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We propose a new approach to identifying and rationalizing the contribution of core electron polarization to
dielectric screening, based on ab initio calculations of the dielectric matrix in its eigenpotential basis. We also
present calculations of phonon frequencies, dielectric constants, and quasiparticle energies of several systems,
and we discuss the quantitative effect of including core polarization. Our findings illustrate efficient ways of
approximating the spectral decomposition of dielectric matrices used, e.g., in many-body perturbation theory
and dielectric constant calculations, with substantial computational gains for large systems composed of heavy
atoms.
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I. INTRODUCTION

Understanding the microscopic origin of dielectric
screening1–4 is central to rationalizing vibrational and excited-
state properties of condensed and molecular systems and,
ultimately, their chemical bonding. Many calculations of
solids, liquids, and molecules appearing in the last several
decades are based on a partitioning of the interacting electrons
into core and valence: the former are assumed to be in
the same configuration as in the constituent atoms, and the
latter participate in the dielectric screening in the condensed
and molecular phases. The extent to which core polarization
affects electronic screening and thus physical properties such
as phonon frequencies, dielectric constants, and electronic
excitation spectra is seldom analyzed. Few theoretical studies
have addressed core polarization effects on quasiparticle (QP)
energies,5–8 which have been found to be more important, both
qualitatively and quantitatively, than previously thought. It is
therefore of interest to understand and analyze the origin of
such effects and establish modeling frameworks to take them
into account in a consistent and accurate manner.

Shirley et al.5,6 pointed out the importance of including
3d electrons in the valence partition of certain elemental
semiconductors, in order to obtain accurate values of their
band gaps within many-body perturbation theory at the non-
self-consistent GW9,10 level, and they proposed using pseu-
dopotentials (PPs) that explicitly account for core polarization.
Similar results were reported in Refs. 11–13 for CdS. However,
Ku et al.14 later observed that, within the self-consistent GW,15

the inclusion of polarization from 3d electrons does not affect,
e.g., the computed band gap of Ge.

Recently Gómez-Abal et al.7 and Li et al.16 computed the
electronic properties of several crystalline solids and showed
that in GW calculations there are substantial differences in
the matrix elements of the exchange part of the self-energy
(�x) and exchange-correlation potential (Vxc), depending on
the choice of the core-valence partition. These findings are
consistent with earlier results of Marini et al.,8 who showed
that exchange-correlation contributions to the self-energy
arising from the 3s and 3p semicore levels of Cu should be

taken into account to obtain a QP band structure in agreement
with experiments. Other studies7,16 also noted that for systems
without d electrons, the most substantial differences in band
gaps, between all-electron and PP calculations, arose from
the correlation part of the self-energy (�c), as there is an
almost-complete cancellation between the matrix elements of
�x and Vxc. Umari et al.17 analyzed the effect of semicore
states on the electronic structure of the metal phthalocyanine
molecule and noted that Zn 3s and 3p states need to be included
in the valence to accurately describe photoemission spectra.

In this paper we propose a new approach for identifying
and analyzing the contribution of core electron polarization to
dielectric screening, based on the spectral decomposition of the
dielectric matrix (DM).18,19 We present ab initio calculations
of dielectric band structures (DBSs), inverse participation
ratios (IPR), density of states (DOS) of the DM, phonon
frequencies, dielectric constants, and QP gaps of several
systems, and we discuss the quantitative effect of including
core polarization.

The rest of the paper is organized as follows. We describe
the method for computing the dielectric spectra for solids and
molecules in Sec. II. In Sec. III we present our results for the
DBS and IPR analysis of solids, followed by the discussion of
the DOS and IPR of molecules in Sec. IV. Section V discusses
the relationship among the DBS, phonons, and nonlinear core
corrections (NLCCs), which is followed by results of core-
polarization effects on QP energies (Sec. VI). We summarize
our findings in Sec. VII.

II. THEORETICAL BACKGROUND

In the linear regime, the static dielectric screening is
expressed by the function ε(r,r′), which relates the external
potential applied to a system of electrons, Vext, and the resulting
screened potential:

Vscr(r) =
∫

ε(r,r′)−1Vext(r′)dr′. (1)

We refer to ε as the DM and we restrict our analysis to DMs
obtained within the random phase approximation (RPA),20,21

although the formalism presented here is general and may
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be applied to dielectric screening obtained at higher levels of
theory. Within the RPA, the DM is defined as

ε = 1 − υc · χ0, (2)

where υc is the Coulomb potential and χ0 is the noninteracting
density response function, which is related to the interacting
one via the equation

χ = (1 − χ0 · υc)
−1 · χ0, (3)

where in Eqs. (2) and (3) integrals are implicit.
Within a plane-wave representation where wave func-

tions are expressed as linear combinations of plane waves
[exp(iG · r); G is a reciprocal wave vector], for doubly filled
shells, ε is defined as in Eq. (4), where k and q denote wave
vectors, and εv,k, εc,k are energies of the valence (v) and
conduction (c) single-particle states, respectively. In the case of
molecules, one only considers k = 0 and q → 0, and valence
and conduction states correspond to the occupied and empty
(or virtual) states, respectively:

εG,G′(q)

= δG,G′ − 4πe2

|q + G|2
4

Nk	

∑
cvk

× 〈υ,k|e−i(q+G)·r|c,k + q〉〈c,k + q|ei(q+G′)·r′ |υ,k〉
ευ,k − εc,k+q

. (4)

It is both formally and computationally convenient to
introduce the symmetric form of the DM:

ε̃G,G′(q) = |q + G|
|q + G′|εG,G′(q). (5)

The symmetrized ε̃−1 can be diagonalized to obtain the
dielectric eigenvalue spectrum λ−1

m (q) and eigenpotentials
ζm(q): ∑

G′
ε̃−1

G,G′(q)〈G′|ζm(q)〉 = λ−1
m (q)〈G|ζm(q)〉. (6)

The DBS1–3 is defined as λ−1
m (q) vs q, in a manner analogous

to the eigenvalues of the Hamiltonian of a periodic solid as a
function of the wave vector, which defines an electronic band
structure.

For each of the solid and molecular systems investigated in
the next sections, we define two different partitions of the core
and valence electrons in our electronic structure and density
functional perturbation theory calculations. We specify core,
semicore, and valence electrons. The core electrons are the
same in both partitions. In one partition we include semicore
electrons in the valence, i.e., we consider them to participate
in the chemical bonding. We call this partition a semicore (SC)
one and the corresponding DM ε̃SC:

(ε̃SC)−1 =
∑

i

(
λSC

i

)−1∣∣ζ SC
i

〉〈
ζ SC
i

∣∣. (7)

The other partition includes semicore electrons in the core;
i.e., we consider the latter frozen and not participating in
the chemical bonding. We call this a valence electron (VE)
partition and the corresponding DM ε̃VE:

(ε̃VE)−1 =
∑

i

(
λVE

i

)−1∣∣ζ VE
i

〉〈
ζ VE
i

∣∣. (8)

To characterize the localization properties of the eigenvec-
tors of the DM, or eigenpotentials, we define the IPR as

IPRm =
1
N

∑N
i=1|ζm(ri)|4[

1
N

∑N
i=1|ζm(ri)|2

]2 , (9)

where N is the number of points in the real-space grid used to
represent the eigenpotential ζm. An IPR value of 1 indicates
that the mode is completely delocalized and the value increases
from 1 with the localization of the eigenpotential.

To analyze the distribution of the dielectric eigenvalues,
we calculated the DOSs of the DM. A useful measure of
the difference between the eigenpotentials of (ε̃SC)−1 and
those of (ε̃VE)−1 is given by the projection (Fm) of the mth
eigenpotential of the (ε̃SC)−1, (ζ SC

m ), on the VE potential
eigenspace:

Fm = 〈
ζ SC
m

∣∣Iv

∣∣ζ SC
m

〉
, Iv =

∑
j

∣∣ζ VE
j

〉〈
ζ VE
j

∣∣. (10)

We define the DOS as

gw(λ−1) = (1 − λ−1)
∑
m

wmδ
(
λ−1 − λ−1

m

)
. (11)

The prefactor is included for presentation purposes, to temper
the large values of the DOSs as the eigenvalues of ε̃−1 → 1.
Here wm = 1 corresponds to the unweighted DOS and
wm = Fm corresponds to weighting of the DOS according to
the projection of the eigenmodes of (ε̃SC)−1 onto the VE-only
subspace.

The eigenvalues and eigenvectors of the DM were com-
puted using an iterative18,19,22,23 procedure built into codes
that are postprocessing modules of Quantum Espresso.24

We studied DBS and phonons of alkali hydride crystals,
dielectric spectra, and QP gaps of alkali halide molecules,
alkali dimers, and alkaline earth oxides. We considered
experimental structures (except where noted) for all systems.
We used the local density approximation (LDA) and norm-
conserving semirelativistic PPs in the separable form proposed
by Hartwigsen-Goedecker-Hutter.25

III. DIELECTRIC BAND STRUCTURE AND
INVERSE PARTICIPATION RATIO ANALYSIS:

CRYSTALLINE NaH

Figure 1 shows the DBS of the simple ionic insulator NaH
computed with two different core-valence partitions. The VE
partition includes only the 3s1 electron of Na; the SC partition
includes the (2s22p6)3s1 electrons. The (colored) circles in
Figs. 1(a) and 1(b) show the magnitude of the projections
〈ζ SC

m (qo)|ζ VE
j (q)〉 and 〈ζ SC

m (qo)|ζ SC
j (q)〉 of the eigenpotentials

of (ε̃SC)−1, |ζ SC
m (qo)〉 at a qo point near q = 0 onto the

eigenpotentials of (ε̃VE)−1 and (ε̃SC)−1, respectively, at all
the q points along the [100] direction. There are qualitative
differences between the VE and the SC DBSs, despite the
rather strong binding of the 2s (−50 eV) and 2p (−22 eV)
levels. From Eq. (4), one might expect the large energy
denominator to lead to fully negligible contributions of the
core states to the eigenvalues of ε̃−1. However, we observed
the appearance of bands with λ−1

m well below unity (which
corresponds to additional screening) when using the SC
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FIG. 1. (Color online) Lowest 15 bands of the dielectric band
structure (DBS) for fcc crystal NaH obtained by using core valence
partitions with (a) one valence electron (VE) and (b) nine VEs (SC)
for Na (see text). The (colored) circles in (a) and (b) show the
magnitude of the projections 〈ζ SC

m (qo)|ζ VE
j (q)〉 and 〈ζ SC

m (qo)|ζ SC
j (q)〉

of the eigenpotentials of (ε̃SC)−1, |ζ SC
m (qo)〉 at a qo point near q = 0

onto the eigenpotentials of (ε̃VE)−1 and (ε̃SC)−1, respectively. (c)
Inverse participation ratio (IPR) of the DM eigenpotentials of the
SC and VE partitions at the � point. (d) IPR; the circle size is the
projection (1 − Fm) as defined in Eq. (10) for the SC eigenpotentials
at the � point. The color code used for the arrows is the same as that
used for the eigenpotentials in (a) and (b).

partition. For example, a band appears with λ−1
m = 0.45 at

�; two additional bands appear around 0.7. In addition, there
are other bands closer to unity, and some bands present in
the spectrum obtained with the VE partition are shifted, as
the SC character of the eigenpotentials is mixed with the VE
character.

Figure 1(c) shows the IPR of the eigenmodes obtained with
the SC and VE partitions at the � point. The color code used for
the arrows in Figs. 1(c) and 1(d) is the same as the one adopted
for the eigenpotentials in Figs. 1(a) and 1(b). Note the log scale
on the abscissa, chosen to better distinguish the eigenvalues
near 1. The eigenmodes obtained with the VE partition have
relatively low IPR values compared to the ones computed for
the SC partition. However, the first SC and VE eigenmodes
at � are completely delocalized (IPR ≈ 1). In Fig. 1(c), the
second eigenmode, which has a predominantly SC character
(it is not present in the calculation with the VE partition), has
a relatively high value of IPR.

To classify the SC eigenmodes further, Fig. 1(d) shows the
VE fraction of the SC eigenmodes at the � point: each SC
eigenpotential is projected onto the VE potential eigenspace

[Eq. (10)], and we represent (1 − Fm) as a circle for each
eigenstate. The VE fraction Fm depicts the character of the
eigenmodes obtained using the SC partition: the smaller Fm

(larger 1 − Fm) (and larger circle size), the more predominant
is the SC character; the larger Fm (smaller 1 − Fm) (and
smaller circlet size), the more predominant is the VE character.

IV. DENSITY OF STATES OF THE DIELECTRIC MATRIX
AND PARTICIPATION RATIO: MOLECULES

We analyzed the dielectric spectra of several molecules
representative of both ionic and covalent bonding including
alkali dimers (Rb2, K2, Na2, Li2), alkali halides (KI, KCl,
NaCl), and alkaline earth oxides (CaO, SrO) by varying the
core-valence partition of the cation. Similarly to the case
of the NaH crystal presented earlier, for Li, K, Rb, Ca,
and Sr we considered (1s2)2s1, (3s2,3p6)4s1, (4s2,4p6)5s1,
(3s2,3p6)4s2, and (4s2,4p6)5s2 configurations, respectively.
We studied the distribution of the dielectric eigenvalues of
these molecules by calculating the DOS as defined in Eq. (11).

We consider the dielectric matrices (ε̃VE)−1 and (ε̃SC)−1

and we analyze their respective eigenvalues, eigenpotential
character, and eigenpotential localization properties. We dis-
cuss below three main findings: (i) the inclusion of semicore
electrons in the screening of the Coulomb potential has a global
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FIG. 2. (Color online) Density of states of the dielectric matrix
g(λ−1) = ∑

m δ(λ−1 − λ−1
m ) · wm · (1 − λ−1) as a function of the

eigenvalue λ for the Rb2 dimer, KCl molecule, and SrO molecule,
where the weight wm is defined in Eq. (10). (a–c) Density of states
of (ε̃SC)−1 [red; see Eq. (7)] and (ε̃VE)−1 [black; see Eq. (8)] for
wm = 1. (d–f) Density of states of (ε̃SC)−1 for wm = 1 [red; the same
as reported in (a–c)] and wm = Fm [blue; see Eq. (10)].
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influence on the eigenvalues of ε̃−1, i.e., the set of eigenvalues
of (ε̃SC)−1 may not be separated into subsets corresponding
to eigenpotentials with a clearly defined SC or VE character;
(ii) the character of the eigenpotentials depends on the type
of bonding in the system; and (iii) the correlation between
the eigenpotentials’ character and their localization properties
depends again on the bonding properties.

We illustrate finding i in Figs. 2(a), 2(b), and 2(c), which
show the DOS of (ε̃SC)−1 and that of (ε̃VE)−1 for the Rb2, KCl,
and SrO molecules, respectively. These molecules are taken
to be representative of each class of molecules considered in
our study. It is apparent from the figures that a clear separation
of eigenvalues into SC-like and VE-like ones is not possible.
The distribution of those that may be classified as SC-like and
VE-like strongly depends on the type of bonding in the system.

We now turn to discussing the character of eigenpotentials
obtained using SC partition, illustrated in Figs. 2(d)–2(f),
where we compare the DOS of (ε̃SC)−1 for two cases: wm = 1
and wm = Fm [see Eq. (11)]. It is seen once more that the
character of the eigenpotentials depends on the bonding, e.g.,
in the case of SrO one observes small changes for the two
values of wm, whereas substantial changes are present in the
case of Rb2 and KCl.

This observation of differences in the eigenpotential char-
acter, depending on the type of bonds, is further strengthened
by the correlation between character and localization, shown
in Fig. 3, where we plot the mode IPR as a function of the
eigenvalues for the eigenmodes obtained using SC partition,
and we represent the weight Fm of the eigenmodes by the
symbol size. For oxides [Fig. 3(c)], the highest localized
modes have a predominantly VE character, as indicated by
the small values of (1 − Fm) ≈ 0–0.2. This is consistent with
our analysis of the DOS of SrO. For the alkali dimers [Fig. 3(a)]
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FIG. 3. (Color online) Inverse participation ratio (IPR) as a
function of the eigenvalues λ of (ε̃SC)−1; the circle size is the
projection (1 − Fm) [see Eq. (10)] for (a) alkali dimers, (b) alkali
halides, and (c) alkaline earth oxides. The log scale on the abscissa is
chosen to better distinguish the eigenvalues near 1, where they would
become very dense on a linear scale.

and alkali halides [Fig. 3(b)] the most localized eigenmodes
have a predominantly SC character, similar to the case of
NaH. The density of high-IPR modes is more for alkali dimers
compared to alkali halides. Highly localized eigenmodes are
present in Na2 and, more so, in K2 and Rb2, indicating
substantial screening by semicore electrons, consistent with
our findings for phonons in the next section. A point to note
here is that the dipole polarizability of the Rb atom (319 a.u.) is
the highest of all the alkali and alkaline earth atoms considered
in this study, followed by K (291 a.u.) and Sr (186 a.u.).

We conclude, therefore that upon adding semicore electrons
to the VE partition, the dielectric response varies both by the
type of bonding and by the atomic size of the constituents.
More screening channels appear for covalently bonded alkali
dimers compared to ionic molecules, with no appreciable
change in the screening for alkaline earth oxides. As expected,
the contribution of semicore electrons to screening is larger
for larger alkali atoms.

V. DIELECTRIC BAND STRUCTURE AND PHONONS

In this section we present results for phonon frequencies
and dielectric constants, obtained using different core-valence
partitions. We also compared our findings with results obtained
with NLCC,26,27 often used in the literature to include the
contribution of semicore electrons. We show below that results
obtained with NLCC and the SC partition differ and we discuss
the origin of these differences.

The dynamical matrix of a solid is given by the sum of an
unscreened ionic part (I ) and a screening part (E),

D
αβ

ss ′ (q) = (
D

αβ

ss ′ (q)
)I + (

D
αβ

ss ′ (q)
)E

, (12)

where α and β are Cartesian components and s and s ′ label
the atoms in the unit cell. The first term [Dαβ

ss ′ (q)]I contains
the direct Coulomb interaction between the ion cores in the
crystal. The term [Dαβ

ss ′ (q)]E is given by

(
D

αβ

ss ′ (q)
)E = 1

(MsM ′
s)1/2

(
C

αβ

ss ′ (q) − δss ′
∑
s ′′

C
αβ

ss ′′ (0)

)
. (13)

The force constants C are defined as

C
αβ

ss ′ (q) = 	

4πe2

∑
GG′

(q + G)αVs(q + G)

× eiG·Rs |q + G|2[ε−1
GG′(q) − δGG′](q + G′)β

×V ′
s (q + G′)e−iG′ ·R′

s , (14)

where Ms is the nuclear mass of the sth atom in the unit cell,
	 is the unit cell volume, Rs is the position vector of the ion
cores, and Vs is the bare ion PP. Depending on the choice of
the core-valence partition in the calculations of ε in Eq. (14),
one expects to obtain different results for phonon frequencies.

The results for nine VEs (corresponding to the SC partition)
for solids containing, Na, K, and Rb at optimized geometries
are comparable with the previous phonon calculations,28,29

with differences, with regard to Refs. 28 and 29, of less than
4% in the phonon frequencies. There are important differences
between SC and VE results and they become increasingly
important for the heavier alkali hydrides, reflecting strong
contributions from semicore states. In the case of NaH, for
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TABLE I. Zone-center phonon frequencies (cm−1) of the trans-
verse (ωTO) and longitudinal (ωLO) optical modes of fcc NaH, KH,
and RbH crystal, and electronic (ε∞) and static dielectric constant
(ε0). Two core-level partitions were used for Na, K, and Rb [nine
valence electrons (VEs) and one VE], and results are also given for
calculation with one VE and a nonlinear core correction (NLCC).
Results are presented both for the experimental lattice constant and
for the optimized geometry at the LDA level.

ωTO ωLO ε∞ ε0

NaH
Experimental geometry

1 VE 330 801 3.27 19.3
9 VEs 432 832 3.35 12.4
1 VE + NLCC 438 837 3.2 11.7

Optimized geometry
1 VE 540 934 3.31 9.9
9 VEs 561 917 3.36 9.0
1 VE + NLCC 568 925 3.2 8.5

KH
Experimental geometry

9 VEs 405 726 2.9 9.3
1 VE + NLCC 376 708 2.5 8.7

Optimized geometry
9 VEs 519 808 2.9 7.2
1 VE + NLCC 613 876 2.4 4.9

RbH
Experimental geometry

9 VEs 371 678 3.0 10.0
1 VE + NLCC 340 663 2.4 9.0

Optimized geometry
9 VEs 481 759 3.1 7.8
1 VE + NLCC 604 859 2.4 4.9

example, the transverse optical frequencies ωTO and the di-
electric constant (Table I) evaluated using one VE for Na differ
from SC calculations by 23% and 56%, respectively, when the
experimental volume is used. The difference becomes larger
for KH and RbH (Table I). This result is not unexpected, since
it is known26,28,30 that, when using PPs to describe materials
containing alkali atoms, semicore electronic states must be
included in the calculation.

It was previously reported that the use of NLCC,31,32 which
accounts for the rigid shift of the semicore density as the
nucleus moves, provides, in many cases, a good description
of the phonons. We computed the DBS of LiH (not shown)
and NaH using NLCC; the results differed by less than 2%
from those obtained by VE calculations. Hence the use of
NLCC does not account for the appearance of the additional
eigenmodes observed in SC calculations. This correction is
different from the full SC treatment, because in the latter the
semicore electrons (i) respond self-consistently to changes
in the potential not due to nuclear motion and (ii) respond
nonrigidly to the nuclear motion. However, NLCC is useful
when there is strong spatial overlap of the semicore and valence
wave functions, such as in the alkali atoms. As reported in
Table I for NaH, NLCC accounts for most of the difference
between SC and VE phonon frequencies, although additional
differences of a few percent remain (4%–5% in the value
of ε0). For the heavier alkali hydrides, the use of NLCC is

progressively less accurate. For RbH, the remaining error is
around 10% for ε0 and reflects the effect of core polarization
rather than simple rigid displacement of the core charge. We
note that the error becomes worse if the volume is optimized
including NLCC, instead of considering the experimental
volume: the error is more than 37% for ε0 and 25% for
ωTO. Evidently, SC screening becomes more important as the
volume decreases.

VI. CORE POLARIZATION EFFECTS ON
QUASIPARTICLE ENERGIES FOR MOLECULES

We carried out GW calculations for molecules using the
method of Nguyen et al.45 and obtained QP energies (EQP

i ):

E
QP
i = εi + 〈ψi |

[
�c

(
E

QP
i

) + �x − Vxc

]|ψi〉. (15)

Here ψi and εi are the eigenvectors and eigenvalues of the
Kohn-Sham (KS) Hamiltonian. The correlation contribution
to the self-energy is given by

�c(ω) = i

2π

∫
G(r,r′; ω + ω′)Wc(r,r′; ω′)dω′, (16)

where Wc = W − vc and W is the screened Coulomb poten-
tial, given by

W = ε−1 · vc = vc + vc · χ · vc. (17)

The full self-energy is � = �x + �c, where the exchange
contribution is given by

�x = −
occ∑
i

ψi(r)vc(r,r′)ψ∗
i (r′). (18)

Vxc is the exchange-correlation potential entering the KS
Hamiltonian.

We compared QP energies obtained by performing three
types of calculations, which we denote as (i) GSCW SC,
(ii) GSCWVE, and (iii) GVEWVE, where, as in previous
sections, VE and SC denote different core-valence partitions.
In i, both the G and the DM (hence W ) are computed including
semicore electrons, which corresponds to the most complete
and accurate representation of the electronic screening. Calcu-
lations ii differ from i in the treatment of W : in ii, ε̃VE instead
of ε̃SC, respectively is used; in iii, both G and W are computed
using only the VE partition. The hybrid calculation, ii, is
presented for analysis purposes, to identify the contribution
of the semicore electrons to the screened Coulomb potential.

In Table II we report the computed ionization energies,
electron affinities, and gaps for calculations i, ii, and iii
along with the LDA KS values, for three classes of diatomic
molecules: alkali halides, alkali dimers, and alkaline earth
oxides. While there are regularities within each class, there
are important differences between classes.

In contrast to previous evidence that the inclusion of
semicore states results in reduced band gaps,46,47 for the
molecules considered in our study we found reductions or
increases in the band gaps, depending on the system. Alkali
halides and alkali dimers exhibit larger band gaps for the
GSCW SC-type calculation compared to their VE counterpart
(GVEWVE), however, alkaline earth oxides show the opposite
trend. Gomez-Abal et al.7 also observed similar findings for
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TABLE II. Energies of the highest occupied (HOMO) and lowest
unoccupied (LUMO) energy levels (in eV) of several diatomic
molecules, obtained using density functional theory calculations
within the LDA (ESC, EVE) using two core-valence partitions,
semicore (SC) and valence only (VE), within non-self-consistent
GW calculations. The experimental ionization potential and electron
affinity are given for the corresponding HOMO and LUMO levels.

HOMO LUMO Gap

NaCl ESC −5.36 −1.99 3.37
EVE −5.3 −1.71 3.59

GSCW SC −9.19 −0.29 8.9
GSCW VE −9.19 −0.27 8.92
GVEW VE −9.18 −0.53 8.65

Expt. 9.233 0.76934 8.43
KCl ESC −4.97 −1.55 3.42

EVE −4.88 −1.24 3.64
GSCW SC −8.68 −0.06 8.62
GSCW VE −8.69 0.025 8.72
GVEW VE −8.68 −0.32 8.36

Expt. 8.335 0.582 ± 0.0136 7.72
KI ESC −4.59 −1.71 2.88

EVE −4.53 −1.41 3.12
GSCW SC −7.56 −0.22 7.34
GSCW VE −7.56 −0.14 7.42
GVEW VE −7.56 −0.44 7.12

Expt. 7.5 ± 0.437 0.5 ± 0.138 7.0
Li2 ESC −3.18 −1.76 1.42

EVE −3.17 −1.73 1.44
GSCW SC −4.91 −0.71 4.2
GSCW VE −4.95 −0.71 4.24
GVEW VE −4.94 −0.74 4.20

Expt. 5.112 ± 0.000339

Na2 ESC −3.14 −1.79 1.35
EVE −3.16 −1.8 1.36

GSCW SC −5.19 −0.78 4.41
GSCW VE −5.21 −0.79 4.42
GVEW VE −4.96 −0.69 4.27

Expt. 4.8951 ± 0.000240 0.43 ± 0.01541 4.47
K2 ESC −2.54 −1.58 0.96

EVE −2.6 −1.65 0.95
GSCW SC −4.22 −0.60 3.62
GSCW VE −4.03 −0.52 3.51
GVEW VE −4.18 −0.78 3.4

Expt. 4.0637 ± 0.000240 0.497 ± 0.01242 3.57
Rb2 ESC −2.43 −1.52 0.91

EVE −2.52 −1.6 0.92
GSCW SC −3.88 −0.51 3.37
GSCW VE −3.88 −0.62 3.26
GVEW VE −3.9 −0.74 3.17

Expt. 3.9 ± 0.141 0.498 ± 0.01543 3.402
CaO ESC −3.904 −2.33 1.574

EVE −4.04 −1.92 2.06
GSCW SC −6.46 −0.55 5.91
GSCW VE −6.41 −0.51 5.9
GVEW VE −6.88 −0.55 6.33

Expt. 6.66 ± 0.1844

SrO ESC −3.67 −2.21 1.46
EVE −3.86 −1.97 1.89

GSCW SC −6.01 −0.39 5.62
GSCW VE −5.99 −0.36 5.63
GVEW VE −6.45 −0.52 5.93

Expt. 6.6 ± 0.1844

solids, e.g., GaAs and CaSe gaps obtained with PPs were
smaller than their all-electron counterparts.

For several semiconductors and insulators, it was found
that non-self-consistent GW PP calculations with VE par-
titions were successful in reproducing band gaps of most
semiconductors and insulators and that often all-electron non-
self-consistent GW results were worse than the corresponding
PP GW ones,7 compared to experiments. This is possibly due
to compensating approximations in the GW PP formulation
such as core-valence partitioning and use of pseudo–wave
functions.16 Our results for molecules confirm this finding
for gaps for two classes of systems (alkali halides and alkaline
earth oxides), but for alkali dimers the SC results are in better
agreement with experiments than the VE results. Below we
summarize our findings for each class of molecules considered
here.

A. Alkali halide molecules

The HOMO energy level from GW calculations compares
well with the measured ionization potential. The agreement
of the LUMO energy with the electron affinity and of the
computed QP gap with the measured one is worse (the gap is
larger) for the SC calculation. For example, for KI and KCl
the difference between computed and measured QP gaps is 5%
and 11%, respectively, for SC, compared to 2% and 8% for
VE calculations. By isolating the effect of core polarization
we observed that the difference in the computed QP band gaps
is of the order of 0.1 eV. The agreement with the experiment
worsens for the “hybrid” calculations compared to the SC
calculation, by 1% and 2% for KI and KCl, respectively.

B. Alkaline earth oxides

Similarly to the case of alkali halides, the HOMO energy is
in worse agreement with the measured ionization potential
for the SC partition. For SrO, for example, the difference
between the HOMO energy and the ionization potential is
9% for the GSCW SC calculation, compared to ≈2% for the
GVEWVE calculation. Isolating the core polarization effects
hardly affects the difference between the HOMO and the
ionization potential (0.3% increase). The core polarization
effect is negligible for the band gap in these oxides, consistent
with the more moderate SC screening that can be discerned
from the DOS [Fig. 2(f)] and the IPR analysis [Fig. 3(c)].

C. Alkali dimers

The trend noticed above, where SC results are in worse
agreement with the experiment compared to VE results, is
reversed for alkali dimers, which are covalently bonded,
as opposed to the other molecules, where there is (partial)
charge transfer between anions and cations. The SC results
for QP gaps and LUMO energies are in better agreement with
experiment than the VE results are. Taking the K2 and Rb2

molecules as examples, the QP gaps are within 1.4% and
1% of the experiment for SC, versus 4.5% and 7% for VE,
respectively. Core polarization affects the QP band gap by up
to 0.11 eV for K2 and Rb2. The hybrid calculation worsens the
agreement with the experiment compared to GSCW SC: 1.6%
and 4% for K2 and Rb2. The SC results are in better agreement
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TABLE III. Matrix elements of the self-energy (in eV) for the exchange �x , correlation �c, and exchange-correlation potential Vxc for
KI, K2, and SrO along with the Kohn-Sham energies (EKS) and QP energies (in eV) of the highest occupied (HOMO) and lowest unoccupied
(LUMO) energy levels and the gap for (i) GSCW SC, (ii) GSCW VE, and (iii) GVEW VE calculations.

EKS 〈�x〉 〈Vxc〉 〈�x〉 − 〈Vxc〉 〈�c〉 EQP

KI
HOMO GSCW SC −4.59 −13.56 −10.17 −3.39 0.42 −7.56

GSCW VE −4.59 −13.56 −10.17 −3.39 0.42 −7.56
GVEW VE −4.54 −13.51 −10.1 −3.41 0.39 −7.56

LUMO GSCW SC −1.71 −1.11 −3.43 2.32 −0.83 −0.22
GSCW VE −1.71 −1.11 −3.43 2.32 −0.75 −0.14
GVEW VE −1.41 −0.39 −1.71 1.32 −0.35 −0.44

Gap GSCW SC 2.88 12.45 6.74 5.71 −1.25 7.34
GSCW VE 2.88 12.45 6.74 5.71 −1.17 7.42
GVEW VE 3.13 13.12 8.39 4.73 −0.74 7.12

K2

HOMO GSCW SC −2.54 −5.38 −4.65 −0.73 −0.95 −4.22
GSCW VE −2.54 −5.38 −4.65 −0.73 −0.76 −4.03
GVEW VE −2.6 −4.69 −3.56 −1.13 −0.45 −4.18

LUMO GSCW SC −1.58 −1.49 −3.76 2.27 −1.29 −0.6
GSCW VE −1.58 −1.49 −3.76 2.27 −1.21 −0.52
GVEW VE −1.65 −0.91 −2.77 1.86 −0.99 −0.78

Gap GSCW SC 0.96 3.89 0.89 3.0 −0.34 3.62
GSCW VE 0.96 3.89 0.89 3.0 −0.45 3.51
GVEW VE 0.95 3.78 0.79 2.99 −0.54 3.4

SrO
HOMO GSCW SC −3.67 −21.53 −17.01 −4.52 2.18 −6.01

GSCW VE −3.67 −21.53 −17.01 −4.52 2.21 −5.98
GVEW VE −3.87 −20.69 −15.75 −4.94 2.36 −6.45

LUMO GSCW SC −2.21 −1.89 −4.68 2.79 −0.97 −0.39
GSCW VE −2.21 −1.89 −4.68 2.79 −0.93 −0.35
GVEW VE −1.97 −1.08 −3.13 2.05 −0.6 −0.52

Gap GSCW SC 1.46 19.64 12.33 7.31 −3.15 5.62
GSCW VE 1.46 19.64 12.33 7.31 −3.14 5.63
GVEW VE 1.9 19.61 12.62 6.99 −2.96 5.93

than the VE results with the experimental gaps for all the alkali
dimers, unlike for the alkali halide molecules.

Overall we find that if accuracies of the order of 100–200
meV in calculated QP eigenvalues are desired, the inclusion
of semicore states is necessary not only in the calculation
of wave functions and thus of �x and Vxc, but also in the
evaluation of �c. We thus confirm previous work indicating
that the inclusion of even fairly strongly bound semicore
states that might be thought to be inert, based on a large
denominator in Eq. (4), can substantially contribute to HOMO
and LUMO QP energies. For example, in the case of Rb2

(containing the alkali atom with the largest polarizability),
the contribution of semicore polarization to the LUMO state
and the gap is about 100 meV. For K2, the contributions to
the HOMO, LUMO, and gap are about 200, 80, and 110
meV, respectively. For alkali halides such as KCl and KI,
the contribution of semicore polarization to the computed gap
and LUMO energy is of the order of 100 meV. However, if
errors of the orders of 100–200 meV may be tolerated, e.g.,
in analyzing trends of QP gaps within certain classes of sys-
tems, one may use an approximate dielectric screening com-
puted with the VE partition, with substantial computational
savings.

VII. SUMMARY

We have presented a new approach for calculating and
analyzing the effect of electronic semicore polarization on
dielectric, vibrational, and electronic excitation properties of
molecules and solids, based on the spectral decomposition of
the dielectric matrix. Including semicore electrons leads to ad-
ditional eigenmodes in the DBS with eigenvalues substantially
different from unity. Even if the eigenmodes are localized,
as often happens, they contribute to screening. Polarization
arising from semicore electrons may contribute ∼10% to
both the dielectric constants and the transverse optical phonon
modes, with effects being greater for systems constituting the
larger and therefore more polarizable atoms. The distribution
of dielectric eigenvalues and the IPR analysis for molecules
show that there is no clear distinction between eigenmodes
due to semicore response versus those from valence electrons;
there is a continuum, with the mixing being more widespread
for molecules with larger atoms. The effects of the core
polarization, e.g., on computed QP gaps, are found to be
different for molecules with covalent and ionic bonds. The
GW predictions of QP energies and of the gap have been
quantified and trends within classes of diatomic molecules
have been identified. If a precision of ∼200 meV in these
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energies is needed, semicore electrons must be included
in the calculations. Otherwise they may be discarded, with
substantial savings in the calculations.
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APPENDIX: QUASIPARTICLE ENERGIES

We provide the matrix elements of the self-energy
(exchange, �x ; and correlation, �c terms), exchange corre-
lation potential Vxc, LDA KS energies, and computed QP
energies for the HOMO, LUMO, and gap of a representative
molecule from each class of molecules considered in this
study. The results are shown for three types of calculations
as decribed in Sec. VI: (i) GSCW SC, (ii) GSCWVE, and (iii)
GVEWVE.

1. Comparison with the literature

For the sp-bonded solids considered in Refs. 7 and 16,
the authors found that even though there is a large difference
in the PP (VE) and all-electron matrix elements of �x and
Vxc, the sum (�x − Vxc) is similar in the two cases. The way
the latter sum is computed gave negligible differences in the
computed Egap, with major differences coming instead from
the �c matrix elements. However, while for the sp-bonded
molecules (alkali dimers), we found a trend similar to that in
Refs. 7 and 16, this trend did not hold for alkali halides and
alkaline earth oxides (Table III).

For example, for K2, the difference in (〈�x〉 − 〈Vxc〉)
obtained with VE versus SC partitions is negligible. The
remaining difference between the VE and the SC band gaps
comes from the underestimation of �c in the VE calculations
(≈0.2 eV). Instead, in the case of alkali halides, such as KI, the
difference in the gap between the VE and the SC calculations
arises from the difference in the matrix elements of both
�x and Vxc (of the order of 0.7 and 1.7 eV, respectively).
The cancellation is incomplete and it contributes to the
difference between the SC and the VE band gaps, together
with the difference in the matrix elements of �c. There is an
overestimation in the correlation energy in VE calculations
(≈0.5 eV), which tends to reduce the effect of incomplete
cancellation between the matrix elements of �x and Vxc.
Similarly, in the case of alkaline earth oxides such as SrO, the
cancellation is incomplete (〈�x〉 − 〈Vxc〉 ≈ 0.3 eV), which,
along with the overestimation of the KS band gap (≈0.4 eV)
in VE-only calculations and the difference in the correlation
term (≈0.2 eV), leads to a difference between the SC and the
VE computed band gaps.
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11M. Rohlfing, P. Krüger, and J. Pollmann, Phys. Rev. Lett. 75, 3489

(1995).
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