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Geometric properties of loop condensed phases on the square lattice
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Loop condensed phases are scale-invariant quantum liquid phases of matter. These phases include topologically
ordered liquid phases such as the toric code as well as critical liquids such as the Rokhsar-Kivelson point of the
quantum dimer model on the square lattice. To investigate the extent to which nonlocal geometric observables
capture a signature of the nonlocal quantum order present in these phases, we compute geometric properties
of such loop condensed states using directed loop Monte Carlo calculations. In particular, we investigate the
loop condensed nature of ground state of the square lattice quantum dimer model at the Rokhsar-Kivelson point
and compare with other loop condensed states on the square lattice, including those of the toric code and fully
packed loop model. The common features of such liquids are a scale invariant distribution of loops and a fractal
dimensionality of spanning loops. We find that the fractal dimension of the loop condensate of the square lattice
quantum dimer model at the Rokhsar-Kivelson point is 3/2, which provides quantitative confirmation of the
effective height model that is commonly used to describe this critical dimer liquid.
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I. INTRODUCTION

The discovery of quantum liquid phases of matter that pos-
sess quantum order without breaking conventional symmetries
has demonstrated that ordered quantum phases exist outside
of Landau’s paradigm of conventional phases of matter. To
understand the formation of order in such quantum liquid
phases, the mechanism of loop and string-net condensation
has been proposed by several authors.1–5 In this description of
quantum liquids, the effective degrees of freedom are extended
objects (loops or string-nets) that fluctuate on all length scales
and generate the nonlocal quantum entanglement present in
such phases. In particular, loop condensates can describe
Z2 topologically ordered phases as well as critical quantum
liquids.2,4

Since these quantum liquids cannot be described by a local
order parameter, the presence of order in these phases must be
characterized by other quantities. For example, signatures of
topological order appear in the bipartite entanglement entropy
of a topologically ordered quantum liquid.6,7 A relevant
question is whether these quantum orders have signatures in
more conventional observables. To make direct contact with
the loop condensate picture of a quantum liquid, we seek
to understand to what extent quantum liquid phases can be
characterized directly in terms of the effective loop degrees
of freedom. For example, in addition to local loop correlation
functions, loop condensates can be described by the fractal
dimension of the loop gas.8

Lattice models that generate local constraints on the ground
state often possess loop condensed liquid phases. The toric
code1 ground state can be described as having a local
constraint requiring that an even number of loop segments
touch each vertex.1,9 The Z2 topologically ordered ground
state is simply the loop condensed phase of this (intersecting)
closed loop subspace. Other models with local constraints may
not explicitly be loop models, but the local constraint often may
be readily mapped to a closed loop constraint. For example,
quantum dimer models10,11 impose a hard constraint at each

vertex requiring a single dimer to touch each vertex; however,
by superimposing dimer configurations on a reference dimer
configuration, a dimerization can be mapped onto a loop
covering of the lattice.12–16 On the square lattice, the quantum
dimer model has an isolated critical dimer liquid point,11,17,18

but on the triangular lattice there is a gapped topologically
ordered liquid phase.19–22 In this work and in Ref. 23, we
show that these dimer liquid phases can be viewed as loop
condensed phases.23

In this paper, we investigate loop condensed states that
arise in locally constrained models on the square lattice. We
explicitly demonstrate the loop condensed nature of several
liquid states in geometrically constrained models on the
square lattice, including the square lattice quantum dimer
model. In particular, we compute the fractal dimension of the
underlying loop gas, and examine the fractal dimension as a
distinguishing feature of these phases. We find that the fractal
dimension of the critical dimer liquid at the Rokhsar-Kivelson
(RK) point of the square lattice dimer model is 3/2. This
agrees with that of the contour loops of the effective height
model description of the RK point,24 providing quantitative
validation of the height model.

II. INTRODUCTION TO LOOP CONDENSATES

A loop condensate2–5 is a scale invariant liquid state with
fluctuating loops on all length scales. We may describe such
a loop liquid with both conventional local correlation func-
tions and nonlocal geometric observables. Local correlation
functions include the loop-loop correlation function and the
defect-defect correlation function. The loop-loop correlation
function determines the probability that loop segments exist
at two points separated by r . This distinguishes between
purely disordered loop liquids with exponentially decaying
local correlations, and those with quasi-long-range order
due to local correlations that decay as a power law. The
defect-defect correlation function determines the correlations
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between defects that live at the end of a broken loop separated
by a distance r . While these local correlation functions display
the disordered nature of loop liquids, they do not capture the
nature of nonlocal quantum order present in these phases.

Nonlocal, geometric properties of loop condensates are de-
scribed by the loop distribution P (s) and the fractal dimension
Df , which are related to the two-loop correlation function
G2(r). Scale invariance demands that the loop distribution
P (s), the probability that a loop has length s, scales as a power
law of length:

P (s) ∼ s−τ . (1)

Additionally, the scaling of the length of a loop � with its
radius R(�) determines the fractal dimension Df of the loop
condensate:

s (�) ∼ R (�)Df . (2)

These geometric exponents may be related by a scaling relation
to the two-loop correlation function G2(r) that determines the
probability that two points separated by a distance r lie on
the same loop.25 Since the two-loop correlation function is
fundamentally nonlocal (since it is determined by the existence
of a single loop connecting the points), G2(r) may decay as
a power law even in the absence of local correlations. The
exponent x2 that governs the power-law decay G2 (r) ∼ r−2x2

determines both the geometric exponents τ and Df :24,25

Df = 2 − x2, τ = 1 + 2

2 − x2
. (3)

In the remainder of this paper we will investigate to what
extent nonlocal, geometric loop observables such as the loop
distribution and the fractal dimension display signatures of the
quantum order of loop condensates on the square lattice.

FIG. 1. (Color online) Examples of configurations with the
local constraints on the square lattice. Clockwise from upper left:
{C1}, {C2}, {Co}, {Ce}, which have local constraints that restrict
configurations to have a one, two, an odd and an even number of
dimers touching each vertex, respectively.

III. LOOP CONDENSATION FROM LOCAL
CONSTRAINTS

Lattice models with local constraints can often be mapped
to loop models, and consequently display a variety of loop
condensed phases. Consider a lattice model with Ising degrees
of freedom that live on the links of the lattice: the two
states of each Ising degree of freedom may be considered
to correspond to a link that is either occupied or unoccupied
by a dimer. A link l (un)occupied by a dimer is the +1(0)
eigenstate of the dimer number operator nl = d+

l d−
l , with

d
+/−
l the dimer creation and annihilation operators. The

simplest local constraint is to fix the dimer number at each
vertex to be a constant n0; we define the configuration space
{Cn0} to be the set of configurations with n0 dimers touching
each vertex (see Fig. 1). On a square lattice there are only two
distinct nontrivial cases: n0 = 1 (or equivalently n0 = 3) and
n0 = 2. {C1} comprises fully packed, hard-core dimerizations
of the lattice. {C2} comprises fully packed, nonintersecting
loop configurations with two dimers touching each vertex.

All fully packed hard-core dimerizations in {C1} can be
mapped to a nonintersecting closed loop configuration by
choosing a reference dimerization R0 (see Fig. 2). When a
dimerization is superimposed over R0, every vertex will be
touched by one physical dimer and by one reference dimer.
With the exception of links where a physical dimer coincides
with a reference dimer, the combined physical and reference
dimers form a closed loop covering of the lattice, where the
loops comprise sequences of links that are alternately occupied
by physical and reference dimers, respectively. We may choose

FIG. 2. (Color online) An example of the mapping of the square
lattice QDM to a height model. The green dimers represent the
physical dimers and the blue dimers are the background dimerization.
The lower left plaquette is chosen to have h0 = 0 and all other heights
are determined relative to this, by following a path from h0 through
the links of the lattice. If a dimer is crossed with the arrow pointing
to the right (left), the height changes by +1 (−1) and vice versa for a
reference dimer. Flipping dimers on a flippable plaquette changes the
local height of the plaqeutte by ±1. The transition loops formed by
alternating green and blue dimers are the contour loops of the height
field.
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to define links with overlapping physical and reference dimers
to be unoccupied in the loop picture—with this choice the
physical dimer configuration that completely coincides with
R0 corresponds to the empty loop configuration.

The simplest liquid state in these constrained Hilbert spaces
is given by a generalization of the Rokhsar-Kivelson wave
function of the quantum dimer model.11 This generalized
Rokhsar-Kivelson wave function |�n0

RK〉 is an equal superposi-
tion of all configurations obeying the constraint

∣∣�n0
RK

〉 ≡ 1√
Nn0

∑
Cn0

|Cn0〉. (4)

On a surface with trivial topology, the sum in Eq. (4) is over
all configurations Cn0 that obey the given local constraint
and Nn0 is the number of such configurations. For n0 = 1,
|�1

RK〉 is the Rokhsar-Kivelson state of the quantum dimer
model. Diagonal expectation values of |�n0

RK〉 are equal to those
of the corresponding classical model.11 Consequently, the
behavior of correlation functions and local order parameters of
|�n0

RK〉 is determined by the statistical mechanics of the related
classical models. Diagonal correlation functions of |�1

RK〉 are
determined by the classical dimer model, and those of |�2

RK〉
by the classical fully packed loop model, with a loop fugacity
equal to 1 (which maps to the 6-vertex model).26,27

Rokhsar and Kivelson defined a local Hamiltonian for
which |�n0

RK〉 is the exact zero-energy ground state at one point
in the parameter space:11

HRK = −t
∑

p

(| 〉〈 | + h.c.) + v
∑

p

(| 〉〈 | + | 〉〈 |).

(5)

In Eq. (5), the sum is over all plaquettes p of the lattice.
The “t” term flips dimers around a “flippable” plaquette (i.e.,
a plaquette with alternating occupied and unoccupied links)
and the “v” term is a potential energy for such flippable
plaquettes. For v = t , the so-called RK point, |�n0

RK〉 is the zero-
energy ground state of HRK. We note that HRK is specifically
constructed such that it conserves the dimer number at a given
vertex, and therefore does not violate the local dimer number
constraint.

On a surface of nontrivial topology, such as a torus,
the local dynamics of HRK will break {Cn0} into distinct
topological sectors. HRK will not connect configurations in
different topological sectors and thus generates a topological
degeneracy at the RK point. Indeed, a distinct ground state
|�n0

RK〉 can be defined within each topological sector by
limiting the sum in Eq. (4) to configurations within the
topological sector. The nature of this topological degeneracy
is manifest in the loop condensate picture: each topological
sector corresponds to a distinct winding sector defined by the
number of loops winding around each topologically nontrivial
cycle of the surface.11

Moessner et al.19 have shown that a local dimer number
constraint generates a local U (1) invariance. If we define the
operator nv = ∑

l∈v nl where nl is the dimer number operator
on the link l, then all states |ψn0〉 that obey the local constraint
are invariant under the following local gauge transformation:

Gn0
v (α) ≡ exp (iα(nv − n0)), Gn0

v (α)|ψn0〉 = |ψn0〉. (6)

Consequently, HRK has been shown to map to a U (1) gauge
theory for both n0 = 128,29 and n0 = 2.30

We now consider relaxing the dimer number constraint to
a local dimer parity constraint. Here, {Ce} and {Co}, which
comprise configurations with a fixed dimer number parity at
each vertex, have an even or odd number of dimers touching
each vertex, respectively. The physical states |ψe,o〉 that are
formed from superpositions of {|Ce,o〉} are invariant under the
gauge transformations:

Ge
v ≡ exp (±iπnv), Ge

v|ψe〉 = |ψe〉, (7)

Go
v ≡ exp (±iπ (nv + 1)), Go

v|ψo〉 = |ψo〉. (8)

Note that the U (1) symmetry of Gn0
v (α) has thereby been

reduced to a Z2 symmetry in Ge,o
v .19

We may now define a Hamiltonian that commutes with
Ge,o

v :

HTC = −t
∑

p

∏
l∈p

dx
l , (9)

where dx
l ≡ 1/

√
2(d+

l + d−
l ) and d

+/−
l . This is the magnetic

term of the toric code Hamiltonian.1 In the toric code
Hamiltonian, the dimer parity constraint is imposed by a local
energy cost at each vertex; here, we take that energy cost to be
infinite, such that this is a hard constraint. The ground state of
Eq. (9) is the equal superposition of all configurations in the
given parity sector:

∣∣�e,o
TC

〉 ≡ 1√
Ne,o

∑
Ce,o

|Ce,o〉. (10)

In the language of the Moessner et al.,19 |�e,o
TC 〉 in the even

(odd) parity sector corresponds to the even (odd) Ising gauge
theory; |�e

TC〉 is simply the toric code ground state.
We may now understand the relationship between the U (1)

gauge theory describing Eq. (4) with a local dimer number
constraint, and the Z2 gauge theory that describes Eq. (10)
with a fixed dimer parity constraint. Since the square lattice
is bipartite, the links can be oriented to always point from
one sublattice to the other; dimers can be viewed as carrying
a flux into or out of a vertex according to this orientation.
The nv = 2 constraint acts as Gauss’s law, such that there is
a flux of +2 and −2 on each vertex of sublattices A and B,
respectively; correspondingly, we can consider there to be a
static background charge of ±2 on the two sublattices. Now
consider the case when |�2

RK〉 is doped with dynamic nv = 0,4
vertices; these will act as charge ±2 objects, depending on the
sublattice. Allowing nv = 0,4 vertices will transform |�2

RK〉
into |�e

TC〉, which is the toric code ground state, and is known
to be described by a Z2 gauge theory.1

This transition from a U (1) gauge theory to a Z2 gauge
theory via the introduction of charge 2 objects follows the
well-known prescription of Fradkin and Shenker, who showed
that coupling a U (1) gauge field to charge N > 1 matter field
can reduce the U (1) gauge symmetry down to ZN .31 The
same picture applies in the odd parity sector, where the QDM
can be viewed as a U (1) gauge theory with ±1 background
charges on the sublattices. In this case, introducing nv = 3
vertices is equivalent to allowing charge 2 matter fields and
it generates |�o

TC〉, which is described by the odd Ising gauge
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theory. This construction leads one naturally to ask whether
other ZN models may live at the RK points of geometrically
constrained models on the square lattice. In particular, doping
the QDM with charge ±3, nv = 4 vertices might lead to a Z3

liquid phase, purely as a result of geometrical constraints.

IV. SQUARE LATTICE QUANTUM DIMER MODEL

The ground state of the RK point of the square lattice QDM
is a gapless critical dimer liquid, with power-law decaying
dimer-dimer correlations.11 As described above, a dimer model
may be mapped to a closed loop model by introducing a
reference dimerization. As such, we may view the RK point of
the square lattice QDM as a loop condensed liquid phase. There
is a well-known phenomenological height model description
of the square lattice RK wave function.32–35 Here, we will give
a variant of this height model picture that makes the meaning
of the loop picture more transparent (see Fig. 2). (1) First, we
orient the links such that the arrows point from sublattice A to
B and choose a reference plaquette to assign a height of h = 0,
as in Fig. 2. (2) Heights h(r) are assigned to all other plaquettes
by starting with the reference plaquette and moving along any
path crossing the links, where we assign a δh for each link,
with |δh| = 1. (3) If a link crossed with the arrow pointing
to the right is occupied by a physical dimer, then δh = +1, if
it is occupied by a reference dimer, then δh = −1, and vice
versa if the link points to the left. (4) Flipping parallel dimers
on a plaquette will change the local height by ±1. With this
mapping, the transition loops formed from the combination
of the reference and physical dimerizations act as the contour
loops of the height field, since the height only changes when
a transition loop is crossed (see Fig. 2).

We then propose an effective Gaussian action SRK for
a coarse grained height field that captures the local height
fluctuations and describes the dimer liquid at the RK point:

SRK =
∫

dr2 K

2
|�h|2 + V (h) . (11)

The statistical weight for a given configuration of heights is
then proportional to exp(−SRK). In Eq. (11), K is the stiffness
and the first term captures the fluctuations of the height field.
V (h) is a locking potential that favors certain ordered height
configurations. At the RK point on the square lattice, the
locking potential is irrelevant in the renormalization group
sense, and therefore the effective action is Gaussian. This
Gaussian action describes a rough phase of the height model,
where h fluctuates along the lattice. Such a phase can be shown
to have power law correlation functions.32–35 Consequently,
the height model can capture the critical correlations of the
dimer liquid at the RK point, with an appropriate choice of
the stiffness K . We note that this height model description is
purely phenomenological; currently, there is no well known
microscopic derivation of this action for the QDM.

The transition loops to the reference dimerization take on
a special meaning in the height model. In particular, they are
the contour loops of the height model, in that the height only
changes when a transition loop is crossed (see Fig. 2). The
fractal dimension of the contour loops of a Gaussian height
model has been shown to be universal (independent of the
stiffness K) and equal to 3/2 by Kondev and Henley.24

FIG. 3. (Color online) The loop distribution function P (s) for the
square lattice dimer model at the RK point for a lattice of linear
dimension L = 512. P(s) displays a clear power law over length
scales s 	 L2. The line shows the best fit power law with τ = 2.32 ±
0.02.

We have computed the distribution of the transition loops
of the square lattice QDM at the RK point with directed loop
Monte Carlo calculations.36,37 We first consider the computed
loop distribution shown in Fig. 3. We see that P (s) displays a
power law behavior over loops on length scales s 	 L2, which
is indicative of the loop condensed nature of the dimer liquid
at the RK point. The best fit power law gives τ = 2.32 ± 0.02.
In the effective height model, x2 = 1/2 and [from the scaling
relation given in Eq. (3)] τ = 7/3, so our result is quantitatively
consistent with the predictions of height model description.

For loops approaching a length L2, the longest length scale
of the lattice, we see a clear deviation from the power law
behavior. Figure 4 shows the distribution of the longest loop;

FIG. 4. (Color online) The distribution of the longest loops,
P (sM ) for the square lattice quantum dimer model at the RK point
on an L = 64 lattice. The broad distribution over many length scales
is indicative of the loop condensed nature of the state. The location
of the peak scales with system size as shown in Fig. 5.
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FIG. 5. Finite size scaling of the length of longest loop, sM of the
ground state of the RK point of square lattice QDM (|�e

TC〉). The best
power-law fit gives Df = 1.502 ± 0.002, which is consistent with
the fractal dimension of contour loops of a Gaussian height model.

this displays the broad distribution over many length scales
that is characteristic of a loop condensate. The location of the
peak of P (sM ) scales with system size, but not with an integral
power (e.g., L0, L1, or L2), which would be expected for
dilute loop or symmetry broken phases, and therefore these
spanning loops have a fractal dimensionality. Figure 5 shows
the finite size scaling of the fractal loop: the best fit power
law gives Df = 1.502 + ±0.002, which is clearly consistent
with the universal height model fractal dimension prediction
of 3/2.

These calculated geometric exponents provide quantitative
confirmations of the height model description of the square
lattice QDM. In contrast with the local correlation functions
(for which the value of K must be chosen to match the form
of the height model correlations to the computed dimer model
correlations functions), the universality of the fractal dimen-
sion of contour loops means that this quantitative agreement
does not require tuning any parameters. Additionally, we note
that the fractal dimension of the transition loop distinguishes
the critical liquid RK point from the gapped liquid of the
triangular QDM, for which we have determined the fractal
dimension to be 7/4.23

V. OTHER LOOP CONDENSATES ON
THE SQUARE LATTICE

A. Toric code

The ground state of the toric code, |�e
TC〉, may be described

as a loop condensate on the square lattice.1 This gapped
liquid phase has exponentially decaying spin-spin correlation
functions. The ground-state subspace is that of closed loop
coverings of the square lattice, with the exception that
two loops may meet at a vertex. Since |�e

TC〉 is an equal
superposition of all loop coverings, we may relate it to the O(1)
loop model, by choosing a resolution of the four-loop vertices.
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FIG. 6. Finite size scaling of the longest loop in toric code ground
state (|�e

TC〉). We find Df = 1.7502 ± 0.0002, consistent with the
universality of the fractal dimension of the gapped Z2 liquid.

Here we choose the orientation of the loops such that loops do
not cross at an nv = 4 vertex (see Fig. 1). In Fig. 6, the finite
size scaling of the largest loop of the toric code wave function
is plotted. From this, we have extracted the fractal dimension to
be Df = 1.7502 ± 0.0002, which agrees with the known value
for the O(1) model, Df = 7/4.38 We have also computed the
fractal dimension for the odd Ising gauge theory described by
|�o

TC〉, and found that it is also 7/4. Previous work has shown
that the fractal dimension of Z2 topological phases of the
triangular lattice quantum dimer model and the honeycomb
loop models both have fractal dimensions of 7/4.8,23 This
suggests that the fractal dimension of 7/4 is universal for the
Z2 topological liquid phases.

B. Fully packed loop model

The fully packed loop model is a critical liquid state with
algebraically decaying loop-loop correlation functions.26,34

Just as with the RK point of the square lattice QDM there
is also a phenomenological mapping of this model, which
describes the RK wave function with a 2-dimer constraint at
each vertex, |�2

RK〉, to a height model.26,34 Similar to the dimer
model case, the loops are oriented and act as the contour loops
of the height field. However, in this case, the effective action
is a Gaussian action augmented by an additional term that is
marginal and therefore changes the critical exponents.26,34,39

In this situation, the universality of the Df = 3/2 for a pure
Gaussian model does not apply. Indeed, for the fully packed
loop model, the height model mapping predicts a fractal
dimension of Df = 7/4. We have confirmed this with directed
loop Monte Carlo calculations of |�2

RK〉 as summarized in
Fig. 7; a power-law fit yields Df = 1.7501 ± 0.0002. While
the fractal dimension does not distinguish the fully packed
loop condensate from the gapped Z2 loop condensed phase,
these two phases are easily distinguished by the loop-loop
correlation function. In particular, the loop-loop correlation
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FIG. 7. Finite size scaling of the length of the longest loop of the
fully packed loop model that describes the 2-dimer constrained RK
wave function, |�2

RK〉. The best power-law fit gives Df = 1.7501 ±
0.0002, which is consistent with the fractal dimension of the effective
height model.

function displays a power law in the critical fully packed loop
model, while it vanishes exponentially in the gapped liquid
phase.

VI. CONCLUSIONS

We have studied the geometric properties of the transition
loops of ground state of the RK point of the square lattice
QDM. The power-law distribution of loop lengths as well as
the fractal dimensionality of loops that span the finite system
indicate that this critical dimer liquid state is fundamentally
described by a loop condensate. Our numerically computed
geometric exponents agree with the predictions of the standard
height model description, which gives a quantitative confir-
mation of the relevance of this phenomenological action. We
have compared the loop condensate of the square lattice QDM
with those of the toric code and fully packed loop models on
the square lattice. The fractal dimension of 3/2 of the square
lattice QDM distinguishes it from the gapped Z2 topologically
ordered phase of the toric code on the square lattice and that of
the QDM on the triangular lattice, both of which have fractal
dimension of 7/4. However, the critical loop condensate of
the fully packed loop model has the same fractal dimension
as these gapped phases, so the current work demonstrates
that these geometric exponents may not always distinguish
loop condensed phases. Similar analyses of other quantum
liquids phases may prove fruitful for characterizing other loop
condensed phases.
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