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Strongly correlated dynamics in multichannel quantum RC circuits
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We examine dissipation effects in a multichannel quantum RC circuit, comprising a cavity or single-electron
box capacitively coupled to a gate and connected to a reservoir lead via several conducting channels. Depending
on the engineering details of the quantum RC circuit, the number of channels contributing to transport varies, as
does the form of the interchannel couplings. For low-frequency ac transport, the charge-relaxation resistance (Rq )
is a nontrivial function of the parameters of the system. However, in the vicinity of the charge-degeneracy points
and for weak tunneling, we find as a result of cross-mode mixing or channel asymmetry that Rq becomes universal
for a metallic cavity at low temperatures, and equals the unit of quantum resistance. To prove this universality,
we map the system to an effective one-channel Kondo model, and construct an analogy with the Coulomb gas.
Next, we probe the opposite regime of near-perfect transmission using a bosonization approach. Focusing on the
two-channel case, we study the effect of backscattering at the lead-dot interface, more specifically, the role of
an asymmetry in the backscattering amplitudes, and make a connection with the weak-tunneling regime near the
charge-degeneracy points.
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I. INTRODUCTION

The manipulation of mesoscopic systems to engineer
quantum circuits has immense potential for future applications.
These unique systems exhibit a spectrum of novel phenomena
which necessitates a better understanding of their dynamics.
Technological advances have provided the means to couple
these systems to capacitive gates, thereby enabling detailed
exploration of electronic transport at the nanoscale.

In particular, the phenomenon of Coulomb blockade offers
an excellent tool for the observation of interaction effects at the
nanoscale1–3 and has become one of the cornerstones of mod-
ern condensed-matter physics. One of the simplest mesoscopic
systems exhibiting Coulomb blockade is the single-electron
box (quantum dot), and almost two decades have elapsed
since the first experimental evidence of macroscopic charge
quantization.4 Quantum coherence and interaction effects
drastically affect the properties of these systems. In fact, dissi-
pation and resistance in single-electron boxes have recently
sparked a growing attention in several parametric regimes
both theoretically5–17 and experimentally.18–21 Specifically,
the linear charge response to a gate voltage oscillation for
single-electron devices has gained considerable attention.

In this paper, we investigate a multichannel version of
the quantum resistance-capacitance (RC) circuit. A possible
realization of this system involves a Coulomb-blockaded
quantum dot coupled via a quantum point contact to a
two-dimensional electron gas, which is in turn capacitively
connected to a backgate (see Fig. 1). By tuning the opening
of the quantum point contact22–27 through an auxiliary gate
voltage, one can suitably control the number of conduction
channels transmitted through the cavity. Here, we examine
the low-frequency behavior of the charge-relaxation resistance
in the cavity, in the limit of low temperatures such that
quantum coherence is preserved.5,6 For a small box, the role
of coherence in charge quantization for a box consisting of

noninteracting electrons has been studied.28 In this work, we
investigate the role of Coulomb interactions in the charge
quantization of the multichannel quantum RC circuit in the
opposite regime of a large dot. For a single conducting
channel (mode), the relaxation of the charge on the dot when
subject to an ac drive voltage has been studied by Büttiker
et al.5–7 The authors predicted the universality of the charge-
relaxation resistance (Rq) in the context of a small (coherent)
cavity, where the Coulomb interactions have been treated
within the Hartree-Fock approximation. The quantum RC
circuit has been realized experimentally in a two-dimensional
electron gas, and the predicted charge-relaxation resistance
Rq = h/(2e2) has been confirmed.18,19,21

Recently, the robustness of this value of quantized resis-
tance in the presence of interactions in the cavity has been
rigorously proved.10,11 It has been shown that there is a
mesoscopic crossover of the charge-relaxation resistance from
Rq = h/(2e2) to Rq = h/e2 as the size of the quantum dot is
increased.10 The value Rq = h/e2 for a large (metallic) cavity
in the vicinity of a charge-degeneracy point has been obtained
via an analogy with the Kondo model29,30 and is a consequence
of the emergent Fermi liquid ground state.13,31–33 In this
regime, an electron entering into the cavity is disentangled
from an electron escaping the cavity. This unit of resistance
can be viewed as two Sharvin-Imry contact resistances in
series. The charge-relaxation resistance effectively captures
interaction effects in a variety of exotic systems, such as
fractional quantum Hall edge states,10,11,34 the Anderson
impurity model,11,13 and topological insulator edge states,35

all of which can be used to construct a quantum RC setup. The
dynamical charge response in the case of a Majorana Coulomb
box has also been analyzed.36,37

For a metallic cavity, increasing the number of conducting
channels through the constriction causes the transport away
from the charge-degeneracy points to deviate from h/e2, and
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FIG. 1. (Color online) Schematic of a multichannel quantum RC
circuit with M = 3 and N = 2, where M denotes the number of
channels in the lead and N denotes the number of channels in the
dot. All the possible lead-dot couplings are depicted by black lines.
The ac drive is capacitively coupled to the single-electron box. The
geometric capacitance Cg is to be distinguished from the mesoscopic
capacitance C0 of the quantum RC circuit.

the value of Rq is very sensitive to the engineering details of
the system. The central message of this paper is that close
to the charge-degeneracy points, however, when the tunneling
couplings are weak, the charge-relaxation resistance becomes
universal and is in fact independent of the number of channels.
To prove this result, we project out states apart from those
in the immediate vicinity of the charge-degeneracy point and
reformulate the problem in terms of a pseudospin,38–42 and
show via an analogy with the Coulomb gas43,44 that the system
can be mapped to the single-channel anisotropic Kondo model.

The dynamics of the system in the opposite regime of
perfect or near-perfect transmission, i.e., strong tunneling, can
be studied using bosonization techniques. Adopting a general-
ization of well-known bosonization methods10,39,40,45–47 to N
channels, we show that Rq is nonuniversal. For reflectionless
channels with equal tunneling amplitudes, Rq = h/(N e2).
We focus on the special case N = 2, and study the effect
of backscattering, in particular asymmetry in the reflection
amplitudes, on the value of Rq . For the Coulomb-blockaded
dot, the charge on the dot is pinned. We analyze the effect
of charge fluctuations in the dot on the value of Rq for weak
backscattering at the dot-lead interface. We show that a second-
order calculation in the backscattering amplitudes, valid at
high temperatures and frequencies, does not correct this value
of Rq . However, based on renormalization group arguments,
we conclude that the value h/e2 of Rq reemerges at low
energies, where the system flows to strong backscattering, in
agreement with the weak-tunneling analysis. More precisely,
the system can be mapped onto an anisotropic two-channel
Kondo model at the Emery-Kivelson line.48 An asymmetry
in the backscattering amplitudes near the charge-degeneracy
point causes the system to flow to a one-channel Kondo model
at low energies, since the channel with a stronger (bare)
backscattering amplitude is eventually perfectly reflected and
pinched off.40

In a different context, the variation of Rq of a Coulomb box
for a Landau-Zener sweep of the gate voltage has been studied
by mapping the system to a dissipative particle confined to
a ring.14,15 For this out-of-equilibrium situation, it has been
shown that when a quantum of magnetic flux is passed through
the ring, the average of the relaxation resistance R̄q = h/e2.

The remainder of the paper is organized as follows.
In Sec. II, we present our results away from the charge-
degeneracy points via a perturbative expansion in the tunneling
Hamiltonian following Ref. 10. In Sec. III, we discuss the un-
derlying Kondo physics in the vicinity of a charge-degeneracy
point and formulate an analogy with the Coulomb gas.43,44 In
Sec. IV, we briefly address the situation at and close to perfect
transmission. Appendices are devoted to technical details and
mathematical derivations.

II. WEAK-TUNNELING ANALYSIS AWAY FROM THE
CHARGE-DEGENERACY POINTS

The Hamiltonian of the system is given by

H =
∑
kα

εk d
†
kαdkα +

∑
pβ

εp c
†
pβcpβ + Ec(N̂ − N0)2

+
∑
kpαβ

tαβ(d†
kαcpβ + c

†
pβdkα). (1)

Here, the subscripts α(=1, . . . ,N ) and β(=1, . . . ,M) denote
the channel index in the dot and lead, respectively. At a
general level, the channel (mode) index can also account for
spin degrees of freedom keeping in mind that in the absence
of spin-flip mechanisms, tunneling between different spin
projections is inadmissible. The relative tunneling strengths
of the spin channels can, however, be varied by applying an
in-plane magnetic field.49 Hereafter, we consider the limit of
large metallic cavity with a dense spectrum of energy levels.
The single-electron eigenfunctions of the two-dimensional
system and the quantum dot are labeled by the indices p and
k, respectively. The charging energy of the dot is expressed in
terms of the charge operator

Q̂ = eN̂ = e
∑
kα

d
†
kαdkα (2)

on the dot and N0 = CgVg/e is imposed by the gate voltage
(see Ref. 10). We allow for a variety of interchannel and
intrachannel tunneling amplitudes (tαβ), depending on how the
system is engineered. Note that in the following, we work at
very low temperatures (T → 0) in order to preserve quantum
coherence.

In this section, we derive the dependence of the relaxation
resistance Rq on the number of channels (M,N ) in the limit of
weak-tunneling and away from the charge-degeneracy points
of the dot. We assume that the charging energy Ec is the most
dominant energy scale, which implies the Coulomb-blockade
limit.3 The computation is a generalization of the scheme
presented in Ref. 10. In this regime, it is useful to group the
terms in the Hamiltonian as follows:

H = H ′ + HT, (3a)

where we have defined

H ′ =
∑
kα

εk d
†
kαdkα +

∑
pα

εp c
†
pβcpβ + Ec(N̂ − N0)2,

(3b)

HT =
∑
kpαβ

tαβ(d†
kαcpβ + c

†
pβdkα), (3c)
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and treat the tunneling term HT as a perturbation. The channels
of the dot are denoted by α(=1, . . . ,N ), whereas for the lead
it is given by β(=1, . . . ,M). We study the ac response of the
circuit using linear response theory. The gate voltage can be
separated into its ac and dc components

Vg(t) = Vg0 + Vg1(t). (4)

In the presence of a small time-dependent perturbation of the
gate voltage, the charge on the dot Q = e〈N̂〉 obeys

Q(ω) = e2K̃(ω)Vg(ω), (5)

where the retarded response function, following standard
linear response theory

K̃(t − t ′) = iθ (t − t ′)〈[N̂(t),N̂(t ′)]〉, (6)

measures the charge fluctuation induced by the ac component
of the gate voltage. In the absence of electron tunneling, the
cavity charge in the ground state is 〈N̂〉 = N∗ and does not
fluctuate, hence K̃ = 0. We are at freedom to set N∗ = 0.
Assuming weak tunneling, the charge fluctuations on the cavity
are determined using perturbation theory in HT. At T = 0, the
retarded and the time-ordered Green’s functions have a simple
relation in frequency domain, so we instead compute

K(t − t ′) = i〈Tt [N̂ (t)N̂(t ′)]〉. (7)

We use the perturbative expansion in the interaction picture

K(t) = i〈Tt [N̂I (t)N̂I (0)]〉

= i
〈φGS|Tt [N̂I (t)N̂I (0)UI (∞,−∞)]|φGS〉

〈φGS|Tt [UI (∞,−∞)]|φGS〉 . (8)

Since the unperturbed Hamiltonian H ′ is not quadratic, Wick’s
theorem is not applicable. We therefore expand the evolution
operator

UI (∞,−∞) =
∞∑

n=0

(−i)n
∫ ∞

−∞
dt1

∫ t1

−∞
dt2

· · ·
∫ tn−1

−∞
dtnHT(t1)HT(t2) · · · HT(tn) (9)

in powers of HT(t) = eiH ′tHT(0)e−iH ′t . In the ground state,
N̂ |φGS〉 = 0. Thus, the zeroth- and first-order contributions to
K(ω) vanish. The leading-order contribution arises at second
order. Using equations of motion, the time-evolved electron
annihilation operators can be expressed as

cpβ (t) = e−iεpt cpβ, (10)

dkα(t) = e−i[εk+EC (2N̂−2N0+1)]t dkα. (11)

The charge-relaxation resistance at low frequency is given
by the expression

Q(ω)

Vg(ω)
= C0(1 + iωC0Rq) + O(ω2), (12)

the details of which are given in Appendix A. The mesoscopic
capacitance C0, which is distinct from the geometrical capac-
itance Cg , in the weak-tunneling limit gives

C0 = ν0ν1Cg

1/4 − N2
0

∑
αβ

t2
αβ, (13)

where ν0 and ν1 represent the density of states in the lead and in
the metallic cavity, respectively. Here, we have retained terms
to second order in HT. A fourth-order computation HT allows
us to extract the leading-order dissipative (purely imaginary)
contribution to the function K(ω) in Eq. (5). Thus, we obtain

Rq = 2πh̄

e2

[∑
α1β1
α2β2

tα1β1 tα2β1 tα2β2 tα1β2( ∑
αβ t2

αβ

)2

]
. (14)

This illustrates that, in general, away from the charge-
degeneracy points, i.e., for N0 �= 1

2 , the charge-relaxation
resistance Rq is not universal as it depends on the engineering
details of the system. For the case of diagonal couplings
tαβ = tαδαβ (N = M), Rq reduces to the nonuniversal result

Rq = h

e2

[ ∑
α t4

α( ∑
α t2

α

)2

]
. (15)

It should be noted that in the case of (almost) isotropic diagonal
couplings, i.e., tα = t , the quantum RC circuit becomes
dissipationless in the limit N → ∞ as Rq = h/(e2N ). This
value demonstrates the violation of Kirchhoff’s law, which in
contrast predicts that Rq would be inversely proportional to
the sum of the transmission probabilities18,19 and is a direct
consequence of the quantum (phase) coherence.

We remark that for the special case when the transmis-
sion probability of a single channel dominates, i.e., t1 	
{t2, . . . ,tN } one recovers the value Rq = h/e2.

III. KONDO MODEL AND COULOMB GAS NEAR THE
CHARGE-DEGENERACY POINTS

The weak-tunneling analysis of Sec. II leads to the
surprising conclusion that for the case of large interchannel
mixing Rq = h/e2, i.e., a reemergence of the unit of resistance.
This follows directly from Eq. (14) if we take the amplitudes
of the tunneling matrix to be approximately of equal strength,
i.e., tαβ ≈ t . It is possible to reformulate the quasiparticles of
the dot and lead (individually) in terms of the totally symmetric
combination of the modes and additionally construct N − 1
and M − 1 mutually orthonormal modes, respectively. In this
new formulation, tαβ = t is the condition for perfect reflection
of the additional N − 1 and M − 1 modes, respectively, and
effectively only a single channel (the totally symmetric mode)
is transmitted. The value Rq = h/e2 is a consequence of this
emergent one-channel quantum RC circuit.

Due to the strong Coulomb blockade in the vicinity of a
charge-degeneracy point N0 = n + 1

2 (n ∈ Z), we can project
out all charge states other than those corresponding to n and
n + 1, which then mimic a spin- 1

2 particle.38 We show that this
gives rise to an emergent one-channel Kondo model and also
arrive at this result by mapping the system to the Coulomb
gas.43,44

A. Mapping on a Kondo model

For the Coulomb-blockaded dot near the charge-degeneracy
points N0 = n + 1

2 , the effective Hamiltonian of the system
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can be written as38

H =
∑
kα

εkd
†
kαdkα +

∑
pβ

εpc
†
pβcpβ − hzSz

+
∑
kpαβ

tαβ(d†
kαcpβS− + c

†
pβdkαS+). (16)

The effective magnetic field hz = e[N0 − (n + 1
2 )]/Cg de-

notes the deviation from the charge-degeneracy points38 and
is assumed to be small compared to Ec = e2/2Cg . Let us
consider purely diagonal couplings, i.e., for tαβ = tαδαβ (N =
M). It is straightforward to see from Eq. (16) that one recovers
the anisotropic N -channel Kondo model

H =
∑
kα

εkdkαdkα +
∑
pβ

εpc
†
pβcpβ − hzSz

+
∑
kpα

tα(d†
kαcpαS− + c†pαdkαS+). (17)

We introduce a pseudospin index (σ = ↑,↓) which denotes the
position of a particle in the system, reservoir lead (↑) versus
cavity (↓). Furthermore, defining dkα = ak↑α and cpα = ak↓α ,
we can rewrite the Hamiltonian of the system as

Hdiag =
∑
kασ

Ekσ a
†
kσαakσα − hzSz

+
∑
kpα

tα(a†
k↑αak↓αS− + a

†
k↓αak↑αS+), (18)

which is precisely an N -channel Kondo model with J⊥α = tα
and J||α = 0.50–55 Here, we assume that Ek↑ = εk = Ek↓. A
small deviation from the resonance condition plays the role of
a magnetic field, leading to a Zeeman term in the Kondo model.
This equivalence with the N -channel Kondo model leads to
the value Rq = h/(N e2) and corroborates the prediction of
Eq. (15) in the weak-tunneling limit away from the charge-
degeneracy points. The two-channel situation has been studied
in detail by two of us.36

As emphasized in Ref. 41, the general situation in the
single-electron box is fairly intricate. In particular, cross-
mode (channel) tunneling is a relevant perturbation which
leads the system ultimately to a one-channel Kondo fixed
point in the case of spin-polarized electrons. This follows
from the low-temperature effective Hamiltonian given by
Eq. (16), which predicts the emergence of a unique effective
tunneling mode in the lead and the electron box. The other
modes are perfectly back-scattered when the interchannel
and intrachannel couplings are identical. Deviations from this
condition cause partial transmission of these other M − 1
and N − 1 channels, respectively, and lead to corrections of
Rq . However, renormalization group analyses show that these
perturbations are irrelevant, and for low energies the value
of Rq is stable.41 The energy scale ∗, which determines the
crossover from theN -channel to one-channel regime, depends
on the precise form of the tunneling amplitudes. When the
off-diagonal elements are small and/or sparse, the onset of the
effective one-channel behavior is further delayed, i.e., one has
to go to lower temperatures to measure Rq = h/e2.

In Fig. 2, we show the variation of the dc conductivity of the
multichannel quantum RC circuit, as a function of temperature.

FIG. 2. (Color online) Renormalization of the dc conductance for
a multichannel quantum RC circuit (M = N = 5) with decreasing
temperature, at the charge-degeneracy point. We consider randomly
generated couplings (unrestricted) and eliminate progressively the
interchannel couplings, starting with the farthest channels (four-
channel mixing) until all the interchannel couplings are removed (no
channel mixing). The random couplings are normalized according to
the degree of channel mixing, such that g(0) = 0.5. The dotted curve
corresponds to the unitary limit of the Kondo model.

The conductivity G(T ) = 4π2e2

h
g, where g[ln(Ec/T )] is a

dimensionless parameter, has been numerically obtained using
the scaling equations in Ref. 41. We fix the number of
channels N = M = 5 in Fig. 2, and consider a randomly
generated set of tunnel couplings (magenta curve). Using this
matrix of tunneling amplitudes, we then restrict ourselves
to only the diagonal values (blue curve), setting all the
off-diagonal entries to zero. The tunneling amplitudes are
globally scaled such that g(0) = 0.5, corresponding to T =
Ec. Following this procedure, we then allow off-diagonal
diagonal elements representing mixing of adjacent channels
(green curve). We then include the elements corresponding to
mixing of adjacent and next-to-adjacent channels (red curve),
and ultimately additionally include the terms represented
cross-mode tunneling of next-to-next-to-adjacent channels
(gray curve). From Fig. 2 it can be seen that the system behaves
identically to an effective one-channel quantum RC circuit,
at low temperatures. Asymmetry in tunneling amplitudes
and/or interchannel mixing are the factors responsible for this
emergent one-channel behavior. As apparent from the curves,
introducing greater intermode couplings increases the energy
scale ∗ (given by the minima of the curves) at which the
system crosses over to the one-channel regime. The (black)
dotted lines correspond to the unitary limit of the one-channel
Kondo model. The effective Kondo temperature T ∗

K (Ref. 56) is
the point at which the curve converges to the unitary limit. For
purely diagonal and equal couplings, the system is equivalent
to the N -channel Kondo result. The crossover energy scale ∗
as a function of the number of channels has been studied41 and
shown to be suppressed as the number of channels is increased.

The one-channel Kondo fixed point is stable, whereas the
N channel is unstable, and a deviation from the condition
tαβ = tδαβ causes the system to flow away from theN -channel
fixed point. This implies that the quantized resistance unit
Rq = h/e2 may be observable in a multichannel quantum RC
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circuit, if it is possible to access the energy regime below ∗
experimentally.

Deviations from the charge-degeneracy point, i.e., an
effective magnetic field in the pseudospin language, may
inhibit the onset of the effective one-channel behavior. It is
a relevant perturbation and the renormalization flow needs to
be stopped when the cutoff (temperature) equals the effective
magnetic field, a condition determined self-consistently.41 If
this happens before the crossover to the one-channel regime,
then the universality of Rq is killed. The variation of Rq for
the case of an infinitesimal field, such that the energy scale lies
between TK and ∗, has been studied perturbatively and the
one-channel result has been confirmed.57 However, the value
of Rq precisely at the step, i.e., below TK , remains an open
question.

B. Connection with the Anderson-Yuval expansion

In the previous section, we showed that below the energy
scale ∗, the multichannel quantum RC circuit near a charge-
degeneracy point is equivalent to a one-channel Kondo model.
Here, we provide a transparent way to better understand the
connection of the quantum RC circuit with the one-channel
Kondo model, based on an analogy with the Coulomb gas.43,44

We assume that a strong Coulomb blockade exists in the
quantum dot, and for the sake of simplicity restrict ourselves
to the charge-degeneracy point. Deviations from this point,
assuming that the Zeeman energy is negligible compared
to Ec, can be readily incorporated. However, this makes
the mathematical details significantly more complex without
being more illuminating, and will hence be ignored for the
sake of clarity. Using the Hamiltonian in Eq. (1), we can write
the partition function as the imaginary-time functional integral

Z =
∫

[Dd̃][Dc̃]e−S, (19)

where the action

S =
∫ β

0
dτ

[∑
kα

¯̃dkα[∂τ + εk]d̃kα + Ec(N̂ − N0)2

+
∑
pβ

¯̃cpβ [∂τ + εp]c̃pβ + t
∑
kpαβ

( ¯̃cpβd̃kα + ¯̃dkαc̃pβ)

]
.

(20)

In the above action, we have assumed that we are below the
energy scale ∗. In this regime, it is possible to select an
appropriate unitary transformation of the degrees of freedom
of the system {ckα,dpβ} → {c̃kα,d̃pβ}, such that the channel
mixing is maximal (tαβ = t) in terms of these effective degrees
of freedom.

Introducing the Hubbard-Stratonovich variable V (τ ) via
the identity

∫
[DV ] exp[− ∫ β

0
V 2

4Ec
dτ ] = 1, the quartic term in

the d̃kα operators can be absorbed by the transformation

V (τ ) → V (τ ) + 2iEc(N̂ − N0), (21)

such that

Z =
∫

[Dd̃][Dc̃][DV ]e−S̃ . (22)

Here, the transformed action

S̃ =
∫ β

0
dτ

[∑
kα

¯̃dkα[∂τ + εk + iV ]d̃kα + V 2

4Ec

− iN0V

+
∑
pβ

¯̃cpβ[∂τ + εp]c̃pβ + t
∑
kpαβ

( ¯̃cpαd̃kβ + H.c.)

]
.

(23)

The variable V (τ ) can be expanded in terms of its Fourier
components V (τ ) = 1

β

∑
Vmeiνmτ , where νm = 2πm

β
denotes

bosonic Matsubara frequencies. The zero mode V0 can be
pinned to the values 2nπ , where n ∈ Z, and its fluctuations
neglected.58 We define the field φn(τ ) = ∫ τ

0 Vn(τ ′)dτ ′ such
that it satisfies the boundary condition φn(τ + β) = φn(τ ) +
2πn. Transforming

d̃kα(τ ) → d̃kα(τ ) exp [−iφn(τ )] , (24)

we decouple N (τ ) and V (τ ), while preserving the antiperiod-
icity dkα(τ + β) = −dkα(τ ). Thus, we obtain

Z =
∞∑

n−∞

∫
[Dd̃][Dc̃][Dφn]e−S , (25)

where the transformed action is given by

S =
∫ β

0
dτ

[∑
kα

¯̃dkα[∂τ + εk]d̃kα + 1

4Ec

(∂τφn)2 − iN0∂τφn

+
∑
pβ

¯̃cpβ[∂τ + εp]c̃pβ + t
∑
kpαβ

( ¯̃cpαd̃kβe−iφn + H.c.)

]
.

(26)

Integrating the topological term N0∂τφ over (imaginary) time
we obtain

Z =
∞∑

n=−∞
ei2πnN0

∫
[Dd̃][Dc̃][Dφn] exp[−S]. (27)

We separate the terms in the action as S = Sel
0 + S

φ

0 + Sint,
where we define

Sel
0 =

∫ β

0
dτ

[∑
kα

¯̃dkα[∂τ + εk]d̃kα +
∑
pβ

¯̃cpβ[∂τ + εp]c̃pβ

]
,

(28)

the action for noninteracting electrons in the lead and dot, the
kinetic energy of the field φ

S
φ

0 =
∫ β

0
dτ

1

4Ec

(
∂φn

∂τ

)2

, (29)

and finally the interaction term

Sint =
∫ β

0
dτ t

∑
kpαβ

( ¯̃cpβd̃kαe−iφn + H.c.). (30)

Expanding the partition function in powers of Sint, and
subsequently transforming to the charge representation, we
integrate out the fermionic degrees of freedom. The existence
of a strong Coulomb blockade together with the fact that we
confine ourselves to the vicinity of the charge-degeneracy
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point allows us to project out the other charge states which
are energetically distant. This leads to the partition function of
the well-known Coulomb gas43,44

Z =
∞∑
l=0

(ν0ν1t
2NM)l

∫ β

0

dτ1

τc

∫ τ1−τc

0

dτ2

τc

· · ·
∫ τ2l−1−τc

0

dτ2l

τc

× exp

[
2
∑
i<j

(−1)i+j ln

∣∣∣∣τi − τj

τc

∣∣∣∣
]

. (31)

Details of this procedure are included in Appendix B. Here,
the ultraviolet cutoff 1/τc is formally identified to be ∗.

To make a direct connection with the Kondo mapping in the
previous section, we could have alternatively rewritten Eq. (20)
in terms of the totally symmetric mode and N − 1 and M − 1
modes in the dot and lead, respectively. The charging-energy
term is given exclusively in terms of the totally symmetric
mode, and the Coulomb repulsion term enforces the projection
to the two charge states near the charge-degeneracy point. The
Coulomb gas expansion follows directly from this fact. This
Coulomb gas representation allows us to prove that at energy
scales smaller than Ec, the effective model for a quantum RC
circuit with maximal interchannel mixing, is the one-channel
Kondo model.

In the complete absence of channel mixing, i.e., diagonal
tunneling matrix elements, rewriting the partition function as a
cumulant expansion in HT and retaining terms to second order
yields the well-known effective action for the single-electron
box in terms of a dissipative particle on a ring.59–65 The key
ingredient in this mapping is the fact that higher orders in
the cumulant expansion are suppressed by factors of at least
O(1/N ).

For large N , this furnishes a natural hierarchy of relevant
terms, and in the N → ∞ regime all other terms become
completely irrelevant. This is in contrast to the case where
channel mixing or anisotropy in the tunneling amplitudes is
present, where no such ordering is possible. Defining κ =
(ν0ν1t

2NM), all terms in the cumulant expansion in κ are of
O(1) in N and M, once κ is held fixed.

IV. CLOSE TO PERFECT TRANSMISSION

We now address the regime opposite to that in Sec. III,
i.e., a Coulomb-blockaded dot near-perfect transmission. In
Sec. IV A, we study the perfect transmission limit, where the
system can be exactly solved. We introduce the notation and
find the general expression for Rq and C0 for N channels. We
then focus (Sec. IV B) on the case of a single (orbital) channel
of spinful fermions, where we use an intuitive description of
the system in terms of spin and charge degrees of freedom,
and introduce weak backscattering at the dot-lead interface. In
the absence of spin-flip mechanisms, tunneling between
opposite spin projections is not possible and the the tunnel
couplings are diagonal. We extend the results of Ref. 36,
which treats the case of perfectly symmetric channels,66,67

to include an asymmetry in the backscattering amplitudes.
Such an anisotropy in the backscattering amplitudes for
a single (orbital) channel of spinful fermions can be
introduced by applying an in-plane magnetic field.49 At high
energies, we treat perturbatively renormalization effects of

the backscattering amplitudes, and show that the value of
Rq remains unaltered. Lowering the energy cutoff leads to
nonuniversal corrections and we conclude that in the low-
energy limit, one of the channels is pinched off and the system
flows to a single-channel Kondo model.40 Here, Rq equals the
unit of quantum resistance, and near the charge-degeneracy
point the physics is identical to the one-channel Kondo model
obtained in the weak-tunneling regime discussed in Sec. II.

A. Perfectly transmitting channels

It is convenient to describe the system using a bosonization
approach following Refs. 45 and 46. The coordinates of this
one-dimensional system are chosen such that the lead occupies
the semi-infinite line x ∈ (−∞,0). The dot extends from x = 0
to L. We consider the situation when the level spacing of
the dot  = (πvF )/L goes to zero, which implies that L →
∞. In this limit, electrons entering and leaving the dot are
uncorrelated. For a concrete analysis, we focus on the case with
two conducting channels. We bosonize the total Hamiltonian
H = Hk + Hc + Hbs (Refs. 68–71) (for an excellent survey on
the subject and details of the notation used, see Ref. 39). Here,
we assume that the channels are perfectly transmitting. The
role of backscattering will be investigated in the next section.

The kinetic term takes the form40,46

Hk = vF

2π

∫ +∞

−∞
dx

∑
i=1,2

{[∂xφi(x)]2 + [∂xθi(x)]2}. (32)

Here, vF is the Fermi velocity which is obtained by linearizing
the energy spectrum around the Fermi points. The ultraviolet
cutoff 1/a denotes the extent around kF up to which the
spectrum can be linearized. We note that the bosonic field
operators φi(x) and θi(x) obey the usual commutation relations

[φi(x),θj (y)] = iπ

2
sgn(x − y)δij . (33)

In particular, the total electron charge on the cavity becomes
Q̂ = (1/π )[φ1(0) + φ2(0)] such that the charging Hamiltonian
takes the form40,46

Hc = Ec

π2

( ∑
i=1,2

φi(0) − πN0

)2

, (34)

and N0, which is related to the gate voltage, has been
introduced earlier in Sec. II. For electrons in the cavity, we
choose φi(∞) = 0 which fixes the charge on the dot to be
zero when N0 = 0. Here, the two conducting modes can refer
to the two spin polarizations of the electron or two-electron
channels. In either case, it is then natural to introduce the
charge and (pseudo)spin modes φc,s = [φ1(0) ± φ2(0)]/

√
2.

At perfect transmission, we can omit the spin part of the
Hamiltonian and integrate out the charge fields except the one
at x = 0, which results in the following action:

Sc
0 =

∑
ωn

|φ̂c(0,ωn)|2
(

|ωn| + 2Ec

π

)
. (35)

Here, we have defined the shifted charge field φ̂c(0,ωn) =
φc(0,ωn) − πN0 in order to make the action independent of
N0. From the Green’s function of the charge mode φc(0,ωn),
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one can easily evaluate the function K(t) in Eq. (7) and obtain

Q̂

Vg

= Cg

1 − iωπ
2Ec

. (36)

Above, we have chosen units in which h̄ = 1. Comparing the
low-frequency expansion of Eq. (36) with Eq. (12), this results
in

Rq = h

2e2
. (37)

At a general level, for a large cavity and a number N of
perfectly conducting channels, one finds Rq = h/(N e2). In
Sec. III, we showed that the presence of channel mixing
and/or asymmetry in the tunneling amplitudes causes Rq to
be universal and equals the unit of resistance h/e2. In the
remainder of this section, we study the effect of backscattering
on Rq ; in particular, we investigate the role of asymmetry of
the backscattering amplitudes on the relaxation resistance.

B. Weak-Backscattering and two-channel Kondo physics

A deviation from the perfect transmission condition is
captured by the backscattering Hamiltonian40

Hbs = 1

πa

∑
i=1,2

|λi | cos [2φi(0)] . (38)

In terms of the charge and spin fields, this can be recast as

Hbs = 1

πa

∑
i=1,2

|λi | cos (
√

2(φc + ηiφs)), (39)

where we have introduced η1 = 1 and η2 = −1. Defining λ =
|λ1| + |λ2| and δλ = |λ2| − |λ1|, we can rewrite Eq. (39) as

Hbs = 1

πa
[λ cos(

√
2φ̂c − πN0) cos(

√
2φs)

+ δλ sin(
√

2φ̂c − πN0) sin(
√

2φs)]. (40)

In the Coulomb-blockade regime, the shifted field φ̂c is pinned
to zero. To be mathematically rigorous, we adopt a coherent-
state functional integral approach in the ensuing treatment.
The reader is to assume that the various transformations are
implemented in the action and not at the level of operators.

We define the energy scales �+ = 2
vF

( λ cos(πN0)√
2πa

)2 and �− =
2
vF

( δλ sin(πN0)√
2πa

)2. A physical interpretation of these energies in
terms of lifetimes of Majorana fermions is discussed later
in this section. To study the low-energy physics, following
Ref. 36, we introduce an intermediate energy scale �, such
that max{�+,�−} � � � Ec. We then integrate out the high-
energy contribution � < ω < Ec to the charge mode, such that
the resultant action still effectively describes the interaction
between charge and spin modes at the energy scales of �±.
This amounts to replacing the factor cos(

√
2φ̂c − πN0) with

cos
(√

2φ̂l
c − πN0

)
e−〈φ̂c(τ )φ̂c(τ )〉ε>�, (41)

where φ̂l
c contains the low-energy fluctuations of the charge

field. In this regime, we can expand the backscattering terms

in powers of φ̂l
c, and approximate

cos
(√

2φ̂l
c − πN0

)
≈ cos(πN0) +

√
2 sin(πN0)φ̂l

c − cos(πN0)
(
φ̂l

c

)2

:= cos(πN0) +
√

2πaĈ+, (42)

sin
(√

2φ̂l
c − πN0

)
≈ − sin(πN0) +

√
2 cos(πN0)φ̂l

c + sin(πN0)
(
φ̂l

c

)2

:= − sin(πN0) +
√

2πaĈ−. (43)

We define the dimensionless backscattering amplitudes r1,2

via the relation

λ1,2 = r1,2

√
2avF ECγ

π
. (44)

In other words, we set 〈φ̂c(τ )φ̂c(τ )〉ε>� � ( 1
2 ) ln(ωDπ/2Ec),

where ωD = vF /γ a, γ being the Euler-Mascheroni constant.
In the ensuing analysis, we implicitly assume φ̂l

c to be small.
Since the charging energy Ec is assumed to be much larger than
the backscattering amplitudes, the dynamics of the spin field
are completely captured by the pinned charge field φ̂l

c . Next, we
compute corrections to Rq due to charge fluctuations and study
the role of an asymmetry in the backscattering amplitudes.

The spin part of the Hamiltonian can be treated exactly
by refermionizing the field φs using the procedure outlined in
Ref. 40. The kinetic part of the Hamiltonian can be written
as the sum of its charge and spin parts, i.e., Hk = Hc

k + Hs
k .

Rewriting Hc
k as a functional integral and integrating out the

charge field away from x = 0, we obtain the action in Eq. (35).
In terms of the new fermionic fields ψs(x) and the “slave”
fermion d, the kinetic part of the spin Hamiltonian becomes

Hs
k = −ivF

∫ ∞

−∞
dx ψ†

s (x)∂xψs(x), (45)

and the backscattering Hamiltonian is given by

Hbs = [(X+ + λĈ+)[ψ†
s (0) + ψs(0)](d − d†)

+ (X− + δλĈ−)[ψ†
s (0) − ψs(0)](d + d†)], (46)

reminiscent of the two-channel Kondo model48,72 in the
presence of a channel asymmetry.40,73 The introduction of two
Majorana fermions follows from Ref. 40, and Ref. 73 uses this
representation to make an analogy with the two-channel Kondo
model in the presence of channel asymmetry (at the Emery-
Kivelson line). This Majorana model also finds applications in
the context of dissipative mesoscopic structures.74

Here, we have defined X+ = λ cos(πN0)/
√

2πa and X− =
−δλ sin(πN0)/

√
2πa to isolate the terms which involve the

shifted charge field φ̂l
c. These terms capture the dependence of

the spin propagator on the pinned charged and are included in
the unperturbed Hamiltonian. Next, the action of the remainder
of Hbs on the charge response function is treated perturbatively.
For this purpose, it is convenient to recast this Hamiltonian in
terms of Majorana fermions on the lines of Ref. 40. Details of
this computation are provided in Appendix C.

We define the functions κ+(N0) := cos(πN0) and
κ−(N0) := sin(πN0). The energy scale of the Fermi velocity,
which is lost in the bosonization process where an infinite
bandwidth is assumed, is reintroduced by fixing the cutoff.45
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The widths �+ and �− of the impurity Majoranas, given by
�ζ = 2X2

ζ /vF , determine the two intrinsic energy scales in
the problem, corresponding to the total backscattering strength
and the channel asymmetry, respectively; they can be explicitly
obtained through the renormalization group (RG) approach.40

We define the infrared cutoff � = max{�+,�−}. It corresponds
to the energy scale which is inversely proportional to the
lifetime of the (shorter lived) Majorana fermion. As previously
stated, the system can be mapped onto the two-channel Kondo
model at the Emery-Kivelson line48 and in terms of this they
represent the Kondo coupling constants Jx and Jy , respectively.

The expression for the charge response function to leading
order in the backscattering can be written as

K(ω) = K0(ω) + K1(ω) + K2(ω) + O(λ4), (47)

where

K1(ω) = γ

2πEc

1(
1 − i πω

2Ec

)2

×
[ ∑

ζ=±
κζ (N0)2(r1 + ζ r2)2

]
ln

(
Ec

�

)
,

K2(ω) = − γ

2πEc

1(
1 − i πω

2Ec

)2

[ ∑
ζ=±

κ−ζ (N0)2(r1 + ζ r2)2

]

×
[

ln

(
Ec

�

)
−

(
1 + i

2�

ω

)
ln

(
1 − i

ω

�

)]
. (48)

When the backscattering amplitudes are symmetric, the con-
tributions corresponding to ζ = − disappear and this case has
been looked at in detail in Ref. 36. The level asymmetry, which
is captured by the energy scale �−, plays a crucial role in the
low-energy behavior of the system which we discuss in the
following.

We now compare

K(ω) = i
2

π2

∫ ∞

−∞
dt eiωt 〈{φ̂c(τ ),φ̂c(0)}〉 (49)

with the expansion K(ω) = C0(1 + iωC0Rq) + O(ω2). To
proceed systematically, we formally expand the functions
K0(ω), K1(ω), and K2(ω) to linear order in the frequencies

K0(ω) = A0 + iωB0,

K1(ω) =
∑
ζ=±

r2
ζ

[
A

ζ

1 + iωB
ζ

1

]
, (50)

K2(ω) =
∑
ζ=±

r2
ζ

[
A

ζ

2 + iωB
ζ

2

]
.

Here, we have defined the parameters r± = r1 ± r2. From
Eq. (50), we extract the formal expressions for the mesoscopic
capacitance and relaxation resistance

C0 = A0 +
∑
ζ=±

r2
ζ

[
A

ζ

1 + A
ζ

2

]
,

(51)

Rq =
(
B0 + ∑

ζ=± r2
ζ

[
B

ζ

1 + B
ζ

2

])
(
A0 + ∑

ζ=± r2
ζ

[
A

ζ

1 + A
ζ

2

])2 ,

respectively, where we have retained terms to leading order in
the backscattering amplitudes.

One then finds to O(r2
ζ )

C0 = 1

2Ec

− γ

πEc

∑
ζ=±

r2
ζ κ−ζ (N0)2

+ γ

2πEc

∑
ζ=±

ζ r2
ζ cos(2πN0) ln

(
Ec

�

)
, (52)

Rq = h

2e2
.

In the vicinity of N0 = 1
2 , the logarithm term dom-

inates and in the particular setting r1 = r2, one re-
covers the correction to the mesoscopic capacitance
δC = 2γ /(πEc)r2 cos(2πN0) ln{1/[r2 cos2(πN0)]} obtained
in Ref. 38. Specifically, the logarithmic contribution of the
capacitance C0 agrees with Ref. 40 in the presence of a channel
asymmetry. Note, Rq is not affected by backscattering and
remains h/2e2 to the second order in the backscattering am-
plitudes. Nonuniversal corrections to Rq nevertheless appear
at fourth or higher order in backscattering amplitudes.

At low frequencies and temperatures, the backscattering
amplitudes are substantially renormalized, thus entering the
regime of strong backscattering, and this perturbative scheme
to compute Rq is inadequate. For low energies, the channel
asymmetry for energy scales below �− grows till rmax =
max{r1,r2} → 1, indicating that one of the channels is pinched
off and there is only one channel effectively contributing to
transport.40 In this regime, near a charge-degeneracy point,
the system is described by a one-channel Kondo model and
the value h/e2 of Rq should reemerge in agreement with the
weak-tunneling limit.

V. CONCLUSION

To summarize, we have investigated dissipation effects
in a strongly correlated multichannel quantum RC circuit
through the charge dynamics at low frequency and the concept
of charge-relaxation resistance. We have corroborated the
violation of the Kirchhoff’s law as a result of quantum
coherence effects. Our main message is that in the vicinity
of a charge-degeneracy point and in the case of a large cavity,
the system can flow to a one-channel Kondo fixed point at low
energy as a result of channel mixing or channel asymmetry.
This leads to a resistance unit h/e2 close to absolute zero,
reminiscent of the one-channel RC circuit.10 It is relevant to
note that such a resistance unit has also appeared in a distinct
and purely nonequilibrium context, where a Landau-Zener
sweep of the gate voltage is investigated.14,15 In the latter
situation, the effect of channel mixing or channel asymmetry
was not considered, which suggests a different origin for the
emergence of the resistance quantum.

It is also important to underline that for the multichannel
quantum RC circuit, prominent deviations from the resistance
quantum are expected either in regions where the weak-
backscattering or weak-tunneling limit describing the coupling
between lead and cavity is applicable. We believe that our
results shed new light on the understanding of the dynamics
of quantum RC circuits in close connection with multichannel
quantum impurity models50,75–77 and could be, in principle,
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detected with current technology,29,30 especially close to
perfect transmission.78
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APPENDIX A: PERTURBATION THEORY
IN WEAK-TUNNELING REGIME

In this Appendix, we present the derivation related to
Eq. (14) in Sec. II. We start from the function K(t) defined in
Eq. (7) and first we focus on the second-order contribution in
the tunneling amplitude, which will generate the mesoscopic
capacitance C0.38 We generalize the computation of Ref. 10
which has been performed in the context of the one-channel
quantum RC circuit.

1. Second order

Assuming t > 0, the response function can be simplified to
give

K (2)(t) = −i

∫ ∞

t

dt1

∫ 0

−∞
dt2

×〈φGS|HT(t1)N̂ (t)N̂(0)HT(t2)|φGS〉. (A1)

The contributions can be conveniently indexed by the path
adopted by the dot electrons. There are two possible paths
which give nonzero contributions. 0 → 1 → 0 represents a
lead electron hopping onto the dot and back, while 0 → −1 →
0 represents a dot electron hopping onto the lead and back.

For t > 0, the contribution of the 0 → 1 → 0 path is
evaluated to be

∑
kpαβ

t2
αβ

∫ ∞

t

dt1

∫ 0

−∞
dt2e

−i[εk−εp+Ec(1−2N0)](t1−t2)

× θ (−εp)θ (εk). (A2)

Similarly, the 0 → −1 → 0 path contributes

∑
kpαβ

t2
αβ

∫ ∞

t

dt1

∫ 0

−∞
dt2e

−i[εp−εk+Ec(1+2N0)](t1−t2)

× θ (εp)θ (−εk). (A3)

Collecting these contributions together, we obtain for (t > 0)

K (2)(t) = i
∑
kpαβ

t2
αβ

[
θ (εk)θ (−εp)

2
1

e−i1(k,p)t

+ θ (−εk)θ (εp)

2
−1

e−i−1(k,p)t

]
. (A4)

Here, we have defined

±1(k,p) = Ec(1 ∓ 2N0) ± (εk − εp). (A5)

The t < 0 contribution can be deduced from Eq. (A4) by the
replacement t → −t . By Fourier transforming, we obtain

K (2)(ω) =
∫ ∞

−∞
dt eiωt e−0+|t |K (2)(t)

=
∑
kpαβ

t2
αβ

∑
σ=±1

θ (−εp)θ (εk)

[σ (k,p)]2

(
1

σ (k,p) + ω + iη

+ 1

σ (k,p) − ω + iη

)
. (A6)

Assuming a metallic dot, we can let
∑

k → ν1
∫ ∞
−∞ dεk (for

the lead we have
∑

p → ν0
∫ ∞
−∞ dεp) and the mesoscopic

capacitance is determined to be

C0 = e2K (2)(0) = ν0ν1Cg

1/4 − N2
0

∑
αβ

t2
αβ. (A7)

This corresponds to Eq. (13) in the main text. This shows that
in the weak-tunneling regime, the mesoscopic capacitance of a
single-electron box differs very strongly from the geometrical
capacitance as a result of the Coulomb-blockade phenomenon.

2. Fourth order

The various contributions which arise at fourth order are
classified by indexing the dynamics of the charge occupation
on the dot and the number of virtual particle-hole excitations.
Only the paths 0 → 1 → 0 → 1 → 0, 0 → 1 → 0 → −1 →
0, 0 → −1 → 0 → 1 → 0, and 0 → −1 → 0 → −1 → 0
contribute at low energies (i.e., linear in ω). Furthermore, based
on phase space arguments, only paths within this subset that
have particle-hole virtual excitations contribute. We explicitly
compute the relevant contribution by the path 0 → 1 → 0 →
1 → 0. Its contribution to K (4) for t > 0 follows from the
expression∫ ∞

t

dt1

∫ t

0
dt2

∫ t2

0
dt3

∫ 0

−∞
dt4〈φGS|HT(t1)N̂ (t)HT(t2)

×HT(t3)N̂ (0)HT(t4)|φGS〉. (A8)

Isolating the product of operators contributing to this path, we
obtain∑

k1p1α1β1
...β4

tα1β1 tα2β2 tα3β3 tα4β4

∫ ∞

t

dt1

∫ t

0
dt2

∫ t2

0
dt3

∫ 0

−∞
dt4

× e−i[1(k1,p1)t1−1(k2,p2)t2+1(k3,p3)t3−1(k4,p4)t4]

×〈φGS|c†p1β1
dk1α1d

†
k2α2

cp2β2c
†
p3β3

dk3α3d
†
k4α4

cp4β4 |φGS〉.
(A9)

The pairings corresponding to single particle-hole excitations
in the intermediate state are given by

〈φGS|c†p1β1
dk1α1d

†
k2α2

cp2β2c
†
p3β3

dk3α3d
†
k4α4

cp4β4 |φGS〉 (A10)

and

〈φGS|c†p1β1
dk1α1d

†
k2α2

cp2β2c
†
p3β3

dk3α3d
†
k4α4

cp4β4 |φGS〉. (A11)

The pairing (A10) corresponds to an electron-hole excitation
in the reservoir, whereas (A11) corresponds to an electron-hole
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excitation in the dot. Integrating over the time variables and
extracting the imaginary contribution of the above expression
leads to a contribution linear in ω (hence gapless):∑

k1p1k2p2
α1β1α2β2

tα1β1 tα2β1 tα2β2 tα1β2θ
(
εk1

)
θ
(
εk2

)
θ
(−εp1

)
θ
(
εp2

)

× ei[1(k1,p2)−1(k1,p1)]t

1(k1,p1)1(k2,p1)1(k2,p2)1(k1,p2)
. (A12)

The contribution of this term to the response function K(ω) to
linear order in ω is evaluated to be

ImK
(4)
01010(ω) = πν2

0ω
∑
α1β1
α2β2

tα1β1 tα2β1 tα2β2 tα1β2

×
[∑

k

θ (εk)

[Ec(1 − 2N0) + εk]2

]2

+ O(ω2).

(A13)

Note that the imaginary contribution for ω < 0 arises from the
t < 0 expression. Collecting the contribution from the paths
0 → 1 → 0 → −1 → 0, 0 → −1 → 0 → 1 → 0, and 0 →
−1 → 0 → −1 → 0 in a similar fashion, and noting that for
electron-hole excitations in the lead given by the grouping in
Eq. (A10) we obtain an identical contribution

ImK (4)(ω) = 2πν2
0ν2

1ω
∑
α1β1
α2β2

tα1β1 tα2β1 tα2β2 tα1β2

×
[

1

Ec(1 − 2N0)
+ 1

Ec(1 + 2N0)

]2

+ O(ω2).

(A14)

In the last step, we assume a metallic dot and let
∑

k →
ν1

∫ ∞
−∞ dεk (for the lead we have

∑
p → ν0

∫ ∞
−∞ dεp). Com-

paring Eq. (A14) with the general relation Q(ω)
Vg (ω) = C0(1 +

iωC0Rq) + O(ω2) and using Eq. (A7), we identify the ac
charge-relaxation resistance to be

Rq = 2πh̄

e2

[∑
α1β1
α2β2

tα1β1 tα2β1 tα2β2 tα1β2(∑
αβ t2

αβ

)2

]
. (A15)

This corresponds to the formula (14) in the main text. Note that
here we have explicitly restored the Planck constant h̄ which
was set to one in the derivation.

APPENDIX B: COULOMB GAS FORMULATION

Here, we show that for energy scales below ∗, the partition
function close to the charge-degeneracy points can be rewritten
exactly as the partition function of the one-channel Kondo
model, resorting to the Coulomb gas analogy.43,44 By assuming
that only one mode, e.g., the totally symmetric mode penetrates
into the cavity for energy scales below ∗, Eq. (16) formally
reproduces a one-channel Kondo model. Here, the goal of this
appendix is to provide an alternative derivation, following the
same terminology as the one used in Refs. 59–65, but keeping
the channel-mixing terms.

First, it is relevant to observe that the partition func-
tion in Eq. (28) can be expanded in powers of t as

follows:

Z =
∞∑

n=−∞
ei2πnN0

∫
[Dd][Dc][Dφn]

× exp
[−Sel

0 − S
φ

0

] ∞∑
m=0

(−1)m

m!
(Sint)

m

=
∞∑

n=−∞

∞∑
m=0

(−1)m

m!
ei2πnN0

∫
[Dφ]e−S

φ

0 〈(Sint)
m〉el

0 . (B1)

The notation 〈· · · 〉el
0 implies that the expectation value is taken

with respect to the (free) actions of the electrons in the lead
and dot.

Let us simplify the term 〈(Sint)m〉el
0 :

〈(Sint)
m〉el

0 = tm
∫ β

0
dτ1 · · ·

∫ β

0
dτm

×
∑

k1p1α1β1

· · ·
∑

kmpmαmβm

〈(
c̄p1β1dk1α1e

−iφ1 + H.c.
)

· · · (c̄pmβm
dkmαm

e−iφm + H.c.
)〉
. (B2)

We alter the notation, such that the subscript φk = φ(τk) is now
taken to indicate the time label of the φ operator. It is implicitly
assumed that the φ fields obey twisted boundary conditions.
This expression has contributions only when m = 2l is even,
and furthermore contains an equal number of c and c̄ operators
(and as a corollary d and d̄ operators). The most general term
looks like

A = t2l

∫ β

0
dτi1 · · · dτil dτj1 · · · dτjl

×
∑

ki1 pi1 αi1 βi1

· · ·
∑

kjl
pjl

αjl
βjl

e−i(φi1 +···+φil
−φj1 −···−φjl

)

× 〈(
c̄pi1 βi1

dki1 αi1
· · · c̄pil

βil
dkil

αil

)
× (

d̄kj1 αj1
cpj1 βj1

· · · d̄kjl
αjl

cpjl
βjl

)〉
, (B3)

where (i1, . . . ,in) and (j1, . . . ,jn) are permutations of
(1, . . . ,2l). Noting that the propagator of the electrons in
the dot and electrons in the lead are independent of the
channel index, i.e, 〈d̄k1α1 (τ1)dk2α2 (τ2)〉 = δα1α2〈d̄k1 (τ1)dk2 (τ2)〉
and 〈c̄p1β1 (τ1)cp2β2 (τ2)〉 = δβ1β2〈c̄p1 (τ1)cp2 (τ2)〉, and further-
more assuming a continuous spectrum (i.e., large lead and
dot) such that

∑
k1k2

〈d̄k1 (τ1)dk2 (τ2)〉 and
∑

p1p2
〈c̄p1 (τ1)cp2 (τ2)〉

are proportional to each other, we obtain

A = t2l (NM)l
∫ β

0
dτ1 · · · dτ2le

−i(φ1+···+φl−φl+1−···−φ2l )

×
∑

p1···p2l

∑
k1···k2l

〈
c̄p1 · · · c̄pl

cpl+1 · · · cp2l

〉
× 〈

dk1 · · · dkl
d̄kl+1 · · · d̄k2l

〉
. (B4)

In the last line, we use the fact that for every complete
contraction of the above correlators, the number of free indices
for α and β reduces from 2l to l. Summing over each α we
get a factor N , and similarly summing over each β we get a
factor M. Since there are l such sums, we get an overall factor
(NM)l .
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Thus, the partition function reduces to

Z =
∞∑
l=0

(t2NM)l

(l!)2

∞∑
n=−∞

ei2πnN0

∫ β

0
dτ1 · · · dτ2l

[∫
φ(β)=φ0+2πn

[Dφ]e− 1
4Ec

∫ β

0 dτ [∂τ φ(τ )]2−i(φ1+···+φl−φl+1−···−φ2l )
]

×
∑

p1···p2l

∑
k1···k2l

〈
c̄p1 · · · c̄pl

cpl+1 · · · cp2l

〉 〈
dk1 · · · dkl

d̄kl+1 · · · d̄k2l

〉
. (B5)

The next step is now to use a “charge” representation of the partition function.
We then transform the φ-dependent part of the partition function (within square brackets) to the charge representation as

follows:
∞∑

n=−∞
ei2πnN0

∫
φ(β)=φ0+2πn

[Dφ]e− 1
4Ec

∫ β

0 dτ [∂τ φ(τ )]2−i(φ1+···+φl−φl+1−···−φ2l )

=
∞∑

n=−∞
ei2πnN0

∫
[DQ]

∫
φ(β)=φ0+2πn

[Dφ] exp

[
−Ec

∫ β

0
dτ {Q2 + iQ̇φ}

+ i2πnQ(β) − i(φ1 + · · · + φl − φl+1 − · · · − φ2l)

]
, (B6)

where we have introduced the auxiliary bosonic field Q(τ ), such that Q(β) = Q(0). Defining the source term

J (τ ; τ1, . . . ,τ2l) = [δ(τ − τ1) + · · · + δ(τ − τl) − δ(τ − τl+1) − · · · − δ(τ − τ2l)] , (B7)

we can rewrite Eq. (B6) as∫
[DQ]

∞∑
n=−∞

ei2πn[Q(0)+N0]e−Ec

∫ β

0 dτQ2
∫

φ(β)=φ0+2πn

[Dφ] exp

[
i

∫ β

0
dτ {Q̇ − J (τ ; τ1, . . . ,τ2l)}φ

]

=
∫

[DQ]
∞∑

n=−∞
δ (Q0 + N0 + n) e−EC

∫ β

0 dτQ2
δ[Q̇ − J (τ ; τ1, . . . ,τ2l)]

=
∞∑

n=−∞

∫ −N0−n

−N0−n

[DQ]e−Ec

∫ β

0 dτQ2
δ

[
Q(τ ) + N0 + n −

l∑
i=1

�(τ − τi) +
2l∑

i=l+1

�(τ − τi)

]

=
∞∑

n=−∞

∫ n

n

[DQ]e−Ec

∫ β

0 dτ [Q(τ )−N0]2
δ

[
Q(τ ) − n +

l∑
i=1

�(τ − τi) −
2l∑

i=l+1

�(τ − τi)

]
, (B8)

where in the last step we used the transformation Q(τ ) →
N0 − Q(τ ).

We now focus on the charge-degeneracy point N0 = 1
2 and

assume that we are at very low temperatures (i.e., βEc 	 1 or
more precisely β∗ > 1). This implies that we can focus only
on the lowest two charge (energy) states. This mean trajectories
of Q(τ ) are restricted to access these two charge states Q(τ ) =
0,1. This projection to the lowest-energy states causes the time
labels in Eq. (B5) to be nested, i.e., the trajectory of the charge
(in imaginary time) consists of a succession of blips. Let us
focus on one such trajectory given by the nesting τ1 > τl+1 >

τ2 > τl+2 > · · · > τ2l , and rename τl+1 → τ ′
1,. . .,τ2l = τ ′

l . It
is simple to see that permuting the time labels of the various
nestings gives equivalent contributions. There are l! × l!
equivalent contributions, corresponding to permutations of the
labels (τ1, . . . ,τl) and (τ ′

1, . . . ,τ
′
l ). Furthermore, the contribu-

tion from the trajectories 0 → 1 → 0 → · · · → 0 and 1 →
0 → 1 → · · · → 1 are identical. Thus, in this regime we get

Z = 2e− βEc
4

∞∑
l=0

(t2NM)l

(l!)2
l! × l!

∫ β

0
dτ1

×
∫ τ1

0
dτ ′

1 · · ·
∫ τ ′

l−1

0
dτl

∫ τl

0
dτ ′

l

×
∑

p1···plp
′
1···p′

l

∑
k1···klk

′
1···k′

l

〈
c̄p1 (τ1) · · · c̄pl

(τl)cp′
1
(τ1)

· · · cp′
l
(τ ′

l )
〉〈
dk1 (τ1) · · · dkl

(τl)d̄k′
1
(τ ′

1) · · · d̄k′
l
(τ2l)

〉
.

(B9)

We recall the identities∑
p1p2

Gp1p2 (τ1 − τ2)

=
∑
p1p2

〈
cp1 c̄p2

〉 = ν0 lim
β→∞

π/β

sin [π/β(τ1 − τ2)]
→ ν0

1

τ1 − τ2

(B10a)

and∑
k1k2

Gk1k2 (τ1 − τ2)

=
∑
k1k2

〈
dp1 d̄p2

〉 = ν1 lim
β→∞

π/β

sin[π/β(τ1 − τ2)]
→ ν1

1

τ1 − τ2
,

(B10b)
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where ν0 and ν1 denote the electron density of states in the
lead and dot, respectively. Thus, we obtain

Z = 2e− βEc
4

∞∑
l=0

(ν0ν1t
2NM)l

∫ β

0
dτ1

×
∫ τ1

0
dτ ′

1 · · ·
∫ τ ′

l−1

0
dτl

∫ τl

0
dτ ′

l

×
[∑

P

(−1)P
1(

τ ′
1 − τP1

)(
τ ′

2 − τP2

) · · · (τ ′
l − τPl

)
]2

,

(B11)

where (P1, . . . ,PL) is a permutation of (1, . . . ,l) and (−1)P is
the corresponding sign. [Note: interchanging a pair of indices
in (1, . . . ,l) gives a factor of −1.] Neglecting the constant
factor of 2e− βEc

4 , Eq. (B11) reduces to

Z =
∞∑
l=0

(ν0ν1t
2NM)l

∫ β

0
dτ1

×
∫ τ1

0
dτ ′

1 · · ·
∫ τ ′

l−1

0
dτl

∫ τl

0
dτ ′

l

×
[ [ ∏

i<j (τi − τj )
] [∏

m<n(τ ′
m − τ ′

n)
]

[∏l
i1=1

(
τ ′

1 − τi1

)] · · · [∏l
il=1

(
τ ′
l − τil

)]
]2

.

(B12)

Renaming τ ′
1 → τ2, τ2 → τ3, · · · , τ ′

l → τ2l and introducing
an ultraviolet cutoff 1/τc = ∗, we can rewrite this expression
as

Z =
∞∑
l=0

(ν0ν1t
2NM)l

∫ β

0

dτ1

τc

∫ τ1−τc

0

dτ2

τc

· · ·
∫ τ2l−1−τc

0

dτ2l

τc

exp

[
2
∑
i<j

(−1)i+j ln

∣∣∣∣τi − τj

τc

∣∣∣∣
]

.

(B13)

Recalling the partition function of the completely anisotropic
single-channel Kondo model (in the language of the Coulomb
gas expansion)

Zcg =
∞∑

n=0

(
J⊥ν

2

)2n ∫ β

0

dτ1

τc

∫ τ1−τc

0

dτ2

τc

· · ·
∫ τ2n−1−τc

0

dτ2n

τc

exp

[
2
∑
i<j

(−1)i+j ln

∣∣∣∣τi − τj

τc

∣∣∣∣
]

,

(B14)

we show that it is identical to Eq. (B13), where ν is the density
of states of the electrons of the Kondo model. The relationship
between the one-channel Kondo theory and the parameters of
the quantum RC circuit can be easily deduced:

(
J⊥ν

2

)2

= ν0ν1t
2NM. (B15)

APPENDIX C: PERTURBATION THEORY NEAR-PERFECT
TRANSMISSION

It is convenient to introduce the Majorana fermions

d+ = d† + d, d− = i(d† − d),
(C1)

ψ+(x) = ψ†
s (x) + ψs(x), ψ−(x) = i[ψ†

s (x) + ψs(x)],

which obey the commutation relations {ψζ ,ψζ ′ } = 2δζζ ′ and
{dζ ,dζ ′ } = 2δζζ ′ . Here, we have used the symbols ζ (ζ ′) = ±.
Using this representation and integrating out the charge field
away from x = 0, the partition function of the system is given
as a coherent-state functional integral

Z =
∫

Dφ̂cDψ+Dψ−Dd+Dd− exp[−S]. (C2)

We rewrite the action S = S0 + Sint using Eqs. (35), (45),
and (46) as

S0 = Sc
0 +

∫ β

0

∑
ζ=±

[ ∫ ∞

−∞
dx

(
ψζ (x,τ )∂τψζ (x,τ )

− i
vF

4
ψζ (x,τ )∂x ψζ (x,τ )

)

+ d̄ζ (τ )∂τ d(τ ) + iXζψζ (0,τ )d−ζ (τ )

]
(C3)

and

Sint =
∫ β

0
dτ

∑
ζ=±

(|λ1| + ζ |λ2|) Ĉζ (τ )ψζ (0,τ )d−ζ (τ )

:=
∫ β

0
dτ Hint(τ ). (C4)

We define the constants �ζ = 2X2
ζ /vF , which describe the

effective widths of the resonances of the (impurity) Majorana
fermions. For the Majorana description near weak transmis-
sion, it is necessary to introduce the infrared cutoff � =
max{�+,�−}. This corresponds to the lifetime of the shorter-
lived Majorana fermion. The local (i.e., at x = 0) Green’s
functions of interest for the noninteracting Hamiltonian can be
computed from the equations of motion on the lines of Ref. 40,
and is given by

Gζ (ωn) = −
∫ β

0
dτ eiωnτ 〈Tτ [ψζ (0,τ )ψζ (0,0)]〉

= − i

vF

ωn sgn(ωn)

[ωn + � sgn(ωn)]
, (C5)

C−ζ (ωn) = −
∫ β

0
dτ eiωnτ 〈Tτ [ψ−ζ (0,τ )dζ (0)]〉

= − i2X−ζ

vF

sgn(ωn)

[ωn + � sgn(ωn)]
, (C6)

Dζ (ωn) = −
∫ β

0
dτ eiωnτ 〈Tτ [dζ (τ )dζ (0)]〉

= −i
2

ωn + � sgn(ωn)
. (C7)

Note, ωn = (2n + 1)π/β denote (fermionic) Matsubara
frequencies. Next, we compute the leading-order correction
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to the charge response function

K(τ ) = 〈Tτ [N (τ )N (0)]〉 = 2

π2

〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)

]〉
= K0(τ ) + K1(τ ) + K2(τ ) + O(λ3), (C8)

where we have defined the functions

K0(τ ) = 2

π2

〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)

]〉
0 ,

K1(τ ) = − 2

π2

∫ β

0
ds1

〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)Hint(s1)

]〉
0 , (C9)

K2(τ ) = 1

π2

∫ β

0
ds1ds2

× 〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)Hint(s1)Hint(s2)

]〉
0 .

Here, the subscript 〈· · · 〉0 implies that the expectation value is
taken with respect to the quadratic action S0. The contribution
K0(τ ) was computed in Eq. (36) from which we inferred Rq =
h/(2e2). Let us explicitly denote the operators Ĉζ as Ĉζ =
uζ φ̂c + vζ φ̂

2
c . The corrections to the Green’s function due to

backscattering from the function K1(τ ) are given by

K1(iωn) = 1

π2

∫ β

0
ds eiωnτ

∑
ζ=±

vζ (|λ1| + ζ |λ2|)

× 〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)φ̂l

c(s)2
]〉

0

× 〈
Tτ

[
ψζ (0,s1)d−ζ (ζ )(0)

]〉
0

= γ

2πEc

1(
1 + πωn

2Ec

)2

×
⎡
⎣∑

ζ=±
κζ (N0)2 (r1 + ζ r2)2 ln

(
Ec

�

)⎤
⎦ . (C10)

Here, we assume that we are in the Coulomb-blockaded
regime and identify Ec to be the ultraviolet cutoff. We define
the functions κ+(N0) := cos(πN0) and κ−(N0) := sin(πN0).
The energy scale of the Fermi velocity, which is lost
in the bosonization process where an infinite bandwidth is
assumed, is reintroduced by fixing the cutoff.45 We define the
dimensionless backscattering amplitudes r1,2 via the relation

λ1,2 = r1,2

√
2avF ECγ

π
. (C11)

The contribution from the function K2(τ ) involves two types
of diagrams:

K2(iωn)

= 1

π2

∫ β

0
dτ ds1ds2e

iωnτ

⎡
⎣∑

ζ=±

(
λ1 + ζλ2√

2πa

)2

×〈Tτ [φ̂c(τ )φ̂c(0)Ĉζ (s1)Ĉζ (s2)]〉
× 〈Tτ [ψζ (0,s1)ψζ (0,s2)]〉〈Tτ [d−ζ (s1)d−ζ (s2)]〉

+
∑
ζ=±

(
λ1 + ζλ2√

2πa

)2

〈Tτ [φ̂c(τ )φ̂c(0)Ĉζ (s1)Ĉζ (s2)]〉

× 〈Tτ [ψζ (0,s1)d−ζ (s2)]〉〈Tτ [ψζ (0,s2)d−ζ (s1)]〉
]

. (C12)

In this regime, we should neglect correlators in φ̂c which
involve more than a product of four φ̂c fields since the charge
is pinned due to strong Coulomb interactions. Thus, we obtain

K2(iωn) = − γ

2πEc

1(
1 + πωn

2Ec

)2

∑
ζ=±

κ−ζ (N0)2 (r1 + ζ r2)2

×
[

ln

(
Ec

�

)
−

(
1 + 2�

ωn

)
ln

(
1 + ωn

�

)]
.

(C13)

In our calculations, we make use of the Fourier transform of
the φ̂l

c propagator

F̃c(iνk) = −
∫ β

0
dτ eiνkτ

〈
Tτ

[
φ̂l

c(τ )φ̂l
c(0)

]〉
0

= −π

2

1

|νk| + 2EC/π
, (C14)

where νk = 2kπ/β denotes (bosonic) Matsubara frequencies.
By Wick rotating iωn → ω + iδ, we obtain

K1(ω) = γ

2πEc

1(
1 − i πω

2Ec

)2

×
[∑

ζ=±
κζ (N0)2 (r1 + ζ r2)2 ln

(
Ec

�

)]
,

K2(ω) = − γ

2πEc

1(
1 − i πω

2Ec

)2

∑
ζ=±

κ−ζ (N0)2 (r1 + ζ r2)2

×
[

ln

(
Ec

�

)
−

(
1 + i

2�

ω

)
ln

(
1 − i

ω

�

)]
. (C15)
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5M. Büttiker, A. Prêtre, and H. Thomas, Phys. Rev. Lett. 70, 4114
(1993).
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34C. Grenier, R. Hervé, G. Fève, and P. Degiovanni, Mod. Phys. Lett.

B 25, 1053 (2011).
35I. Garate and K. Le Hur, Phys. Rev. B 85, 195465 (2012).
36C. Mora and K. Le Hur, arXiv:1212.0650.
37A. Golub and E. Grosfeld, Phys. Rev. B 86, 241105(R) (2012).
38K. A. Matveev, Zh. Eksp. Teor. Fiz. 99, 1598 (1991) [Sov. Phys.-

JETP 72, 892 (1991)].
39I. L. Aleiner, P. W. Brouwer, and L. I. Glazman, Phys. Rep. 358,

309 (2002).
40K. Le Hur and G. Seelig, Phys. Rev. B 65, 165338 (2002).
41G. Zarand, G. T. Zimanyi, and F. Wilhelm, Phys. Rev. B 62, 8137

(2000).
42E. Lebanon, A. Schiller, and F. B. Anders, Phys. Rev. B 68, 041311

(2003).
43G. Yuval and P. W. Anderson, Phys. Rev. B 1, 1522 (1970).
44P. W. Anderson, G. Yuval, and D. R. Hamann, Phys. Rev. B 1, 4464

(1970).
45K. Flensberg, Phys. Rev. B 48, 11156 (1993).
46K. A. Matveev, Phys. Rev. B 51, 1743 (1995).

47L. I. Glazman, F. W. J. Hekking, and A. I. Larkin, Phys. Rev. Lett.
83, 1830 (1999).

48V. J. Emery and S. Kivelson, Phys. Rev. B 46, 10812 (1992); D. G.
Clarke, T. Giamarchi, and B. I. Shraiman, ibid. 48, 7070 (1993);
A. M. Sengupta and A. Georges, ibid. 49, 10020 (1994).

49K. Le Hur, Phys. Rev. B 64, 161302 (2001).
50Ph. Nozières and A. Blandin, J. Phys. (Paris) 41, 193 (1980).
51A. M. Tsvelik and P. B. Wiegmann, Z. Phys. B: Condens. Matter

54, 201 (1984).
52N. Andrei and C. Destri, Phys. Rev. Lett. 52, 364 (1984).
53P. Coleman and A. J. Schofield, Phys. Rev. Lett. 75, 2184 (1995);

P. Coleman, L. B. Ioffe, and A. M. Tsvelik, Phys. Rev. B 52, 6611
(1995).

54N. Andrei and A. Jerez, Phys. Rev. Lett. 74, 4507 (1995).
55I. Affleck, A. W. W. Ludwig, H. B. Pang, and D. L. Cox, Phys. Rev.

B 45, 7918 (1992).
56I. Garate and I. Affleck, Phys. Rev. Lett. 106, 156803 (2011).
57We have checked through a perturbation theory in the Kondo basis

that the charge-relaxation resistance of the one-channel Kondo
model remains h/e2 in the perturbative regime, i.e., for energies
above the Kondo scale (but below ∗); P. Dutt and K. Le Hur
(unpublished).

58A. Kamenev and Y. Gefen, Phys. Rev. B 54, 5428 (1996).
59V. Ambegaokar, U. Eckern, and G. Schön, Phys. Rev. Lett. 48, 1745

(1982); U. Eckern, G. Schön, and V. Ambegaokar, Phys. Rev. B 30,
6419 (1984).

60G. Schön and A. D. Zaikin, Phys. Rep. 198, 237 (1990).
61W. Hofstetter and W. Zwerger, Phys. Rev. Lett. 78, 3737 (1997).
62I. S. Beloborodov, A. V. Andreev, and A. I. Larkin, Phys. Rev. B

68, 024204 (2003).
63C. P. Herrero, G. Schön, and A. D. Zaikin, Phys. Rev. B 59, 5728

(1999).
64S. L. Lukyanov and A. B. Zamolodchikov, J. Stat. Mech. (2004)

P05003.
65S. L. Lukyanov and P. Werner, J. Stat. Mech. (2006) P11002.
66A. Furusaki and K. A. Matveev, Phys. Rev. Lett. 75, 709 (1995).
67A. V. Andreev and K. A. Matveev, Phys. Rev. Lett. 86, 280

(2001).
68T. Giamarchi, Quantum Physics in One Dimension (Oxford

University Press, Oxford, UK, 2003).
69C. L. Kane and M. P. A. Fisher, Phys. Rev. B 46, 15233

(1992).
70A. Furusaki and N. Nagaosa, Phys. Rev. B 47, 3827 (1993).
71Z. Ristivojevic and T. Nattermann, Phys. Rev. Lett. 101, 016405

(2008).
72D. L. Cox and A. Zawadowski, Adv. Phys. 47, 599 (1998).
73M. Fabrizio, A. O. Gogolin, and Ph. Nozières, Phys. Rev. Lett. 74,

4503 (1995).
74H. T. Mebrahtu, I. V. Borzenets, H. Zheng, Y. V. Bomze,

A. I. Smirnov, S. Florens, H. U. Baranger, and G. Finkelstein,
arXiv:1212.3857.

75B. Coqblin and J. R. Schrieffer, Phys. Rev. 185, 847 (1969).
76N. Read and D. M. Newns, J. Phys. C: Solid State Phys. 16, 3273

(1983).
77O. Parcollet, A. Georges, G. Kotliar, and A. Sengupta, Phys. Rev.

B 58, 3794 (1998).
78S. Amasha, I. G. Rau, M. Grobis, R. M. Potok, H. Shtrikman,

and D. Goldhaber-Gordon, Phys. Rev. Lett. 107, 216804
(2011).

155134-14

http://dx.doi.org/10.1103/PhysRevB.78.165304
http://dx.doi.org/10.1103/PhysRevB.78.165304
http://dx.doi.org/10.1103/PhysRevB.80.035332
http://dx.doi.org/10.1103/PhysRevB.80.035332
http://dx.doi.org/10.1038/nphys1690
http://dx.doi.org/10.1103/PhysRevB.81.153305
http://dx.doi.org/10.1103/PhysRevB.81.153305
http://dx.doi.org/10.1103/PhysRevB.83.201304
http://dx.doi.org/10.1103/PhysRevB.83.201304
http://dx.doi.org/10.1103/PhysRevLett.107.176601
http://dx.doi.org/10.1103/PhysRevLett.107.176601
http://dx.doi.org/10.1103/PhysRevLett.106.166803
http://dx.doi.org/10.1103/PhysRevLett.106.166803
http://dx.doi.org/10.1103/PhysRevB.86.235406
http://dx.doi.org/10.1103/PhysRevB.86.235406
http://dx.doi.org/10.1103/PhysRevB.81.165318
http://dx.doi.org/10.1103/PhysRevB.81.165318
http://dx.doi.org/10.1209/0295-5075/98/57003
http://dx.doi.org/10.1209/0295-5075/98/57003
http://dx.doi.org/10.1126/science.1126940
http://dx.doi.org/10.1126/science.1141243
http://dx.doi.org/10.1088/0034-4885/75/12/126504
http://dx.doi.org/10.1088/0034-4885/75/12/126504
http://dx.doi.org/10.1103/PhysRevB.86.115303
http://dx.doi.org/10.1088/0022-3719/21/8/002
http://dx.doi.org/10.1103/PhysRevLett.60.848
http://dx.doi.org/10.1103/PhysRevB.41.7906
http://dx.doi.org/10.1103/RevModPhys.71.S306
http://dx.doi.org/10.1063/1.881503
http://dx.doi.org/10.1103/PhysRevB.83.121311
http://dx.doi.org/10.1140/epjst/e2009-01052-4
http://dx.doi.org/10.1140/epjst/e2009-01052-4
http://dx.doi.org/10.1103/PhysRevLett.82.161
http://dx.doi.org/10.1103/PhysRevLett.82.161
http://dx.doi.org/10.1103/PhysRevLett.91.106801
http://dx.doi.org/10.1007/BF00654541
http://dx.doi.org/10.1103/PhysRevB.86.125311
http://dx.doi.org/10.1103/PhysRevB.72.205125
http://dx.doi.org/10.1103/PhysRevB.72.205125
http://dx.doi.org/10.1142/S0217984911026772
http://dx.doi.org/10.1142/S0217984911026772
http://dx.doi.org/10.1103/PhysRevB.85.195465
http://arXiv.org/abs/arXiv:1212.0650
http://dx.doi.org/10.1103/PhysRevB.86.241105
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1016/S0370-1573(01)00063-1
http://dx.doi.org/10.1103/PhysRevB.65.165338
http://dx.doi.org/10.1103/PhysRevB.62.8137
http://dx.doi.org/10.1103/PhysRevB.62.8137
http://dx.doi.org/10.1103/PhysRevB.68.041311
http://dx.doi.org/10.1103/PhysRevB.68.041311
http://dx.doi.org/10.1103/PhysRevB.1.1522
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.1.4464
http://dx.doi.org/10.1103/PhysRevB.48.11156
http://dx.doi.org/10.1103/PhysRevB.51.1743
http://dx.doi.org/10.1103/PhysRevLett.83.1830
http://dx.doi.org/10.1103/PhysRevLett.83.1830
http://dx.doi.org/10.1103/PhysRevB.46.10812
http://dx.doi.org/10.1103/PhysRevB.48.7070
http://dx.doi.org/10.1103/PhysRevB.49.10020
http://dx.doi.org/10.1103/PhysRevB.64.161302
http://dx.doi.org/10.1051/jphys:01980004103019300
http://dx.doi.org/10.1007/BF01319184
http://dx.doi.org/10.1007/BF01319184
http://dx.doi.org/10.1103/PhysRevLett.52.364
http://dx.doi.org/10.1103/PhysRevLett.75.2184
http://dx.doi.org/10.1103/PhysRevB.52.6611
http://dx.doi.org/10.1103/PhysRevB.52.6611
http://dx.doi.org/10.1103/PhysRevLett.74.4507
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevB.45.7918
http://dx.doi.org/10.1103/PhysRevLett.106.156803
http://dx.doi.org/10.1103/PhysRevB.54.5428
http://dx.doi.org/10.1103/PhysRevLett.48.1745
http://dx.doi.org/10.1103/PhysRevLett.48.1745
http://dx.doi.org/10.1103/PhysRevB.30.6419
http://dx.doi.org/10.1103/PhysRevB.30.6419
http://dx.doi.org/10.1016/0370-1573(90)90156-V
http://dx.doi.org/10.1103/PhysRevLett.78.3737
http://dx.doi.org/10.1103/PhysRevB.68.024204
http://dx.doi.org/10.1103/PhysRevB.68.024204
http://dx.doi.org/10.1103/PhysRevB.59.5728
http://dx.doi.org/10.1103/PhysRevB.59.5728
http://dx.doi.org/10.1088/1742-5468/2004/05/P05003
http://dx.doi.org/10.1088/1742-5468/2004/05/P05003
http://dx.doi.org/10.1088/1742-5468/2006/11/P11002
http://dx.doi.org/10.1103/PhysRevLett.75.709
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevLett.86.280
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.46.15233
http://dx.doi.org/10.1103/PhysRevB.47.3827
http://dx.doi.org/10.1103/PhysRevLett.101.016405
http://dx.doi.org/10.1103/PhysRevLett.101.016405
http://dx.doi.org/10.1080/000187398243500
http://dx.doi.org/10.1103/PhysRevLett.74.4503
http://dx.doi.org/10.1103/PhysRevLett.74.4503
http://arXiv.org/abs/arXiv:1212.3857
http://dx.doi.org/10.1103/PhysRev.185.847
http://dx.doi.org/10.1088/0022-3719/16/17/014
http://dx.doi.org/10.1088/0022-3719/16/17/014
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://dx.doi.org/10.1103/PhysRevB.58.3794
http://dx.doi.org/10.1103/PhysRevLett.107.216804
http://dx.doi.org/10.1103/PhysRevLett.107.216804



