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Low-damping epsilon-near-zero slabs: Nonlinear and nonlocal optical properties
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We investigate second-harmonic generation, low-threshold multistability, all-optical switching, and inherently
nonlocal effects due to the free-electron gas pressure in an epsilon-near-zero (ENZ) metamaterial slab made
of cylindrical, plasmonic nanoshells illuminated by TM-polarized light. Damping compensation in the ENZ
frequency region, achieved by using gain medium inside the nanoshells’ dielectric cores, enhances the nonlinear
properties. Reflection is inhibited, and the electric field component normal to the slab interface is enhanced near the
effective pseudo-Brewster angle, where the effective ε ≈ 0 condition triggers a nonresonant, impedance-matching
phenomenon. We show that the slab displays a strong effective, spatial nonlocality associated with leaky modes
that are mediated by the compensation of damping. The presence of these leaky modes then induces further
spectral and angular conditions, where the local fields are enhanced, thus opening new windows of opportunity
for the enhancement of nonlinear optical processes.

DOI: 10.1103/PhysRevB.87.155140 PACS number(s): 42.65.Ky, 42.65.Pc, 78.67.Pt

I. INTRODUCTION

Recent interest in epsilon-near-zero (ENZ) materials has
been motivated by the possibility of controlling antenna
directivity1,2 and achieving perfect couplers through elec-
tromagnetic tunneling in subwavelength, low-permittivity
regions.3,4 ENZ materials may also be used to achieve
enhanced harmonic generation,5,6 optical bistability,7,8 and
soliton excitation.9 The efficiency of harmonic generation is
boosted in subwavelength ENZ slabs because the electric field
is enhanced at the interface with a higher-index substrate.5,6

This nonresonant enhancement occurs at oblique incidence
for TM polarization and is triggered by the continuity of
the component of the displacement field normal to the
interface.10 An alternative approach to achieve significant
enhancement factors (EFs) of electromagnetic fields at oblique
incidence is to exploit the zero-refractive index point of
transition metamaterials, i.e., metamaterials with permittiv-
ity and permeability gradually modulated from positive to
negative values.11–13 At low irradiance levels, subwavelength
ENZ slabs exhibit anomalous multistability and directional
hysteresis7 so that even a weak nonlinearity can dominate the
optical response. Although ENZ conditions occur naturally
near the plasma frequency of any material (at visible and
ultraviolet wavelengths for metals and semiconductors and
in the infrared range for dielectrics), artificial materials are
advantageous because ENZ conditions may be engineered at
virtually any wavelength. For example, waveguides operat-
ing near their cutoff frequency14,15 and “rodded” media14,16

exhibit plasmalike behavior by displaying near-zero effective
permittivity. Furthermore, the strong electric dipole resonance
of composite materials made of either periodic or random
arrangements of metallic nanoparticles leads to ENZ effective
condition.17 However, the imaginary part of the permittivity
limits the performance of ENZ materials for both linear and
nonlinear optical applications. To circumvent this hurdle, one
may include gain material in the mixture, as suggested in
Refs. 18 and 19. Active, fluorescent dyes introduced inside the
cores of plasmonic nanoshells arranged in three-dimensional

(3D) periodic arrays may indeed suppress the imaginary part
of the effective permittivity.20 A mixture of metal-coated
quantum dots dispersed in a dielectric matrix leads to similar
behavior.21–23 If the zero-crossing frequency of the real part
of the effective permittivity turns out to be close to the
center emission frequency of the active medium, then real
and imaginary parts of the permittivity are simultaneously
minimized. In this paper we exploit this approach to study
an ENZ metamaterial based on a two-dimensional (2D)
array of metallic, cylindrical nanoshells with gain medium
embedded inside the dielectric cores. The array is designed by
using effective medium approximation techniques, complex
Bloch-mode analysis (MA), and full-wave numerical simu-
lations (summarized in the Appendix). The standard, local,
homogenization procedures of the type discussed in Refs. 20
and 21 are used only as instrumental tools for the initial design
of the bulk metamaterial properties because homogenization
techniques adequately describe finite-thickness, metamaterial
slabs of the kind described in this paper only for very small
angles of incidence (5◦ or less). Strong spatial dispersion
and fine spectral features set in for larger angles, requiring a
full-wave approach. This effective nonlocal behavior is strictly
related to the mesoscopic nature of the array and its finite
thickness, which is, in turn, enhanced by the very low damping
in the system. Spatial dispersion phenomena are investigated
by performing a complex Bloch-MA of the finite-thickness
array. In our approach we limited our study to the plane
of incidence perpendicular to the plasmonic cylinders’ axis
so that the electric dipole resonance becomes comparable to
that achieved in 3D arrays of spherical nanoshells.24 For this
reason transmittance, reflectance, and absorption spectra that
we report are similar to those observed in Ref. 24, for 3D
arrays of spherical nanoshells. However, in Ref. 24 the nature
of the resonant spectral features is not analyzed or discussed.
In contrast, here we expand the discussion by providing a full
explanation of the physics behind these features and show how
they influence nonlinear and nonlocal phenomena. In addition
to a pseudo-Brewster (PB) mode responsible for the ENZ
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behavior of the slab, here we report additional low-damping,
leaky modes that impact the slab response at oblique incidence.
We thus identify two new channels for the enhancement
of local fields and nonlinear processes in the low-damping
regime: the first is related to the forced excitation of what we
call a “PB mode” near the PB angle (Sec. II); the second is
associated with the forced excitation of leaky modes supported
by low-loss, finite-thickness ENZ slabs (Sec. III). We then
turn to the discussion of nonlinear effects, i.e., enhancement
of second-harmonic generation (SHG) conversion efficiency
originating from the metallic shells, low-threshold optical
multistability and switching (Sec. IV). Even though we show
that favorable conditions for SHG conversion efficiency are
met near the PB angle, where local fields are maximized
because of a forced excitation of the PB mode, interestingly, we
predict that optimal conditions for SHG conversion efficiency
are rather met when effective nonlocal effects induced by leaky
modes dominate the slab response. We then show that the
large, angular, and frequency selectivity of the tunneling effect
triggered by the PB mode, as well as the boost of electric
field under these circumstances, leads to favorable conditions
for enhancing self-phase modulation phenomena and inducing
low-irradiance switching.

Finally, we discuss the role of inherent nonlocal effects
induced by the free-electron gas pressure in the metal-
lic nanoshells (Sec. V). The phenomenology of nonlocal
contributions of free electrons on the optical response of
nanoscale plasmonic structures has been widely discussed
in literature.25–31 Typical manifestations of the nonlocal,
free-electron gas pressure are blueshift and broadening of
plasmonic resonances, anomalous absorption,32 unusual reso-
nances above the plasma frequency,28 and limitation of field
enhancements.31 These effects are more pronounced when
the electron wavelength (∼1 nm) becomes comparable to
the radius of curvature of metallic nanostructures or to the
distance between the metal boundaries of larger structures.
Here, we use both analytical and full-wave tools to show that
these phenomena are magnified in ENZ arrays of metallic
nanoshells, in the low-damping regime. We find that additional
damping and limitations on field enhancements due to the
inherent nonlocality arising from free-electron gas pressure
may be mitigated by slightly increasing the gain in the cores.

II. LINEAR PROPERTIES OF 2D ARRAYS OF
CYLINDRICAL NANOSHELLS: FIELD

ENHANCEMENT AT THE
PSEUDO-BREWSTER ANGLE

The geometry of a 2D array of cylindrical nanoshells is
sketched in Fig. 1. Each cylinder has a core of radius r1 with
absolute permittivity ε1 and a shell of external radius r2 with
absolute permittivity ε2.

The source is a plane wave with TM field, i.e., electric field
lying in the plane of incidence (x-z plane). The scattering
problem is studied on the x-z plane (with period a in
both x and z directions); the structure is assumed to be
invariant in the y direction and surrounded by a medium
with absolute permittivity εh. The time harmonic dependence
exp(−iωt) is implicitly assumed throughout the paper. We
retrieve the effective permittivity of the structure by using four
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FIG. 1. (Color online) Sketch of the ENZ slab illuminated by a
TM wave. The slab is 4a thick in the z direction and periodic in the
x direction with period a. The structure is assumed to be invariant
in the y direction. The unit cell (inset) consists of a cylinder with
metallic nanoshell. The core is a mixture of a dielectric and an active,
gain medium.

methods, described in the Appendix: (1) Maxwell Garnett
(MG) mixing formula; (2) quasistatic (QS) approximation;
(3) complex Bloch-MA; (4) Nicolson-Ross-Weir (NRW)
retrieval method, based on full-wave numerical simulations
and the inversion of the Fresnel formulas for transmission and
reflection coefficients. The slab is composed of four layers
of arrayed cylindrical nanoshells and is infinitely long in
the x direction, with thickness d = 4a in the z direction.
The host material is a dispersion-free, silicalike medium with
εh = 2.25ε0, where ε0 is the free-space absolute permittivity.
The frequency-dependent permittivity ε2 of the silver shell
is taken from Ref. 33. For the purpose of lowering the
metamaterial attenuation constant (i.e., lowering the loss
coefficient), we assume the silica cores host Rhodamine
800 fluorescent molecules and that a pump signal alters
the optical properties of the cores. The volumetric dipolar
excitation of the core is described via a four-level energy
system as in Ref. 20, where the formula for permittivity is
reported [see Eq. (14) in Ref. 20]. Following the notation in
Ref. 20, we assume the following parameters: τ21 = 500 ps,
τ10 = τ32 = 100 fs, linewidth �ωa = 2π × 15.9 THz, central
emission angular frequency ωa = 2π × 422 THz, coupling
constant σa = 1.71 × 10−7 C2/kg, dye density N̄0 = 4.06 ×
1018 cm−3 (corresponding to a concentration of 6.75 mM), and
pump rate �pump = 6.5 × 109 s−1. The shell is r2 − r1 = 5 nm
thick, and the core radius is r1 = 25 nm. Assuming the
approximation of bulk gain medium and considering the dye
pump frequency at 441 THz and the absorption cross section
σ abs = 3.14 × 10−16 cm2 for Rhodamine 800, we estimate a
pump intensity of ∼6 MW/cm2. However, we did not take
into account quenching and other nonradiative processes in
our semiclassical four-level model of the dye molecule. These
processes may limit the damping compensation mechanism,
even though an analytical treatment of the individual molecule-
molecule and molecule-nanoparticle interactions is probably
needed to accurately estimate their real impact. Here, the focus
of our investigation is on nonlinear and nonlocal properties
of low-damping ENZ slabs. Therefore, any other damping
compensation mechanism would be equally valid to observe
the enhanced nonlinear and nonlocal phenomena that we
predict in the following sections. The periodicity a = 114 nm
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FIG. 2. (Color online) (a) Real and (b) imaginary parts of the
effective relative permittivity of the metamaterial sketched in Fig. 1
retrieved via the methods described in the Appendix; (c) and (d) are
enlarged views of (a) and (b), respectively, near the zero-crossing
point [dashed boxes in (a) and (b)].

is chosen, so as the zero-crossing frequency of the real part of
the effective permittivity matches the emission frequency of
the gain material (422 THz). In Fig. 2 we plot the relative
effective permittivity as a function of frequency evaluated
by using the four homogenization methods described in
the Appendix. All methods reveal a strong electric dipole
resonance near 350 THz and predict an ENZ permittivity near
422 THz. Molecular concentration and pump rate given above
are chosen to balance Joule heating losses in the metal and
gain in the active cores.

We note in Fig. 2 that the complex Bloch-MA and the
NRW retrieval procedure yield almost identical effective
parameters. These methods are considered the most accurate
to characterize wave propagation since they are based on
full-wave expansions. There are some intrinsic limitations
in the MG and QS approximations, related to the fact that
the period is not especially subwavelength: the MG mixing
formula takes into account only dipolar contributions of the
nanoshells and the effect of all mutual couplings is approx-
imated, whereas the QS approximation neglects retardation
effects and proper field distribution inside each elementary
cell. In all cases, we find that the complex εeff approaches
zero, as the active material compensates damping induced
by the collective plasmonic resonance of the array. Damping
compensation impacts slightly the real part of the effective
permittivity, which would have a zero-crossing point even
with higher damping. However, the active material reduces
the imaginary part of the effective permittivity within the
narrow band around 422 THz, as shown in Fig. 2(d), where the
Lorentzian resonance of the active medium peaks. In Fig. 3
we report transmittance [Figs. 3(a) and 3(b)] and reflectance
[Figs. 3(c) and 3(d)], defined as ratios of intensities, and
absorptance [Figs. 3(e) and 3(f)] versus frequency and angle
of incidence of a TM-polarized plane wave. Figure 3 shows
generally good agreement between analytical results for a finite
metamaterial slab with homogenized permittivity obtained
from the NRW procedure [Figs. 3(a), 3(c), and 3(e)] and

FIG. 3. (Color online) Transmittance (a) and (b), reflectance
(c) and (d), and absorptance (e) and (f) through the slab of
Fig. 1 versus frequency and angle of incidence calculated by
(i) NRW homogenization procedure and (ii) full-wave numerical
simulations (FEM). The PB region centered at the PB angle is
indicated with an arrow.

full-wave simulations obtained with the finite element method
(FEM) [Figs. 3(b), 3(d), and 3(f)]. These results prove that
homogeneous medium modeling may be adopted to establish
the linear properties of the slab in a relatively wide frequency
range. However, in Fig. 3 we also observe additional features
in the full-wave results near 422 THz, but we postpone their
discussion until Sec. III. Two opposite features are observed
and discussed here. The large impedance mismatch at the
slab interface around 422 THz is due to the ENZ condition
that increases the impedance near the emission frequency. In
contrast, reflectivity is quenched within a very narrow angular
bandwidth centered at the PB angle34–36 relative to the interface
between the surrounding silicalike medium and the slab. We
refer to this region of low reflectance as the PB region. At the
interface between a lossless medium with permittivity εh and
an ideal material slab with lossless permittivity εslab, reflected
power for TM waves is minimized at the Brewster angle,
θB = tan−1(

√
εslab/εh). However, absorption losses prevent the

reflection from vanishing, and a minimum reflection angle
known as the PB angle34–36 exists, where the impedance
matching condition between the two media is approached.
The analytical expression for the PB angle at the interface
between a lossless medium with index nh = √

εh/ε0 and a
lossy material with complex index nslab + ikslab = √

εslab/ε0

is found in Refs. 34–36 and reads as follows:

θPB = cot−1

{[√
ξ (cos ζ +

√
3 sin ζ ) − 1

3

]1/2}
, (1)
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FIG. 4. (Color online) (a) Pseudo-Brewster angle (θPB) contours
(with steps of one degree) with εslab varying in the complex permit-
tivity plane. (b) Transmission through a homogeneous metamaterial
slab with εslab taken from the NRW retrieval method. The dashed blue
line is the PB angle curve θPB evaluated with Eq. (1).
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In Fig. 4(a) we plot the contours of constant PB angle with
εslab/ε0 varying in the complex plane, assuming εh/ε0 = 2.25.
The figure shows that when the slab displays ENZ response the
PB angle approaches normal incidence. At the PB angle, one
expects inhibition of reflection and increased transmission and
absorption. The effect is captured in Fig. 3 as a narrow bright
spot in transmission and absorption maps and as a narrow
dark spot in the reflection map in the near-zero permittivity
region. Frequency and angle selectivities of this phenomenon
are strictly related to the value of Im[εslab/ε0] and to the
steepness of Re[εslab/ε0] near the zero-crossing frequency. In
Fig. 4(b) we report an enlarged view of the transmission map
in Fig. 3(a), based on the homogenized slab approximation
(with parameters retrieved via the NRW method in Fig. 2), and
we overlap the frequency-dependent PB angle calculated using
Eq. (1). The PB angle curve follows the maximum transmission
angle even for a four-layers-thick slab, adding credence to the
idea that nonresonant, quasi-impedance matching occurs at the
interface between the transparent substrate and the ENZ slab
at near-zero input angles.

As theoretically demonstrated in Ref. 10, a singular field
enhancement in finite-thickness ENZ slabs may be obtained
for critical angle condition, for total transmission condition
(Brewster angle) and in the limit of simultaneously vanishing
values of effective permittivity and angle of incidence. Plane-
wave excitation of the ENZ slab in Fig. 1 at the PB angle
[Eq. (1)] defines a real angle condition, even for lossy slabs,
very close to the total transmission and the critical angle
conditions defined in Ref. 10 by means of complex incident
angles. For this reason, in the following we will only refer to
the real PB angle condition and show how it leads to enhanced
electric fields and nonlinear phenomena (Sec. IV).

III. EFFECTIVE NONLOCALITY: ADDITIONAL MODES
OF THE ENZ SLAB

In the previous section we showed that the dominant spec-
tral effect in the ENZ slab of Fig. 1 is a tunneling phenomenon
at oblique incidence for TM polarization in the PB region.
The panels in Fig. 5 are enlarged views of the maps in Fig. 3,

FIG. 5. (Color online) Transmittance (a) and (b) and absorptance
(c) and (d) through the slab in Fig. 1 versus frequency and angle
of incidence calculated via NRW homogenization and full-wave
numerical simulations as noted.

obtained by using higher frequency and angular resolutions
to allow narrow spectral features to emerge. The discrepancy
between results from full-wave and homogenization methods
in Fig. 5 cannot be appreciated in Fig. 3. The differences
are due to narrow resonances mediated by additional forced
modes37 in the low-damping spectral region around 422 THz,
i.e., within the emission bandwidth of the gain medium. These
novel forced modes are excited around the PB region and
generate Fano-like spectral features,38 observable either as
narrow asymmetric transmission (or reflection) profiles, or
selective enhanced absorption regions (Fig. 5). We stress that
these additional spectral features are not predicted and are
absent in the homogenized slab model described in Figs. 5(a)
and 5(c).

The nature of these new spectral features is revealed by
investigating the free, complex Bloch modes supported by the
slab in the x direction. These modes are found by using the
complex Bloch-MA technique described in the Appendix. We
find the modes with Bloch wave vector in the direction v̂ = x̂
and set a unit cell with lattice translation vector R = x̂a as
in Fig. 6(a). The slab is sandwiched by the silicalike host
medium as in Fig. 1, and the unit cell is terminated in the
± z directions with perfectly matched layers39 adapted to the
host medium. These terminations “absorb” leaky modes, i.e.,
radiating modes within the light cone of the host medium with
the real part of the complex transverse wave number |βx | < kh

(where kh is the host wave number). These modes, studied here
as the capability of the structure to support them, can affect
transmission and absorption via phase matching with the plane
wave incident from the host medium, as described in Fig. 1.
A free mode is perfectly matched to an external field when
both real and imaginary parts of the transverse wave number
kmode
x = βx + iαx are matched to the complex wave number

of the incident field. Such mode cannot be excited by a simple
homogeneous plane wave (a source is necessary to excite a
free mode37). However, an incident plane wave may force the
excitation of a mode by phase matching with the real part βx of
the complex wave number kmode

x . This can modify transmission
and absorption properties when the imaginary part αx of the
modal wave number is small. In Figs. 6(b) and 6(c), we report
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FIG. 6. (Color online) (a) Unit cell used for the complex Bloch-
MA of the finite-thickness ENZ slab in Fig. 1. The slab is periodic
along x with period a and finite in the z direction (height d = 4a).
(b) Real and (c) imaginary part of the wave number of the complex
modes supported by the slab normalized to the host medium wave
number kh.

the dispersion curves of real and imaginary parts of the Bloch’s
wave number of free modes with low imaginary part. In this
region the slab supports four leaky modes (|βx |/kh < 1) whose
αx nearly vanish, also thanks to low-damping conditions. We
plot modes with positive real part of the wave number βx

because we are interested in those modes that can be phase
matched to an oblique plane wave with positive transverse
wave number kx . Accordingly, the sign of the imaginary part
αx of the mode wave number can be either positive or negative
because we explore the free solutions that may affect reflection
and transmission via phase matching. The dispersion of the
mode labeled PB is close to the dispersion of the dominant
mode in the unbounded metamaterial described in Sec. II.
This mode plays a role in the PB tunneling phenomenon, as
shown in Fig. 4. We refer to the other three supported modes as
M1, M2, and M3. Given the very small imaginary part of their
wave numbers at frequencies smaller than 422 THz, modes
M1–M3 are the prevailing response of the slab in this spectral
region.

We recall that forward and backward modes are defined by
βxαx > 0 and βxαx < 0, respectively.40–43 Moreover, given
the reciprocal nature of all the materials composing the slab,
for each mode with complex propagation constant kmode

x , the
reciprocal mode with propagation constant −kmode

x is still a
solution of the eigenvalue equation. In other words, both
kmode
x and −kmode

x wave numbers can be supported by the
slab. Denoting kmode

z = βz + iαz, from the dispersion relation
in the host medium the following identity can be written,44

βxαx = −βzαz. Limiting the discussion only to leaky modes
(as those we deal with in Fig. 6), it follows that forward
modes display exponentially growing fields in the z direction,
and for this reason they are classified as improper. Backward
modes, instead, display exponentially decaying fields in the z

direction, and for this reason they are classified as proper.40–44

To better exemplify the dispersion diagrams in Fig. 6, we
give in Fig. 7 an alternative representation of the leaky modes
supported by the slab in the complex kx plane. The arrows
on the trajectories of the modes’ wave numbers indicate the
direction of growing frequencies (from 420 to 424 THz).
According to the mode classification described above, in this
frequency range, modes M1–M3 are backward and proper
(solid lines), whereas the PB mode changes from backward
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FIG. 7. (Color online) Trajectories of the wave numbers in
the complex kmode

x plane for the leaky modes supported by the
metamaterial slab. The arrows indicate the direction of growing
frequencies (from 420 to 424 THz). Solid/dashed lines represent
proper/improper modes.

proper (solid blue line) to forward improper (dashed blue line)
at ≈422 THz because this modal wave number passes from
the top to the bottom Riemann sheet (see Refs. 40–43 for more
details).

The phase-matching angle for each of these modes, i.e.,
the angle at which the transverse wave number of the im-
pinging plane wave matches the phase constant of the modes,
is calculated as θmode = sin−1(βx/kh). The angle-frequency
dispersion curve associated with these modes [white stars in
Fig. 8(a)] overlaps well with the narrow resonances visible
in the frequency angle absorptance map of the ENZ slab, as
shown in Fig. 8(a). We note that the analytical expression
of the PB angle in Eq. (1) predicts the tunneling angle
through the slab only in the limit of the effective medium
approximation shown in Fig. 4(b). Instead, the PB mode
dispersion in Fig. 8(a), evaluated via Bloch theory for the
unit cell in Fig. 6(a), is in excellent agreement with the more

FIG. 8. (Color online) (a) Absorptance map of the ENZ slab
evaluated via FEM. The dispersion of the modes (white stars) is
superimposed, showing the correlation with absorptance. (b) Real
part of the electric field z component Re[Ez] for the four leaky modes
supported by the slab. The field distribution for free modes M1, M2,
and M3 is taken at 421.5 THz, while the field distribution for the
PB mode is taken at 423.5 THz. The color scale (arbitrary units) in
each panel of (b) is adapted to highlight the maxima (deep red) and
the minima (deep blue) of Re[Ez] inside the slab (middle part of the
panels), and it is reduced in the top and bottom parts of the panels in
order to show the radiation leakage of each mode in the surrounding
silicalike medium.
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complicated dispersion of the PB tunneling (transmission)
region, resulting from full-wave numerical simulations. In
general, the impact of the free modes on the spectral response
of the ENZ slab is significant when the imaginary part αx

is low. This is further enhanced when the effective material
damping is lowered thanks to the active material in the cores.
However, it should be pointed out that both the low-damping
ENZ condition and the excitation of the leaky modes M1,
M2, and M3 may be similarly attained by using any low-loss
plasmonic material, without resorting to active gain inclusions
within the metamaterial.

For example, semiconductor-based oxides have been in-
dicated as intrinsic low-loss plasmonic materials for the
near-infrared frequency range.45 Overviews of alternative
plasmonic materials based on doped metals, doped semi-
conductors, metal alloys, and band structure engineering are
presented in Refs. 46 and 47.

The presence of the modes M1–M3 and the PB mode thus
makes it difficult to homogenize the slab with a simple, local
effective medium approach. Either the NRW approximation
or the complex Bloch-MA for the unbounded metamaterial
(see Secs. 3 and 4 in the Appendix) is adequate for angles
up to 5◦ (Fig. 5), where the dominant mode of the slab
is the PB mode. For larger angles, one should take into
account the finite nature of the slab’s thickness and perform
a complete modal analysis of the slab as described above. An
effective nonlocal model used to homogenize the ENZ slab
may account for these additional modes (modes M1–M3), in
addition to the PB mode, and their dispersion. For example,
in Ref. 48 an effective nonlocal model of an anisotropic ENZ
slab composed of nanorods was derived by fitting full-wave
numerical simulations to account for spatial dispersion effects
and the presence of additional waves. In Fig. 8(b) we report the
distribution of the real part of the phasor of the electric-field
component Ez for the four modes supported by the slab. The
fields for modes M1–M3 are plotted at 421.5 THz, whereas
the field of the PB mode is plotted at 423.5 THz. The PB mode
is characterized by an alignment of the dipoles’ magnitude
and phase along the z direction. Similarly, the electric dipoles
are oriented along the z direction even for the additional three
modes. However, these modes experience a phase difference
between elements in the z direction. Indeed, some dipoles
are oriented along + z (blue color) and others along − z

(red color). The parity symmetry of the additional modes is
essential to determine the degree of interaction with the PB
mode. While modes M1 and M3 display weak interaction
with the PB mode, strong coupling between modes M2 and
PB leads to the anticrossing behavior at ≈ 422.5 THz and
for an angle of incidence near 7◦. A simple coupled-mode
theory49 argument may be used to explain this phenomenon.
Modes M1 and M3 display odd symmetry with respect to
the center of the slab and couple weakly to the even-parity,
tunneling field of the PB mode. The opposite occurs for the
interaction between M2 and the PB mode: both show even
symmetry. We stress that the number of additional modes,
their spectral positions, and dispersions strictly depend on slab
thickness, i.e., the number of periods in the z direction. Under
these circumstances, the definition and the determination of an
effective nonlocal permittivity are not straightforward and may
not even be necessary. Homogenization, including nonlocal

effects, is discussed in Refs. 50 and 51, but certain structures
also require the introduction of Drude-type transition layers or
sheets that account for the transition between free space and the
homogenized bulk metamaterial,52 further complicating the
analysis. For this reason we performed a complex Bloch-MA
of the finite-thickness structure that provides a full physical
interpretation of the spectra retrieved via full-wave numerical
simulations, as shown in Fig. 8. Moreover, the excitation of
additional modes by phase-matched plane waves is inhibited
when damping in the metamaterial is large since modal
attenuation constants would be larger.

IV. ENHANCEMENT OF HARMONIC GENERATION AND
LOW-THRESHOLD OPTICAL BISTABILITY

The efficiency of nonlinear processes generally depends
on local-field intensity. In subwavelength structures the re-
quirement of high-field localization is essential. We now
show the amount of field magnification that can occur in
subwavelength ENZ slabs. In previous sections we have
demonstrated that two different linear phenomena may be
observed in a slab composed of cylindrical nanoshells under
low-damping conditions: (1) an impedance-matching, PB
effect and (2) the presence of narrow resonances mediated
by additional slab modes. In both cases the slab displays
enormous field enhancement accompanied by strong field
localization around the nanoshells, as shown in Fig. 8(b). The
efficiency of harmonic generation is thus expected to increase
significantly. As described in Refs. 10 and 53, homogeneous
ENZ slabs with small Im(εeff) display transmittance spectra
with narrower angular selectivity. In addition we find that the
strong chromatic dispersion of the PB mode wave number
relative to the 2D array of nanoshells (see Fig. 2) leads also
to a pronounced frequency-selective transmission process. In
Fig. 9 we plot the angle-frequency map of the maximum
electric-field EF for the same slab of cylindrical nanoshells
with active gain analyzed in Secs. II and III.

The maximum EF is defined as EF = max[|EENZ(r)|]/E0,

where |EENZ(r)| is the electric-field amplitude inside the ENZ
slab (evaluated by means of full-wave, FEM simulations), and
E0 is the amplitude of the incident plane wave. We have also
verified that a plot of the EF, where EF is now averaged over

FIG. 9. (Color online) Maximum electric-field EF inside the slab
shown in Fig. 1 versus frequency and angle of incidence around the
zero-crossing point of the real part of the effective permittivity.
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each elementary cell, reproduces the same trend shown in
Fig. 9, after replacing the scale maximum with 22 instead of
60. We observe that the peaks of maximum EF follow the
dispersion of the PB mode and the three additional modes in
Fig. 6. For the dye concentration and pump rate used in this
paper, one has a remarkable EF ≈ 60, mainly due to z-polarized
fields. For comparison, we stress that EF ≈ 1 in the absence
of gain in the same range.

A. Boosting SHG from the plasmonic nanoshells at the PB angle

By adopting the hydrodynamic model for free electrons in
the silver nanoshells, the induced current density obeys the
following spatiotemporal differential equation54

∂ J̃f

∂t
= −γf J̃f + ñf e2

m∗ Ẽ + 1

ñf e
[J̃f ∇ · J̃f

+ (J̃f · ∇)J̃f ] − μ0e

m∗ J̃f × H̃ + e

m∗ ∇p̃, (2)

supplemented by the continuity equation ∂ñf /∂t = −e∇ · J̃f .

Here, J̃f is the instantaneous free-electron current density;
γf = 7.284 × 1013 s−1 is the damping coefficient of free
electrons;55 e is the electron charge; m∗ = me = 9.109 ×
10−31 kg is the effective electron mass; μ0 is the vacuum
magnetic permeability; ñf is the instantaneous free-electron
density (n0 = 4.963 × 1022cm−3 being the equilibrium free-
electron density55); H̃ and Ẽ are the magnetic and electric
fields, respectively; and p̃ is the electron gas pressure. Here,
the tilde on top of variables denotes time-domain quantities.
The spatial dependence of the current and electron densities,
the fields, and gas pressure is implicit in Eq. (2). The first two
terms on the right-hand side of Eq. (2) account for the
linear Drude response of conduction electrons; the third term
describes convective forces acting on free electrons; the fourth
term is the magnetic Lorentz force; and the last term is due
to gas pressure. SHG is studied at low input irradiances of
the fundamental field (FF), and so we adopt the undepleted
pump approximation. We postpone the analysis of nonlocal
contributions to Sec. V.

We transform Eq. (2) to the frequency domain by expressing
all variables as a superposition of two components, oscillating
at the fundamental and second-harmonic (SH) frequencies,
as in Refs. 24, 56, and 57. Volume and surface current
contributions at the SH frequency are expressed as functions
of the optical properties of silver and the dielectric in contact
with the metal surfaces. The linear response at the SH
frequency due to free and bound electrons is extracted from
the experimental silver permittivity.33 We first find a solution
for the electromagnetic problem at the FF using the FEM. We
then use the FF field to evaluate the current sources for the
SH field. The problem is solved again with the FEM applied
to a slab that contains four nanocylinders in the z direction
and by limiting the computational space to one period in the x

direction [Fig. 6(a)] by setting Floquet boundary conditions.
Plane-wave-matched ports are used at z = ± 500 nm (z = 0
is the center of the slab). The irradiance of the FF input plane
wave is Iin = √

εh/μ0E
2
0/2 = 100 kW/cm2. SHG efficiency
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FIG. 10. (Color online) (a) Angle-frequency SHG efficiency
map for the ENZ slab with gain. (b) SHG efficiency with and without
gain. The FF is 422.3 THz. The solid red curve is a projection of the
efficiency map along the white dashed line in (a). The dashed black
curve is obtained in absence of gain, assuming ε1 = εh in the cores.

is defined as

ηSH =
∣∣∫ a/2

−a/2 Sz(ωSH)|FWdx
∣∣ + ∣∣∫ a/2

−a/2 Sz(ωSH)|BWdx
∣∣

aIin cos θ
, (3)

where Sz(ωSH)|FW and Sz(ωSH)|BW are the z components
of the SH, time-averaged Poynting vectors in the forward
(transmission) and backward (reflection) regions, respectively,
evaluated just below and above the slab. Hence, it represents
the total power generated at the SH frequency, regardless of
the direction of propagation. In Fig. 10(a) we plot the SHG
efficiency ηSH on a logarithmic color scale as a function of
the FF and angle of incidence. As in the EF map, the SHG
efficiency closely follows the dispersion of the modes of the
slab, i.e., the PB mode and the additional M1–M3 modes. The
efficiency in this angle-frequency domain is relatively large,
given the weak nature of the bulk and surface quadratic, metal
nonlinearities involved, and the relatively modest FF input
irradiance. The absolute maximum of SHG efficiency is ≈10−8

at an incidence angle of ≈12◦, which may be associated to
leaky mode M2. For comparison, this is well over six orders of
magnitudes larger than conversion efficiency obtained for flat
metal surfaces illuminated by TM-polarized light. This result
thus emphasizes the importance of the leaky modes M1–M3
discussed in Sec. III for enhanced harmonic generation, for
which we observe the largest efficiency. In order to understand
the role that damping compensation plays in the harmonic
generation process, it is instructive to compare SHG efficiency
for two slabs, with and without fluorescent dye molecules
inside the cores. We do so in Fig. 10(b), where we report
ηSH as a function of the incident angle in the range 0–30◦ for
two different scenarios that involve a FF tuned at 422.3 THz:
(i) the structure in Fig. 1 and the parameters described in
Sec. II, including the active gain from the fluorescent dye
molecules that leads to very low damping; (ii) the same
structure without gain in the core, i.e., assuming cores’
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permittivity of ε1 = εh, and therefore damping is due to losses
in the metal. The result in Fig. 10(b) shows that low-damping
conditions boost SHG efficiency by nearly four orders of
magnitudes relative to the same structure without gain.

By combining this result with the one in Fig. 10(a) one may
infer that this harmonic generation enhancement is due to the
forced excitation of the PB and the additional modes supported
by the ENZ slab.

B. Optical multistability at the PB angle

For angles of incidence smaller than ≈ 5◦ and frequencies
in the range 420–424 THz, the main response of the ENZ
slab is due to the PB mode, as one may infer by inspecting
either Fig. 5 or Fig. 8(a). In this small angular region, the
homogenization of the slab with an effective medium approach
is valid (Sec. II), since additional modes M1–M3 do not
significantly affect the incident plane wave (Sec. III). In order
to investigate multistability near the PB angle, we consider
the slab described by the homogeneous effective permittivity
reported in Fig. 2, obtained via the NRW retrieval method.
We assume the slab exhibits an effective, cubic, nonlinear
susceptibility χ

(3)
eff = 10−17m2/V2, compatible, for example,

with the nonlinear susceptibility of silver composites and
doped polymers.58 The constitutive relation then includes
self-phase modulation so that the electric displacement field
in the slab is

D = εeffE + ε0χ
(3)
eff |E|2E. (4)

The nonlinear polarization is represented by the second
term on the right-hand side of Eq. (4). There are two
concurrent conditions that trigger low-threshold multistability:
(i) the nonlinear polarization is amplified near the PB angle
thanks to local-field intensity enhancement; (ii) the nonlinear
polarization may easily become the dominant response of the
ENZ slab, as the linear permittivity vanishes.7,59 Multivalued
solutions of transmittance, reflectance, and absorptance at the
fundamental frequency are retrieved by using the graphical
method outlined in Ref. 60. We consider a fixed, small
incidence angle (θ ≈ 2.9◦) and incident frequencies in a region
(420.5–423 THz) that includes the zero-crossing point of
Re(εeff).

The nonlinear transmittance, defined as the ratio of inten-
sities, is plotted in Fig. 11 for three different irradiance levels
Iin. While the transmittance for Iin = 1 W/cm2 is monostable
and nearly overlaps the linear transmittance curve (not shown
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FIG. 11. (Color online) Multistable transmission spectra through
the ENZ slab for three input irradiances.
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FIG. 12. (Color online) (a) Output irradiance and nonlinear trans-
mittance (b) as a function of input irradiance for three different values
of input frequency. A low-threshold switching (Iin≈1 MW/cm2) is
obtained at 421.75 THz.

here for brevity), when Iin = 5 MW/cm2 the spectrum shows a
multistable region between 421.5 and 421.75 THz that widens
further when Iin = 25 MW/cm2. The results in Fig. 11 show
that the input irradiance may be used as a control parameter to
shift the PB angle of the slab, which, in turn, may be employed
as a low-power optical switch. This is illustrated in Figs. 12(a)
and 12(b), where we plot output irradiance Iout and nonlinear
transmittance Iout/Iin as a function of Iin, respectively.

The angle of incidence is set at θ ≈ 2.9◦, Iin varies from
0.1 to 100 MW/cm2, and we consider three input frequencies.
At 421.5 THz, the slab presents a wide hysteresis loop and
the switching threshold is ≈10 MW/cm2. For 421.75 THz,
the hysteresis loop is narrower, and nonlinear transmittance
switches from a low state (<1%) to a high state (nearly
60%) at a much lower irradiance threshold (≈1 MW/cm2). At
422 THz, we do not observe hysteresis or switching. We thus
surmise that in the neighborhood of the PB angle, multistable
behavior of the ENZ slab is very sensitive due to near-zero
values of the linear effective permittivity and the sharp
selectivity of the slab in both frequency and angular domains.

V. IMPACT OF THE INHERENT NONLOCAL RESPONSE
OF THE NANOSHELLS

The ENZ metamaterial slab outlined above was optimized
to boost field enhancement and nonlinear phenomena. In
particular, the amount of damping compensation regulated by
the volumetric dye concentration was tailored to minimize
losses based on a local response from the nanoparticles with
5-nm-thick metallic shells. In this section we return to the
linear properties of the slab and include inherent nonlocal
effects. All nonlinear terms present in the hydrodynamic
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FIG. 13. (Color online) (a) Local (dashed lines) and nonlocal
(solid lines) effective parameters of the ENZ slab retrieved with the
NRW technique. Dynamics of free electrons in the nonlocal model is
treated by using Eq. (5). (b) Local (dashed lines) and nonlocal (solid
lines) effective parameters of the ENZ slab retrieved with the MG
effective medium approximation.

model, Eq. (2), are neglected, while the electron gas pressure
contribution (e/m∗)∇p̃ is retained. If one treats the free-
electron plasma as a Thomas-Fermi gas, one may then link p̃

to the macroscopic polarization and to the free-electron current
density. The nonlocal differential equation for the free-electron
current density is61

3

5
v2

Fermi∇(∇ · Jf ) + (ω2 + iωγf )Jf = iωn0e
2

m∗ E. (5)

We assume the Fermi velocity of free electrons in silver
is vFermi = 1.39 × 106 m/s. Equation (5) is coupled to the
standard Helmholtz equation for the electric field, which ac-
counts for the response of bound electrons.61 As an additional
boundary condition for the current density, required by the
presence of the nonlocal term in Eq. (5), we impose n̂ · Jf = 0
at the two concentric circular boundaries limiting the metallic
shells (see Fig. 1), where n̂ is the unit vector normal to these
boundaries. The effective relative permittivity is then evaluated
with the FEM, using the NRW technique (see Sec. 4 in the
Appendix) with the addition of nonlocal effects as in Eq. (5).
The results are shown in Fig. 13(a) in the frequency range
that includes the Re(εeff) zero-crossing point. For comparison,
we also report the relative effective permittivity (calculated
via NRW) reported in Fig. 2 in the limit of the local theory
for free electrons, i.e., assuming vFermi = 0 in Eq. (5). We
have tested the consistency of these results against a nonlocal
version of MG effective medium approximation that includes
the hydrodynamic pressure term in the metallic nanoshells and
the additional boundary condition n̂ · Jf = 0 in the expression
of the first-order electric scattering coefficient, as described
in Ref. 62 (see the Appendix). The results are shown in
Fig. 13(b), where both the local [same as red line in Fig. 2(a)]
and nonlocal, MG effective permittivities are plotted. The
predictions of the MG approximation are in good qualitative
agreement with those based on the NRW technique. The
main discrepancy between the two models, i.e., a shift of
the zero-crossing frequency of Re(εeff), is because the MG
approximation neglects multipolar contributions and mutual
coupling effects, while the NRW method is based on a full-
wave expansion of the fields, as discussed in Sec. II. Regardless
of the intrinsic differences between the two homogenization

FIG. 14. (Color online) Transmission maps versus frequency and
angle of incidence, using nonlocal (a) and local (b) models. The slab is
homogenized with the NRW technique, including (a) and neglecting
(b) the nonlocal term 3

5 v2
Fermi∇(∇ · Jf ) in Eq. (5).

techniques, we can reach similar conclusions on the nonlocal
effects due to the free-electron gas pressure: we observe a
slight frequency blueshift (≈0.5 THz) of the zero-crossing
point and a significant variation of Im(εeff/ε0) from ∼10−4

to ∼10−2. Both phenomena may be explained by analyzing
the nonlocal behavior of a single cylindrical nanoshell. For
example, a blueshift of the nonlocal scattering cross section
of coated spheres was demonstrated in Ref. 25, using a
semiclassical, infinite-barrier model. A similar blueshift and
near-field quenching of plasmons in dimers and thin metallic
waveguides was predicted in Ref. 26.

Analogous descriptions of inherent nonlocal phenomena
in core-shell nanoparticles can be found in Refs. 27 and
62–64. We ascribe the differences reported in Figs. 13(a)
and 13(b) to the nonlocal blueshift of the cylindrical shell
dipole resonance. The weak, nonlocal perturbation acting on
the single plasmonic resonator is magnified in the array. To
evaluate the macroscopic impact of the nonlocal corrections
on the PB effect of the slab, we compare the angle-frequency
transmittance maps by homogenizing the ENZ slab using
both local and nonlocal NRW models. The result is shown
in Figs. 14(a) and 14(b). While the performance of the ENZ
slab in terms of field enhancement and impedance matching
suffers little as the band blueshifts, the nonlocality increases
effective damping and hinders the beneficial effects of the
active gain in the core. This is inferred from Figs. 14(a) and
14(b), by observing the differences between the transmission
maps evaluated with and without nonlocal contributions. The
detrimental effects of nonlocality manifest themselves as a
decreased transmittance near the PB angle and broadening of
transmittance spectra in both frequency and angular domains.

The narrow resonances mediated by leaky modes M1–M3
[see Fig. 8(a)] are also affected by the inherent nonlocality, as
we have verified using full-wave numerical simulations that
include the nonlocal model [Eq. (5)] for free electrons. In
particular, we recognize two effects related to the increased
damping due to the nonlocality: (i) spectral and angular
broadening of the resonances mediated by the modes M1–M3,
as well as the PB mode and (ii) a decrease of the maximum EF
from ≈60 in the limit of local response for free electrons to ≈15
when the nonlocality is included. This implies a corresponding
decrease of the average EF from ≈22 to ≈4, which directly
impacts nonlinear phenomena by lowering their efficiency.
However, by adopting a simplistic but qualitative description,
one may note that this detrimental effect is due to an increase of
the imaginary part of the permittivity, and in the small detuning
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of the real part of the permittivity so that the magnitude of
εeff/ε0 is slightly larger. Nevertheless, one may still exploit
the main features of the inclusion of gain in the cores to
rebalance the negative effect of nonlocality. For example, in
this particular case, a slight increase of dye concentration from
4.06 × 1018 cm−3 to 4.2 × 1018 cm−3 neutralizes the extra
damping due to electron gas pressure, thus helping to restore
both the effective low-damping ENZ and correspondingly
strong electric field EF to values we predicted in the limit
of the local model.

VI. CONCLUSIONS

We have investigated the field enhancement capabilities
of an ENZ slab illuminated at oblique incidence with TM-
polarized light. The metamaterial is composed of a 2D array
of cylindrical nanoshells. In particular, we consider ENZ
materials with low damping that can be obtained by resorting
to active gain material included in the cores. Low damping
(i) favors impedance matching and electric field enhancement
near the pseudo-Brewster angle of the slab and (ii) triggers
an effective nonlocal response mediated by additional leaky
modes observable as narrow, resonant, Fano-like states in
the angular-frequency transmission or absorption spectra. We
demonstrated that these low-damping induced effects may be
exploited to boost SHG from metallic nanoshells. We also
showed low-threshold optical multistability and switching by
exploiting large field enhancement of the nonresonant, pseudo-
Brewster mode for small angles of incidence. Finally, we
investigated the role of the nonlocal response associated with
free-electron gas pressure, and while we observed lowering
of field EFs near the zero-crossing point, we also found that
the use of an active gain material can compensate additional
damping due to the nonlocality.
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APPENDIX: RETRIEVAL METHODS FOR THE
EFFECTIVE PERMITTIVITY OF THE

METAMATERIAL SLAB

The complex effective permittivity of the structure in Fig. 1
has been retrieved by using the four different methods detailed
below. Comparisons are also provided and discussed in the
main body of the paper.

1. MG effective medium theory

We calculate the polarizability of a single cylindrical
nanoshell by assuming only dipolar contributions. For sub-
wavelength radii, one may replace the nanoshell with an
isotropic line dipole, whose induced dipole moment (in the
x-z plane) is expressed as

p = αeEloc = αe(Einc + Es), (A1)

where αe is the nanoshell electric polarizability, assumed
isotropic in the x-z plane, Eloc is the local field at the
nanoshell location, given by the sum of the incident field Einc =
E0(sin θ x̂ + cos θ ẑ) and the one scattered by all the other
cylindrical nanoshells (Es); θ is the angle of incidence, E0 is
the plane-wave amplitude, and x̂, ẑ are unit vectors in the x and
z directions, respectively. In the dipole approximation, αe =
−i8εhD1/k2

h,65 where kh = k0
√

εh/ε0 is the wave number in
the host medium, k0 is the free-space wave number, εh is the
absolute host permittivity, and D1 is the first-order electric
scattering coefficient. The coefficient D1 is calculated using
Mie theory by imposing matching boundary conditions on
electric and magnetic fields tangential at each interface of
the annular structure. The analytical expression of D1 may
be found in Refs. 65 and 66 within the approximation of the
local theory for free electrons in the metallic shells. However,
the nonlocal hydrodynamic pressure term and the additional
boundary condition n̂ · Jf = 0 on the nanoshells’ boundaries
can be easily included in the Mie theory, as described in
Ref. 62, where the nonlocal corrections to the coefficient D1

are given. Once the polarizability is known, the evaluation of
the absolute effective permittivity of the 2D array follows by
applying the MG mixing rule

εeff = εh

[
1 +

(
εh

N

(
1

αe

+ i
k2
h

8εh

)
− L

)−1]
, (A2)

where N = 1/S is the number of cylinders per surface unit, S is
the area of the unit cell, and L= 1/2 is the depolarization factor
for the circular symmetry of the particle (coated cylindrical
inclusion). Note that in Eq. (A2), we subtract the radiation loss
term −ik2

h/(8εh) from 1/αe (which includes radiation losses)
as suggested in Ref. 67, so as to cancel out radiation damping
for a 2D array with periodicity smaller than λ0/2.

2. QS approximation

The QS retrieval method is described in Ref. 68 and
here briefly summarized. An external, static electric field
EDC is applied to the unit cell of the array, i.e., to the
square domain [−a/2,a/2] × [−a/2,a/2] in Fig. 1. The
electric potential φ(r) is found by solving Poisson’s equation
∇ · [εω(r)∇φ(r)] = 0, where εω(r) is the frequency-dependent
absolute permittivity at position r in the cell. The xx compo-
nent of the effective permittivity tensor εeff,xx is retrieved by
modeling the unit cell as a nanocapacitor and by applying
a static voltage Vx between the two virtual plates at x =
−a/2,a/2. The boundary conditions at z = −a/2,a/2 are
set as Ez,QS = −∂φ/∂z = 0. The capacitance per unit length
is given by Cx = εeff,xx = qo/Vx , where qo, the charge per
unit length on the plate x = a/2, is found by integrating
the charge density σ (z) = −εh∂φ(x,z)/∂x|x=a/2 along z.
Thus, the QS absolute effective permittivity is found by
εeff,xx = ∫ a/2

−a/2 σ (z)dz/Vx . The zz component of the effective
permittivity tensor εeff,zz may be evaluated by applying a
capacitor potential Vz along the z direction and following
the same procedure used for εeff,xx ; however, the nanoshell
symmetry imposes εeff,xx = εeff,zz = εeff .
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3. Complex Bloch-MA

For TM polarization, the Helmholtz equation for the
magnetic field reads as follows:

∇ ·
[

1

ε (r,ω)
∇Hy (r)

]
+ ω2μ (r,ω) Hy (r) = 0, (A3)

where ε(r,ω) = ε(r + R,ω) and μ(r,ω) = μ(r + R,ω) are
periodic functions with lattice translation vector R. The unit
cell of the metamaterial is illustrated in Fig. 1. By applying
Bloch’s theorem, solutions of Eq. (A3) may be written as
Hy(r) = u(r) exp(ikB · r), where kB is the Bloch wave vector
restricted to the first Brillouin zone and u(r) = u(r + R)
is a periodic function. The weighted residual expression of
Eq. (A3), obtained by using Galerkin’s method,69 is integrated
over a closed domain and the divergence theorem is applied
to write the weak formulation of Eq. (A3) according to the
FEM. Once the angular frequency is set and a particular Bloch
wave vector direction v̂ fixed, a quadratic, matrix eigenvalue
equation in kB = kB · v̂ is solved using COMSOL Multiphysics.
Details about this procedure may be found in Refs. 70–72. In
order to retrieve the effective parameters, we first set v̂ = x̂ and

R = x̂a and found the dominant complex Bloch mode, i.e., the
one whose complex kB,d had the smallest imaginary part (for
more details, see Ref. 73). The effective absolute permittivity
corresponding to this mode is calculated as εeff = ε0(kB,d/k0)2,
assuming μeff = μ0.

4. NRW retrieval method

Following Refs. 74 and 75, we consider a slab of finite
thickness along z and an infinite number of periods in the
x direction, as in Fig. 1. Transmission (T ) and reflection (R)
coefficients at normal incidence (θ = 0) are calculated as func-
tions of frequency using the FEM via COMSOL Multiphysics.
The effective absolute permittivity of the slab is

εeff = ε0

{
± 1

k0d

[
cos−1

(
1 − R2 + T 2

2T

)
+ 2πm

]}2

, (A4)

where m = 0,±1,±2, . . . , and d = 4a is the slab thickness.
Equation (A4) is obtained by considering a unitary relative
permeability; m is determined by following the procedure
described in Ref. 76.
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55A. D. Rakić, A. B. Djurišić, J. M. Elazar, and M. L. Majewski,

Appl. Opt. 37, 5271 (1998).
56D. Maystre, M. Neviere, and R. Reinisch, Appl. Phys. A 39, 115

(1986).
57A. Benedetti, M. Centini, C. Sibilia, and M. Bertolotti, J. Opt. Soc.

Am. B 27, 408 (2010).
58A. Ciattoni, C. Rizza, and E. Palange, Opt. Express 19, 283 (2011).

59A. Ciattoni, C. Rizza, and E. Palange, Opt. Lett. 35, 2130 (2010).
60P. Vincent, N. Paraire, M. Neviere, A. Koster, and R. Reinisch,

J. Opt. Soc. Am. B 2, 1106 (1985).
61G. Toscano, S. Raza, A.-P. Jauho, N. A. Mortensen, and M. Wubs,

Opt. Express 20, 4176 (2012).
62S. Raza, G. Toscano, A.-P. Jauho, N. A. Mortensen, and M. Wubs,

Plasmonics (in press), doi: 10.1007/s11468-012-9375-z.
63R. Chang and P. T. Leung, Phys. Rev. B 73, 125438 (2006).
64J. M. McMahon, S. K. Gray, and G. C. Schatz, J. Phys. Chem. C

114, 15903 (2010).
65L. Jingjing and N. Engheta, IEEE Trans. Antennas Propag. 55, 3018

(2007).
66H. Bussey and J. Richmond, IEEE Trans. Antennas Propag. 23, 723

(1975).
67S. A. Tretykov, Analytical Modeling in Applied Electromagnetics

(Artech House, Norwood, MA, 2003).
68Y. A. Urzhumov and G. Shvets, Proc. SPIE 6642, 66420X (2007).
69J.-M. Jin, The Finite Element Method in Electromagnetics (Wiley,

New York, 2002).
70M. Davanco, Y. Urzhumov, and G. Shvets, Opt. Express 15, 9681

(2007).
71C. Fietz, Y. Urzhumov, and G. Shvets, Opt. Express 19, 19027

(2011).
72G. Parisi, P. Zilio, and F. Romanato, Opt. Express 20, 16690

(2012).
73S. Campione, S. Steshenko, M. Albani, and F. Capolino, Opt.

Express 19, 26027 (2011).
74A. M. Nicolson and G. F. Ross, IEEE Trans. Instrum. Meas. 19,

377 (1970).
75W. B. Weir, Proc. IEEE 62, 33 (1974).
76D. R. Smith, S. Schultz, P. Markoš, and C. M. Soukoulis, Phys. Rev.
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