength
of spin-charge coupling. Analyzing the phase diagram and
electronic states in comparison to the mean-field picture,
we conclude that the two-dimensional PD state is stabilized
through the Slater mechanism.

The organization of this paper is as follows. In Sec. II,
we introduce the model and method. The definitions of the
physical quantities we calculated are also given. In Sec. III,
we present the mean-field analyses on the band structure in the
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FIG. 1. (Color online) Schematic pictures of (a) stripe order,
(b) ferrimagnetic (FR) order, and (c) partial disorder (PD) on a
triangular lattice. The arrows show magnetically ordered sites and
the open circles are thermally fluctuating paramagnetic sites.

PD state. MC results are presented for magnetic properties in
Sec. IV and for electronic properties in Sec. V. Section VI is
devoted to a summary.

II. MODEL AND METHOD

In this section we introduce the model and method. The
model is given in Sec. II A and the MC method is described in
Sec. II B. In Sec. II C, we give the definitions of the physical
quantities that we used to elaborate the phase diagram and
thermodynamic properties.

A. Model

We consider a single-band Kondo lattice model on a
triangular lattice with localized Ising spin moments. The
Hamiltonian is given by

H = −t
∑

〈i,j〉,σ
(c†iσ cjσ + H.c.) + J

∑
i

σ z
i Si . (1)

The first term represents the hopping of itinerant electrons,
where ciσ (c†iσ ) is the annihilation (creation) operator of an
itinerant electron with spin σ = ↑,↓ at the ith site and t is
the transfer integral. The sum 〈i,j 〉 is taken over nearest-
neighbor (NN) sites on the triangular lattice. The second
term is the onsite interaction between localized spins and
itinerant electrons, where σ z

i = c
†
i↑ci↑ − c

†
i↓ci↓ represents the

z component of itinerant electron spin, and Si = ±1 denotes
the localized Ising spin at the ith site; J is the coupling constant
(the sign of J does not matter in the present model). Hereafter,
we take t = 1 as the unit of energy, the lattice constant a = 1,
and the Boltzmann constant kB = 1.

B. Monte Carlo simulation

To investigate the thermodynamic properties of the model
(1) we adopted a MC simulation which is widely used for
similar models.20 The model belongs to the class of models in
which fermions are coupled to classical fields. For this class

of models, the partition function is given by

Z = Trf Trc exp[β(H − μN̂e)], (2)

where β = 1/T is the inverse temperature, μ is the chemical
potential, and N̂e is the total number operator for fermions.
Here, Trf is the trace over classical degree of freedom (in
the current case, Ising spin configurations), and Trc is the
trace over itinerant fermions. In the MC simulation, Trf is
calculated by using the Markov-chain MC sampling. MC
updates are done by the usual single-spin flip on the basis of the
standard METROPOLIS algorithm. The MC weight is calculated
by taking the fermion trace Trc for each configuration of
classical variables in the following form

P ({Si}) = exp[−Seff({Si})], (3)

where Seff is the effective action calculated as

Seff({Si}) = −
∑

ν

log[1 + exp{−β(Eν({Si}) − μ)}]. (4)

Here, Eν({Si}) are the energy eigenvalues for the configuration
{Si}, which are readily calculated by the exact diagonalization
as it is a one-particle problem in a static potential.

The calculations were conducted for the system sizes N =
12 × 12, 14 × 14, 12 × 18, 15 × 15, 16 × 16, and 18 × 18
under the periodic boundary conditions. Thermal averages of
physical quantities were calculated for typically 4300–9800
MC steps after 1700–5000 steps for thermalization. The results
are shown in the temperature range where the acceptance ratio
is roughly larger than 1%. We divide the MC measurements
into five bins and estimate the statistical errors by the standard
deviations among the bins.

C. Physical quantities

As we will see later, the model (1) exhibits phase transitions
to various magnetic states including different types of three-
sublattice orders: the ferrimagnetic (FR) state [Fig. 1(b)] and
partially disordered (PD) state [Fig. 1(c)]. These magnetic
states, in principle, are distinguishable by the spin structure
factor for the Ising spins

S(q) = 1

N

∑
i,j

〈SiSj 〉 exp(iq · rij ), (5)

where the bracket denotes the thermal average in the grand
canonical ensemble and rij is the position vector from the
ith to j th site. The PD order is signaled by peaks of S(q) at
q = ±(2π/3,−2π/3), while the FR order develops a peak at
q = 0 in addition to q = ±(2π/3,−2π/3). No Bragg peaks
develop in the KT state as it is a quasi-LRO. However, in
finite-size calculations, it is difficult to distinguish these phases
solely by the structure factor, as the correlation length in the
KT state is divergent and easily exceeds the system size at low
temperature.

For distinguishing the FR, PD, and KT instabilities, it is
helpful to use the pseudospin defined for each three-site unit
cell

S̃m =

⎛
⎜⎜⎝

2√
6

− 1√
6

− 1√
6

0 1√
2

− 1√
2

1√
3

1√
3

1√
3

⎞
⎟⎟⎠

⎛
⎝ Si

Sj

Sk

⎞
⎠ , (6)
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and its summation

M̃ = 3

N

∑
m

S̃m, (7)

where m is the index for the three-site unit cells and (i,j,k)
denote the three sites in the mth unit cell belonging to the
sublattices (A, B, and C), respectively.12,13 Then, the three-
sublattice PD state [Fig. 1(c)] is characterized by a finite M̃ =
(M̃x,M̃y,M̃z) parallel to (

√
3/2,1/

√
2,0), (0,

√
2,0), or their

threefold symmetric directions around the z axis. On the other
hand, the three-sublattice FR state [Fig. 1(b)] is characterized
by a finite M̃ along (

√
2/3,

√
2,1/

√
3), (2

√
2/3,0,−1/

√
3), or

their threefold symmetric directions around the z axis. Hence,
the two states are distinguished by the azimuth of M̃ in the xy

plane as well as Mz. In the MC calculations, we measure

Mxy = 〈(
M̃2

x + M̃2
y

)1/2〉
, (8)

Mz = 〈|M̃z|〉, (9)

and the corresponding susceptibilities

χxy = N

T

(〈
M̃2

x + M̃2
y

〉 − M2
xy

)
, (10)

χz = N

T

(〈
M̃2

z

〉 − M2
z

)
. (11)

We also introduce the azimuth parameter of M̃ defined by

ψ = M3 cos 6φM, (12)

where φM is the azimuth of M̃ in the xy plane andM = 3
8M2

xy .
The parameter ψ has a negative value and ψ → − 27

64 for the
perfect PD ordering, while it becomes positive and ψ → 1 for
the perfect FR ordering; ψ = 0 for both paramagnetic and KT
phases in the thermodynamic limit N → ∞.

In addition, we calculate the spin entropy to distinguish the
three-sublattice orderings. The spin entropy per site is defined
by

S(T ) = − 1

N

∑
{Si }

P ({Si}) log P ({Si}), (13)

where P ({Si}) is the probability for spin configuration {Si} to
be realized, given in Eq. (3). In the actual MC calculation,
instead of directly calculating Eq. (13), S is evaluated by
calculating its temperature derivative

∂S(T )

∂T
= 1

NT 2
{〈SeffH 〉 − 〈Seff〉〈H 〉} , (14)

and integrating it as

S(T ) =
∫ T

0

∂S(T )

∂T
dT = log 2 −

∫ ∞

T

∂S(T )

∂T
dT . (15)

In Eq. (14), Seff is the effective action in Eq. (4). In the
following calculations, we set the cutoff T = 1 for the upper
limit of the last integral in Eq. (15).

On the other hand, to identify the two-sublattice stripe order
[Fig. 1(a)], we calculate the order parameter

Mstr =
[ ∑

q∗
str

{
S(q∗

str)

N

}2
]1/2

, (16)

and its susceptibility χstr. Here, the sum is taken for the
characteristic wave vectors of the stripe orders running in three
different directions, q∗

str = (π,0) and (± 1
2π,

√
3

2 π ).
We also examine the thermodynamic behavior of electronic

states for itinerant electrons. There, we computed the charge
modulation defined by

nCO =
{

N (q∗
CO)

N

}1/2

(17)

at q∗
CO = (−2π/3,2π/

√
3), which corresponds to the wave

numbers for the three-sublattice orders. Here, N (q) is the
charge structure factor for itinerant electrons

N (q) = 1

N

∑
i,j

〈ninj 〉 exp(iq · rij ), (18)

where ni = 1
2

∑
σ c

†
iσ ciσ .

III. MEAN-FIELD BAND STRUCTURE

Before going to the MC results, we here discuss how one
particle band structure is modulated by PD ordering in a
mean-field picture. We consider a three-sublattice LRO state,
in which the localized spins give a mean-field local magnetic
field to itinerant electrons. Namely, we consider a mean-field
Hamiltonian given by

HMF =
∑

k

⎛
⎜⎝


Aσ z τk τ ∗
k

τ ∗
k 
Bσ z τk

τk τ ∗
k 
Cσ z

⎞
⎟⎠. (19)

Here, three rows correspond to the different sublattices A, B,
and C in the three-site unit cell; 
α is a mean field given by
J 〈Sα〉 (α = A,B,C). The sum is taken in the first Brillouin
zone for the magnetic unit cell for three-sublattice order. τk is
the hopping term for itinerant electrons given by

τk = −t
[
eikx + ei(− kx

2 +
√

3
2 ky ) + ei(− kx

2 −
√

3
2 ky )

]
(20)

and σ z corresponds to the z component of itinerant electron
spin.

The band structure for a FR order (
A,
B,
C) =
(
,
,−
) was recently studied by the authors.21 There, it
was reported that the electronic structure in the FR order is
semimetallic with forming Dirac nodes at the electron filling
n = 1

2N

∑
iσ 〈c†iσ ciσ 〉 = 1/3 for J > t .

Here, we discuss the band structure for the PD case
(
A,
B,
C) = (
,0,−
). The band structure for 
 = 2 is
shown in Fig. 2. In this case, all three bands shown in the
figure are doubly degenerate and there are six bands in total.
The first Brillouin zone is shown by the gray shade in the
bottom surface. The result shows the presence of an energy
gap at the Fermi level corresponding to n = 1/3 that opens
between the lowest energy band and the middle band [see also
Fig. 3(c)].

We next look into the conditions for the energy gap
formation in the mean-field PD band. Figure 3 shows the
results of band structure while varying 
. The results are
plotted along the symmetric line in the Brillouin zone shown in
the bottom surface in Fig. 2. For small 
, the system is metallic
at n = 1/3, as shown in the case of 
 = 1/3 in Fig. 3(a);
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FIG. 2. (Color online) Mean-field band structure calculated by
Eq. (19) for the local magnetic field of PD type (
A,
B,
C) =
(2,0,−2). Each of the three bands shown is doubly degenerate and
there are totally six bands. The gray hexagon on the basal plane shows
the first Brillouin zone for the magnetic supercell.

both the electron and hole pockets are present at the Fermi
level. The pockets shrink as increasing 
 and disappear at the
same time at 
 = 2/3, as shown in Fig. 3(b). For larger 
,
an energy gap opens between the lowest and middle bands,
corresponding to n = 1/3, as stated above [Fig. 3(c)]. Hence,

c = 2/3 is the critical point for the metal-insulator transition
in this mean-field PD state.

Figure 4 shows 
 dependencies of the energy gap and
associated charge modulation nCO [Eq. (17)] at n = 1/3.
The charge gap develops for 
 > 2/3 and monotonically
increases, approaching asymptotically a 
-linear form as

 
 t . The charge modulation is induced by the inhomo-
geneity of local potential; the local charge density at B sites
(the site corresponds to paramagnetic sites) becomes dilute
compared to those at A and C sites (the magnetically ordered
sites). In the limit of 
 
 t , nCO approaches 1/

√
12 ∼ 0.289.

The results above suggest a stabilization mechanism of
PD which is absent in the localized spin only model. In
the previous studies on the Ising spin models9,10,12 and an
equivalent classical particle model11 on a triangular lattice,
PD was shown to be unstable against thermal fluctuations and
taken over by a KT state. In the case of our model, however, as
the KT state lacks a long-range periodic magnetic structure, it
is expected that the KT state does not open an energy gap in
the electronic state of itinerant electrons. Therefore, in contrast
to the case of localized spin only models, there is a chance
for the current model to stabilize the PD state by the Slater
mechanism, that is, by forming an energy gap at the Fermi
level with folding the Brillouin zone under a periodic magnetic
order.

In addition, the formation of an energy gap for 
 > 2/3
implies that, if the PD state is stabilized by the Slater
mechanism, it should appear from a finite J , and not remain
stable down to J → 0. This is in sharp contrast to magnetic
ordering by the Ruderman-Kittel-Kasuya-Yosida (RKKY)
interaction;17–19 as the RKKY interaction is given by the
second-order perturbation in terms of J/t , if the PD state

6
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0
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-4

-6

ε

K MΓ Γ

4

2

0
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-6

ε

K MΓ Γ

(a)

(b)

4
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-2
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-6

ε

K MΓ Γ

(c)

FIG. 3. (Color online) Mean-field band structure along the sym-
metric lines in the local magnetic field of PD type (
A,
B,
C) =
(
,0,−
): (a) 
 = 1/3, (b) 
 = 2/3, and (c) 
 = 2. The dashed
horizontal lines indicate the Fermi level for n = 1/3.

is stabilized by the RKKY interaction, it should appear for
an infinitesimal J . Hence, the phase diagram in the small J

region gives an idea on how the PD state is stabilized. We will
discuss this point by showing the MC results while changing
J in the next section.

IV. MONTE CARLO SIMULATION

In this section, we present the results of MC simulation
introduced in Sec. II B. We first show the finite-temperature
phase diagrams in Sec. IV A, which include four magnetic
phases: stripe, PD, FR, and KT-like states. The details of
numerical data for the PD state are elaborated in Sec. IV B.
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FIG. 4. (Color online) 
 dependencies of the mean-field energy
gap and associated charge modulation nCO at n = 1/3.

The results for stripe, KT-like, and FR states are discussed in
Sec. IV C.

A. Phase diagrams

Figure 5(a) shows the phase diagram around the electron
filling n = 1/3 at J = 1 obtained by MC calculations. There
are four dominant phases—stripe, FR, PD, and KT-like phases,
in addition to an electronic phase separation (PS). The strip at
the bottom of the figure shows the ground state obtained by
variational calculation comparing the ground state energy of
the stripe and FR states (the details of variational calculation
is given in the Appendix). For the relatively low filling of
n � 0.29, the stripe order with period two [Fig. 1(a)] develops
in the low temperature region. On the other hand, for the higher
filling of n � 0.32, the system exhibits the three-sublattice
FR order at low temperature [Fig. 1(b)]. MC data for the
stripe and FR orders will be discussed in Sec. IV C. In
addition to these two states, the numerical results show two
intermediate-temperature states depending on the electron
filling n. For 0.29 � n � 0.34, we identify the intermediate
phase as the three-sublattice PD state [Fig. 1(c)]. The details
will be discussed in Sec. IV B. Meanwhile, for n � 0.34,
we find KT-like behavior similar to the one discussed in
the Ising models,9–13 as presented in Sec. IV C. In these
intermediate-temperature phases, the numerical data indicate
a LRO for PD but a quasi-LRO in the KT-like region.

A similar phase diagram is obtained at J = 2, as shown
in Fig. 5(b). In this case also, the PD phase emerges in the
intermediate-temperature region. However, in contrast to the
case with J = 1 where PD is found widely above the FR state
as well as PS, the PD phase dominantly appears above the PS
region between the stripe and FR states.

We also investigated the phase diagram of the model in
Eq. (1) while varying J . Figure 6 shows the numerically
obtained phase diagram at n = 1/3. The result shows that
the PD state is stable in a wide range of 0.8 � J � 5.6. The
transition temperature first rapidly increases as increasing J ,
while it turns to a gradual decrease after showing a peak at
J ∼ 2.
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"KT"

FRStripe
PS

Para

FIG. 5. (Color online) Phase diagrams of the model (1) while
varying n at (a) J = 1 and (b) J = 2. The symbols show phase
boundaries for the four phases: stripe, partially disordered (PD),
KT-like (KT), and ferrimagnetic (FR) phases. PS represents a phase
separation. The lines are guides for the eyes. The strips at T = 0 show
the ground states obtained by comparing the energy of stripe and FR
states.

An important observation in this constant-n phase diagram
is that the PD state does not survive down to J → 0, and it
is taken over by the KT-like and FR phases in the small J

region. The absence of PD state in the J → 0 limit implies
that the RKKY interaction in the second-order perturbation
theory is insufficient in stabilizing the PD state. Moreover, the
emergence of PD for J > Jc �= 0 is consistently understood
within the Slater mechanism discussed in Sec. III; the MC
result of Jc ∼ 0.8 is in good accordance with the mean-field
argument of the critical value 
c = 2/3. The result clearly
indicates that a nonperturbative effect of itinerant electrons
plays a crucial role in stabilizing the PD state.

In the PD region in Fig. 6, our MC data do not show
clear sign of further transition while decreasing temperature
before the MC calculations become unstable. In the low
temperature region, however, it becomes difficult to determine
the chemical potential μ for n = 1/3. The lowest temperature
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FIG. 6. (Color online) Phase diagram of the model (1) at n =
1/3 while varying J . The notations are common to those in Fig. 5.
The boundary between PD and PS is difficult to determine by MC
calculations, and supposed to be located at lower temperatures than
indicated by the gray arrows.

of MC calculations are shown in the phase diagram by the
gray downward arrows. On the other hand, the analysis of the
ground state indicates that the ground state for J � 1.68 is
the FR state, while the region for J � 1.68 is PS between the
stripe and FR states. In addition, we observe the PS instability
by carefully investigating the change of n as a function of
μ at J = 5.4 (see also the Appendix). From these facts, we
conclude that the PD for J � 1.68 is taken over by PS between
the stripe and FR states at low temperatures. Since it is tedious
to determine the PS boundary from the μ-n plot for all the

values of J , we merely plot the lowest temperature we reached
in our constant-n calculations as the upper limit of temperature
for the PS instability.

B. Partial disorder

Here, we present the details of MC data for identifying
the PD state. Figure 7 shows T dependencies of MC results
for different J at n = 1/3. To fix n, we tuned μ for each
temperature; the errors for n at each temperature are controlled
within 0.001. Figure 7(a1) is the result for the pseudomoments
Mxy and Mz at J = 1 [see the definitions in Eqs. (8) and
(9), respectively]. Mxy shows two anomalies while decreasing
temperature at T (PD)

c = 0.086(4) and T (FR)
c = 0.019(2). The

critical temperatures are determined by the peaks of the
susceptibilities χxy and χz, as mentioned below. At T (PD)

c , Mxy

rapidly increases and approaches
√

2 at lower temperature.
In addition, it shows a kink at T (FR)

c and further increase to
8/3 at lower temperature. Meanwhile, Mz shows no anomaly
at T (PD)

c , while it shows a rapid increase to 1/
√

3 at T (FR)
c .

Correspondingly, χxy and χz in Fig. 7(a2) show divergent
peaks increasing with the system size; peaks of χxy appear
at both T (PD)

c and T (FR)
c , while χz shows a peak only at

T (FR)
c . These results signal the presence of two successive

phase transitions at T (PD)
c = 0.086(4) and T (FR)

c = 0.019(2).
The error bars are estimated by the range of temperature
where the standard deviation of the MC data exceeds the
difference of expectation value from the peak value. The
transition temperatures and error bars shown in Figs. 5 and 6
are given by this criterion. Meanwhile, most of the calculations
in Fig. 5 were done by fixing μ instead of n. Hence, we also
give the error bars in terms of n, as n changes with T in a fixed
μ calculation.
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FIG. 7. (Color online) MC results for (a1)–(c1) Mxy , Mz, and ψ , (a2)–(c2) χxy and χz, and (a3)–(c3) S and its temperature derivative
∂S/∂T at n = 1/3; (a1)–(a3) J = 1, (b1)–(b3) J = 2, and (c1)–(c3) J = 4. The calculations were done for the system sizes N = 12 × 12,
12 × 18, and 18 × 18. S is calculated from numerical integration of ∂S/∂T by assuming S(T = 1) = log 2.

155156-6



THERMALLY INDUCED PHASES IN AN ISING KONDO . . . PHYSICAL REVIEW B 87, 155156 (2013)

To determine the nature of low temperature phases at n =
1/3, we also computed the azimuth parameter ψ [Eq. (12)]
shown in Fig. 7(a1). While increasing the system sizes, ψ

apparently deviates from zero to a negative value below T (PD)
c ,

indicating that the intermediate phase for T (FR)
c < T < T (PD)

c

has a PD-type order. On the other hand, ψ shows a sign change
at T (FR)

c , and rapidly increases to ψ = 1 at lower temperature.
This is a signature of the FR transition, which will be discussed
in detail in Sec. IV C.

The emergence of PD is also seen in the results for the
spin entropy S and its temperature derivative [Eqs. (15)
and (14), respectively], as shown in Fig. 7(a3). In the
intermediate-temperature region for T (FR)

c < T < T (PD)
c , S

appears to approach 1
3 log 2 as decreasing temperature, which

is the value expected for the ideal PD state where one out of
three spins in the magnetic unit cell remains paramagnetic.
The remaining entropy is released rapidly at T (FR)

c and S → 0
at lower temperature due to the ordering of paramagnetic spins
in the FR state.

Similar phase transitions to the PD state are observed in the
wide range of J , as shown in Figs. 7(b) and 7(c) at J = 2 and
J = 4, respectively. In these results, however, we could not
confirm the presence of another phase transition at a lower
temperature in the range of temperature we calculated, in
contrast to the FR transition found in the case of J = 1. As
the PD state retains a finite S, it is unlikely that this phase
survives to T → 0. Hence, it is presumably taken over by
other ordered phases or PS at a lower temperature. As shown
in Fig. 6, the ground state is deduced to be PS for the values of
J in Figs. 7(b) and 7(c). We, therefore, expect that the PD state
is taken over by PS below T = 0.02 for J � 2. The situation
is indicated by the gray arrows in the phase diagram in Fig. 6,
as discussed in Sec. IV A.

Another point to be noted is the systematic change in S
in the PD state by changing J . While the result at J = 1
appears to show plateau like behavior at S ∼ 1

3 log 2, the
plateau value of S in the PD state decreases while increasing
J , as shown in Figs. 7(a3), 7(b3), and 7(c3). The decrease
in S is presumably attributed to the development of spatial
correlations between paramagnetic sites in the PD state;
the ideal value S = 1

3 log 2 is for completely uncorrelated
paramagnetic spins, and correlations between them reduces
the entropy. Such development of correlations are observed
in the spin structure factor S(q) defined in Eq. (5). Figure 8
shows a profile of S(q)/N calculated by MC simulation at
T = 0.02. The peaks at q = (4π/3,0) and (8π/3,0) indicates
that the system is in a three-sublattice ordered phase, while
the absence of a sharp peak at q = (0,0) indicates that there
is no net magnetic moment; the result is consistent with PD
order. When comparing the results at J = 2 and J = 4, the
peak corresponding to the three-sublattice order gets sharper
for J = 4, while the height of the peak of S(q)/N is almost the
same. This indicates that the PD order at J = 2 shows more
spin fluctuations than that at J = 4, consistent with the trend
of the plateau value of S.

Thus far, we showed the results at n = 1/3. Next, we show
how the PD evolves while changing n. Figure 9 shows the
MC result of ψ as a function of n at T = 0.08 and J = 2. ψ

becomes negative around n = 1/3 and takes the lowest value
at n 
 1/3. The data indicate that ψ is almost system size

4π
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FIG. 8. (Color online) MC results for S(q)/N along the q =
(qx,0) line at T = 0.02. The calculations were done for the system
size N = 18 × 18.

independent or rather slightly decreases as the system size
increases in the finite range of n around n = 1/3. Hence, the
PD state is stabilized not only at n = 1/3 but for a finite range
of 0.31 � n � 0.34 in the thermodynamic limit. The range
well agrees with that for the PD phase estimated from the peak
of susceptibilities shown in Fig. 5(b).

With regard to the order of the PD transition, the PD
transition in our MC results appears to be continuous, as shown
in Fig. 7. However, it needs careful consideration, as we will
discuss here. It is known that the Ising model on a triangular
lattice with AF NN interactions is effectively described by
a six-state model, in which the low-energy states with three
up-up-down and three up-down-down configurations in the
three-site unit cell are described by six-state variables. The PD
state in our model also retains six low-energy states with dif-
ferent up-down-paramagnetic configurations, and hence, the
transition to PD is expected to be classified in the framework
of six-state models. However, from the argument of duality
properties, it is prohibited that the six-state models exhibit a
single second-order transition for changing temperature.22 For
instance, a two-dimensional six-state clock model shows two
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FIG. 9. (Color online) MC results for ψ while varying n at T =
0.08 and J = 2. The calculations were done for the system sizes
N = 12 × 12, 12 × 18, and 18 × 18.
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KT transitions at finite temperature, without exhibiting true
LRO for T �= 0 (Refs. 23 and 24). On the other hand, a six-state
Potts model shows a weak first-order transition to LRO, in
which the correlation length reaches the order of 1000 sites at
the critical point.25 In our PD case, the apparently second-order
transition at T (PD)

c is not expected to be a single one, but is
always followed by another transition to FR or PS at a lower
temperature. This appears not to violate the general argument
for the six-state models, although it is not clear to what extent
the argument applies, as the electronic PS never takes place
in the localized spin models. Hence, the PD transition can
be of second order, as indicated in our numerical results. Of
course, we cannot exclude the possibility of a weak first-order
transition, similar to that of the Potts model. In this case, due to
a long correlation length at the critical temperature, the system
sizes used in our calculations are likely to be insufficient to
distinguish the first-order transition from the second-order one.

C. Other magnetic orders

Figure 10 presents the results for the relatively low filling
where the stripe order is stabilized at low temperature.
Figure 10(a) shows the order parameter for the stripe order
Mstr [Eq. (16)], and Fig. 10(b) shows the corresponding
susceptibility χstr at J = 2 and n = 0.27. A phase transition
to the stripe phase is signaled by a rapid increase of Mstr

and corresponding peak of χstr; we determine the transition
temperature T (str)

c by the peak temperature of χstr for each
system size, and plot them in the phase diagram in Fig. 5(a).
The error bars are estimated in a similar manner to the case of
T (PD)

c and T (FR)
c . We also show the system-size extrapolation

of T (str)
c in the inset of Fig. 10(b). Although the data are

rather scattered, we fit them by f (N ) = a + b/Nc with fitting
parameters a, b, and c. The extrapolation clearly shows that the
phase transition takes place at a finite temperature, as expected
for the two-dimensional Ising order.
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FIG. 10. (Color online) MC results for (a) Mstr and (b) its
susceptibility χstr at J = 2 and n = 0.27. The inset in (b) shows
T (str)

c for different sizes and the solid line is the extrapolation which
gives T (str)

c = 0.051(13). The calculations were done for the system
sizes N = 12 × 12, 14 × 14, 12 × 18, 16 × 16, and 18 × 18.
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FIG. 11. (Color online) MC results for (a) Mxy , Mz, and ψ ,
(b) χxy and χz, and (c) S and its temperature derivative ∂S/∂T at
n = 0.38 and J = 2. The calculations were done for the system sizes
N = 12 × 12, 12 × 18, and 18 × 18.

The stripe-ordered phase is a peculiar magnetic state,
in which the sixfold rotational symmetry of the lattice is
spontaneously broken and reduced to twofold. Due to the
symmetry breaking, the transport property is expected to show
strong spatial anisotropy; e.g., the longitudinal conductivity
will be large in the direction along the stripes, while suppressed
in the perpendicular direction. This is an interesting topic on
the control of transport by magnetism and vice versa.

Figure 11 shows the results for the relatively high filling
where the low temperature phase is FR, at n = 0.38 and J =
2. The data indicate two successive transitions signaled by
the peaks in χxy and χz at different temperature. The peak
of χz corresponding to the increase of Mz signals the phase
transition to the FR phase at T (FR)

c = 0.098(4). At the same
time, ψ becomes finite below T (FR)

c , and approaches 1, as
expected for the FR ordering. Similar behavior was observed
at T (FR)

c = 0.019(2) in Figs. 7(a1) and 7(a2). On the other
hand, at a higher TKT = 0.146(4), only Mxy changes rapidly,
and correspondingly, χxy shows a peak. Mxy , however, shows a
noticeable system-size dependence even below TKT, in contrast
with the results below T (PD)

c . Similar behavior was observed
in the KT transition in Ising spin systems.12,13

On the other hand, ψ does not show an anomaly at TKT,
while it shows a sharp rise around T (FR)

c , as shown in Fig. 11(a).
The value of ψ extrapolated to large N converges to zero
in the intermediate-temperature range. Figure 12 shows the
extrapolation of ψ for N → ∞. The results indicate that ψ

remains to be zero at N → ∞ for T � 0.104, which is far
below TKT = 0.146(4). On the other hand, the extrapolated
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FIG. 12. (Color online) Extrapolation of ψ to N → ∞ at differ-
ent temperatures. The solid lines for T � 0.104 is the linear fitting of
data.

value becomes finite for T � 0.104, reflecting the FR order;
the transition temperature is estimated as T̃ (FR)

c = 0.102(2),
which is in accordance with T (FR)

c = 0.098(4).
The results above indicate that there is no sixfold symmetry

breaking in Mxy at TKT, as seen in the KT phase in the Ising
spin models.12 Hence, we consider that the higher temperature
transition at TKT is of KT type. Namely, the system exhibits
two successive transitions from the paramagnetic phase to
the KT-like phase at TKT, and the KT-like phase to the low
temperature FR phase at T (FR)

c . Here, we call the intermediate
temperature phase the KT-like phase, as it is difficult to confirm
either the KT universality class by critical behavior or the
quasi-LRO behavior within the system sizes we reached, as
seen below.

The signature of two successive transitions is also observed
in the real-space spin correlation function C(r). Here C(r) is
the averaged correlations between the Ising spins in distance
r , defined by

C(r) =
∑
i,j

1

Np(r)
〈SiSj 〉δ(|rij | − r), (21)

where Np(r) = ∑
i,j δ(|rij | − r) is the number of spin pairs

with distance r , and δ(x) is the delta function. The MC data
while varying temperature are shown in Fig. 13. Although the
results are not conclusive due to the limitation on accessible
system sizes, they appear to be consistent with the two
transitions discussed above. For T � T (FR)

c = 0.098(4), the
spin correlation appears to approach constant for a large
distance, well corresponding to the FR LRO developed in this
low temperature region. On the other hand, for T � TKT =
0.146(4), it becomes concave downward with a steep decrease
with respect to the distance, which reflects an exponential
decay in the high temperature paramagnetic state. In the
intermediate region for T (FR)

c � T � TKT, the spin correlation
also decays with increasing distance. The decay, however, is
much slower and appears to obey an asymptotic power law,
which is characteristic to the quasi-LRO in the KT state.
In principle, the critical exponents can be estimated from
the asymptotic power-law behavior, but it is difficult to be
conclusive in the current system sizes.
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FIG. 13. (Color online) MC results for the real-space spin
correlation function C(r) at J = 2 and n = 0.38. The results are
shown only for the sites with C(r) > 0. The calculations were done
for the system size N = 18 × 18.

V. ELECTRONIC STRUCTURE OF PARTIALLY
DISORDERED STATE

In the previous section, we discussed the thermodynamic
behavior of the localized spin degree of freedom, with
emphasis on the emergence of peculiar PD state. In this section,
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FIG. 14. (Color online) MC results for nCO at q =
(2π/3,−2π/3) at n = 1/3 and (a) J = 1, (b) J = 2, and (c) J = 4.
The calculations were done for the system sizes N = 12 × 12,
12 × 18, and 18 × 18.
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FIG. 15. (Color online) MC results for DOS of itinerant electrons
at n = 1/3 and J = 2 for N = 18 × 18. The Fermi level is set at
ε = 0. The statistical errors are comparable to the width of the lines.

we focus on the behavior in the charge degree of freedom of
itinerant electrons in the PD phase.

Figure 14 shows the temperature dependence of the
charge modulation nCO [Eq. (17)] at n = 1/3 for different J .
Figure 14(a) is the result at J = 1 for different system sizes.
The result shows an increase of nCO below T 
 T (PD)

c =
0.086(4), indicating that the PD state is accompanied by
charge modulation with period three. Similar onsets of charge
modulation at T (PD)

c are observed for larger J , as shown in
Figs. 14(b) and 14(c); the amplitude of the modulation in
the PD phase increases monotonically as J increases. The
magnitude of the charge modulation is in the same order
compared to the mean-field result in Fig. 4, while the growth
is considerably suppressed by a factor of 2 to 4.

We next look into the electronic density of states (DOS)
at different temperature. Figure 15 shows the results for DOS
while varying temperature at J = 2 and n = 1/3. The Fermi
level is set at ε = 0. Here, DOS was calculated by counting
the number of energy eigenvalues as the histogram with the
energy interval of 0.0375. In the paramagnetic region for T �
T (PD)

c = 0.130(4), DOS is featureless near the Fermi level. On
the other hand, below T (PD)

c , an energy gap develops at the
Fermi level for n = 1/3. The result shows that the PD state is
an insulator, which supports the scenario that PD is stabilized
by the Slater mechanism described in Sec. III. Similarly to
the charge modulation, the energy gap in the MC results is
largely suppressed compared to that obtained by the mean-field
analysis in Fig. 4. This appears to show the importance of
appropriately taking into account thermal fluctuations.

VI. SUMMARY

To summarize, by a combined analysis of the mean-
field-type calculation and Monte Carlo simulation, we have
investigated the origin of the partial disorder in the Ising-spin
Kondo lattice model in a two-dimensional triangular lattice.
In the mean-field-type calculation, we have clarified that a
local magnetic field of the partial disorder type induces a
metal-insulator transition at 1/3 filling at a critical value of
the field. The result suggests that the three-sublattice partial

disorder can give rise to an energy gap, and therefore, it has a
chance to be stabilized through the Slater mechanism. On the
other hand, in the Monte Carlo simulation, we have provided
convincing numerical results on the emergence of partial
disorder at finite temperatures where the stripe phase and
the ferrimagnetic order compete with each other. The Monte
Carlo result shows that the partially disordered state appears
above a nonzero value of the spin-charge coupling, and that it
is insulating and accompanied by charge disproportionation.
The nonzero critical value of the spin-charge coupling and the
opening of the charge gap are both qualitatively consistent
with the mean-field analysis. The results indicate that the
partial disorder is stabilized by the Slater mechanism which is
characteristic to itinerant magnets. Our results not only clarify
the new mechanism of partial disorder in two dimensions
but also pave the way for an understanding of the interesting
physics related to the peculiar coexistence of magnetic order
and paramagnetic moments in itinerant electron systems.

An interesting extension of the current work would be to
consider the effect of quantum fluctuation of localized spins.
In our result, the partial disorder remains stable down to
very low temperature, implying that the paramagnetic spins
are largely fluctuating and sensitive to perturbations at low
temperatures. Hence, an interesting possibility is that, by
including quantum fluctuations, the partial disorder is further
stabilized and remains stable even in the ground state. Indeed,
a similar partial disorder was found in the ground state of
the Kondo lattice model with quantum spins at half filling.26

Therefore, it is intriguing to examine the effect of quantum
fluctuations on the present model with Ising spins. However, it
is not straightforwardly calculated by the present Monte Carlo
method. This interesting problem is left for future study.
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APPENDIX: PHASE SEPARATION

In this Appendix, we present how to identify the PS region.
First, we show the method we used to determine the ground
state phase diagram shown in Figs. 5 and 6. The ground state
is obtained by variational calculations, i.e., by comparing the
grand potential per site � = 〈H 〉/N − 2μn, where μ is the
chemical potential and n is the electron filling. Here, we
compare � calculated for the magnetically ordered states,
stripe and FR, which appear in the MC simulation at low
temperature in the present parameter regions. The procedure
is shown in Fig. 16 at J = 2. Figures 16(a) and 16(b) show the

155156-10



THERMALLY INDUCED PHASES IN AN ISING KONDO . . . PHYSICAL REVIEW B 87, 155156 (2013)

0.22
0.24
0.26
0.28
0.30
0.32
0.34
0.36
0.38
0.40

-3.0 -2.5 -2.0 -1.5 -1.0

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

Ω

n

μ

FR

PS

stripe

stripe

stripe

FR

(a)

(b)

FIG. 16. (Color online) (a) The grand potential per site, �, and
(b) electron filling n with respect to the chemical potential μ,
numerically calculated by exactly diagonalizing the one-body Hamil-
tonian for itinerant electrons. The results are obtained at J = 2 with
Ns = 24 × 24 site superlattice of N = 12 × 12 site unit cells. The
strip at the left side of (b) shows the ground state at the corresponding
filling.

results of � and n, respectively, calculated for stripe and FR
orders. For μ � −1.87 (μ � −1.87), � for the stripe order is
lower (higher) than that for the FR order, indicating that the
stripe (FR) state is the ground state in this region. At the critical
value of μ 
 −1.87, the electron filling for the two states take
different values, n 
 0.301 in the stripe state and n 
 0.334
in the FR state, as shown in Fig. 16(b). This indicates that n

changes discontinuously from n 
 0.301 to n 
 0.334 at the
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FIG. 17. (Color online) MC results for n as a function of μ at
different temperatures. The results are for J = 2 and N = 12 × 12.

transition between the stripe and FR states. In other words, the
system is unstable in the region of 0.301 � n � 0.334 against
PS between the two states; the range of n is identified as the
electronic PS. The PS regions in Fig. 5 are determined in this
manner. Meanwhile, the PS region at n = 1/3 in Fig. 6 is
identified by the similar calculations by changing J .

Next, we describe how the PS region is determined at finite
temperature in the MC calculation. In the MC simulation using
the grand canonical ensemble, PS is characterized by a sudden
jump of n while sweeping μ. Figure 17 shows a typical MC
result for n as a function of μ. The result at T = 0.048 shows
a smooth change of n in the entire region of μ in the figure.
On the other hand, the results at T = 0.040 and 0.044 show a
sudden change from n ∼ 0.290 to 0.315 at μ ∼ −1.996. We
roughly estimate the PS region by the values of n at the both
ends of the jump. The results are plotted in the phase diagrams
in Fig. 5. The range of PS slightly depends on the system size,
and hence, we plot the threshold values of n for each system
size in the phase diagram.
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