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Stanislav I. Maslovski,1 Constantin R. Simovski,2 and Sergei A. Tretyakov2
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Here, we develop a theory of radiative heat transfer based on an equivalent electrical network representation
for the hot material slabs in an arbitrary multilayered environment with arbitrary distribution of temperatures and
electromagnetic properties among the layers. Our approach is fully equivalent to the known theories operating
with the fluctuating current density, while being significantly simpler in analysis and applications. A practical
example of the near-infrared heat transfer through the micron gap filled with an indefinite metamaterial is
considered using the suggested method. The giant enhancement of the transferred heat compared to the case of
the empty gap is shown.
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I. INTRODUCTION

There are two most important heat exchange processes
known: thermal conductivity, associated with collective oscil-
lations of atoms (i.e., phonons) in solids, or with convection in
fluids or gases, and radiative heat transfer, which is associated
with the electromagnetic radiation produced by thermally
agitated atoms, e.g., the black-body radiation. In this work, we
concentrate on the latter process, which can be dominant when
bodies that exchange heat are spatially separated, including
the case when the gaps between the bodies are filled with a
heterogeneous material that has low thermal conductivity.

As is known, thermal radiation results from fluctuations
of charge and current density in matter. This phenomenon is
governed by the fluctuation-dissipation theorem1 (FDT) that
relates the mean-square fluctuations of a physical quantity
to the dissipation associated with the dynamics of the same
quantity. Because in dielectrics the loss is represented by
the imaginary part of the permittivity, which may be in
turn related to the effective conductivity of the material,
the FDT requires the volumetric current density within a
dielectric or conducting body to fluctuate. The FDT constitutes
the basis of the present day radiative heat transfer theories
which deal with the fluctuating currents and treat them as the
principal source of thermal radiation. Such a picture places
the radiative heat transfer calculations in the framework of
classical electromagnetic theory rooted in the macroscopic
Maxwell equations.

Indeed, the well-known theory of radiative heat transfer
through narrow vacuum gaps by Polder and van Hove2

belongs to this class. Physical mechanisms responsible for the
phenomenon of extraordinary heat transfer across submicron
and nanometer gaps have been studied (theoretically and
experimentally) and reviewed in several works (see, e.g.,
in Refs. 3–9). This phenomenon in connection to thermal
microscopy, thermophotovoltaics, and pyroelectricity has been
considered in Refs. 10–16. A detailed overview can be
found in Ref. 17. In all these works, in spite of different
calculation techniques, the theoretical analysis of the radiative
heat transfer was based on the same classical model.2

Similar techniques have been recently developed for the
cases when radiative heat transfer through micron and even

submicron gaps is assisted with nanostructured metamaterials
(Refs. 18–24). In these approaches, the fluctuating current
density in the two neighboring media is first obtained from the
FDT, following the methodology introduced by Rytov.25 Next,
the electromagnetic field produced by the fluctuating currents
is calculated, after which the mean value of the power flow
(Poynting vector) across the gap (filled with the metamaterial)
is found either with the multiple scattering method,21 or with
a more general transfer matrix approach.24

Historically, however, thermal agitation of fluctuating cur-
rents was first discovered by Johnson26 in electric circuits
and the theory of such thermal fluctuations was developed
by Nyquist27 using ideas which were natural for an engineer
dealing with networks of lumped elements and transmission
lines. Although this theory was a precursor to the FDT, it
is still in wide use in the theory of thermal noise at radio
and microwave frequencies. The famous Nyquist’s result
states that, in any linear passive two-pole (i.e., a single port
device with an input represented by two electric contacts)
operating at a temperature T , the electric thermal fluctuations
(in other words, the thermal noise) concentrated within a
narrow frequency interval �ν can be equivalently represented
by the fluctuating electromotive force (EMF) e(t), with the
mean-square of fluctuations

e2 = 4�(ν,T )R(ν)�ν, (1)

where �(ν,T ) = hν/[exp(hν/kBT ) − 1] is Planck’s mean
energy of a harmonic oscillator with h and kB being the Planck
and Boltzmann constants, respectively, and R(ν) is the input
resistance (real part of the input impedance) of the two-pole.
The equivalent EMF is then understood as connected in series
with the two-pole, which can be now considered noiseless.

The beauty of this result is in that no knowledge of the
internal structure of the electric network is required, and that
all the information is contained within just a single parameter:
the real part of the frequency-dependent input impedance. In
the terminology of FDT, the equivalent EMF in Nyquist’s
formula has the role of a generalized force, and the two-pole
input impedance is related to the generalized susceptibility
of the system. In other words, the Nyquist formula can be
obtained by a direct application of FDT to the electric circuit.25
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Note that the fluctuating current appears in this model only as
a reaction to a finite number of lumped voltage sources.

In contrast, in the thermal transfer theory based on the
full-wave electromagnetic formulation through the fluctuating
current density understood as a volume-distributed source,
the internal structure of the interacting bodies has to be
considered during most of the calculations. Thus, a thermal
transfer problem appears in this formulation as a problem
with infinite number of degrees of freedom. The final result,
however, happens to be expressed in quantities that abstract
away the internal structure, such as the reflection coefficients
of material half-spaces in the theory of Polder and van Hove.2

This observation suggests that introducing the distributed
fluctuating current can be avoided in many cases. For example,
in this work we prove that in stratified media, the input
impedance concept and the original Nyquist theory can
be generalized and used not only in problems related to
electric networks, but also in full-wave radiative heat transfer
problems. This allows for a significant reduction in complexity
of the analysis and makes the theory readily available for
practical calculations.

It has to be mentioned that an expression for the equiv-
alent lumped EMF of the thermal noise for the case of
a lossy material half-space was first derived by Rytov25

using an approach based on the fluctuating current density.
This result constitutes the basis of the thermal noise theory
of aperture antennas.28,29 Rytov also worked on equivalent
four-pole network representation of a hot material slab.25

Why then have these results not been widely used in the
heat transfer problems? Perhaps, it is because the concepts
of input impedance and the equivalent circuit description
for full-wave electromagnetic problems are largely unknown
among theorists working in the field of radiative heat transfer.
In applied electromagnetics, however, it is well known that
stratified media can be very efficiently treated within the
so-called vector transmission line theory30 (VTLT) which,
in essence, assigns an equivalent transmission line network
to every electromagnetic mode (propagating or evanescent)
in the system. We would like to stress here that the VTLT
is not an approximation: it is a direct consequence of the
Maxwell equations when modal expansion is applied to the
electromagnetic field in layered structures. The VTLT allows
also for a systematic treatment of uniaxial and bianisotropic
media.

In this work, we extend the VTLT in order to include the
effect of the fluctuating current density within the layers.
In contrast to a few discrete-element and numerical models
currently available from the literature (e.g., Refs. 31 and 32),
the theory that we develop here is a full-wave analytical
theory. The generalized theory allows us to prove a complete
equivalence between a volumetric multilayered structure and
its circuit theory counterpart, which may be visualized as a
chain of transmission line segments with equivalent fluctuating
voltage sources connected at the ports. When concerned with
the radiative heat transfer between the layers, we show that
this equivalent network may be reduced to just a series
connection of a number of voltage sources representing the
fluctuating EMFs and equivalent impedances (each can be
under different temperature), thus, recovering in this way
the famous Nyquist result, generalized here to the full-wave

electromagnetic processes in stratified media. Therefore, the
calculation of the radiative heat transfer between the layers
reduces in our theory to a number of equivalent circuit theory
calculations, which are relatively simple and very similar to
what is typically done when considering thermal noise in
practical electric networks.33–35

In order to demonstrate the applicability of the developed
approach to the real-world problems, in this paper we consider
an example which is rather hardly solvable with the standard
methods of the fluctuation electrodynamics. Namely, we
consider a structure in which the radiative transfer between
two media is assisted with a nanostructured metamaterial: a
uniaxial layer of metallic nanorods or carbon nanotubes (under
certain simplifications, a similar structure was considered
in Ref. 24, with an approach based on the fluctuating
current density). The impedance-based approach allows for
the most natural formulation of the radiative heat transfer
problem in this case, especially in the case of the layer of
metallic nanorods. As is known, a uniaxial crystal of nanorods
behaves similarly to a multiwire transmission line. There are
analytical models for such media which allow for an efficient
homogenization of such structures.36 In view of the circuit
model developed in this work, the two layers that exchange
radiative heat through the middle layer act as a generator and a
load, and the middle layer is seen as an impedance transformer
inserted between them. Therefore, the problem of maximizing
the heat transfer between the two media reduces in this case
to the problem of matching a generator to its load, a very
well-studied problem of applied electromagnetics. Note that
the same problem when approached with the standard methods
of fluctuation electrodynamics becomes very computationally
expensive as it involves volume integration of singular Green
functions, which forbids any simple physical modeling of the
heat transfer process.

The paper is organized as follows. In Sec. II, we demon-
strate that the well-known formula of Polder and van Hove
for the thermal transfer between two material half-spaces
separated by a vacuum gap can be more generally expressed
in terms of the effective wave impedances of the materials. In
Sec. III, we develop an equivalent circuit model of the radiative
heat transfer in multilayered uniaxial magnetodielectrics with
arbitrary distribution of temperatures among the layers. In
Sec. IV, we demonstrate how this equivalent model can be
used to find the radiant emittance of a black body. In Sec. V,
we derive the generalized Polder–van Hove formula for the
case when the gap between the two media is filled with a
uniaxial magnetodielectric with loss. In Sec. VI, we discuss
analogies between the theory of noise in receiving antennas and
the presented circuit model, with an emphasis on optimization
of the radiative heat transfer in the considered structures. In
Sec. VII, we apply the developed model to radiative thermal
transfer in structures involving metallic nanorods and carbon
nanotubes, and make a comparison with the results of more
standard approaches.

II. IMPEDANCE REPRESENTATION OF THE CLASSICAL
HEAT TRANSFER FORMULA

In this section, we establish a connection between the
classic Polder–van Hove theory of radiative thermal transfer
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(a) (b)

FIG. 1. (Color online) (a) Illustration to the general problem
formulation. (b) A possible implementation of medium 2 suggested in
Ref. 24 transforms the gap into a layered structure filled with so-called
hyperbolic metamaterial (see, e.g., in Refs. 22 and 37–39) formed by
carbon nanotubes or metal nanowires. Interdigital arrangement of
nanotubes (nanowires) helps keep radiative heat transfer dominating
over the thermal conductance through the gap.

and its representation in terms of the input impedances of
the material half-spaces. Formulas by Polder and van Hove
for the density of the radiative heat flux (i.e., power flux
of the thermal radiation) across the gap between two thick
dielectric slabs [the geometry is defined in Fig. 1(a); the
slabs are approximated by half-spaces] read as (our notations
correspond to Refs. 3, 18, 40, and 41)

St =
∫ ∞

0
dω[�(ω,T1) − �(ω,T3)]M,

�(ω,Ti) = h̄ω

e
h̄ω

kBTi − 1
. (2)

Here, h̄ = h/(2π ), and Ti is the absolute temperature of the
ith medium (i = 1,3; i = 2 represents the gap). If T1 > T3,
the total radiative flux is directed from medium 1 to medium
3 and can be written as St = S1→3 − S3→1 where S1→3 is the
heat flux produced by medium 1 and absorbed in medium 3
and S3→1 is the flux produced by medium 3 and absorbed in
medium 1. M from (2) is called the radiative heat transfer
function.41 It depends on the optical properties of all three
media and may be written as the sum M = Mp + Me, where
Mp and Me are contributions of propagating and evanescent
waves, respectively [note that in this paper we assume the time
dependence exp(+jωt) with j = √−1]:

Mp = 1

π2

∫ k0

0
Np(ω,q)q dq,

(3)

Np(ω,q) = [1 − |�12(q,ω)|2][1 − |�32(q,ω)|2]

4|1 − e−2jβd�12(q,ω)�32(q,ω)|2 ,

Me = 1

π2

∫ ∞

k0

Ne(ω,q)q dq,

(4)

Ne(ω,q) = Im[�12(q,ω)]Im[�32(q,ω)]e−2|β|d

|1 − e−2|β|d�12(q,ω)�32(q,ω)|2 ,

where �12 and �32 are the reflection coefficients of a plane-
wave harmonic having the spatial frequency (transverse wave
number) q ≡ |kt | and being incident from a lossless medium
2 (here, medium 2 is free space) to the surfaces of media 1

and 3, respectively, β = √
k2

0 − q2 is the normal component of
the wave vector in medium 2, and k0 = ω

√
ε0μ0 is the wave

number in medium 2. Function N (ω,q) is called the spatial
spectrum of the radiative heat transfer function. This function
was studied in Ref. 3 for the case when photon tunneling
through the vacuum gap was enhanced by surface plasmon
polaritons excited at the gap boundaries. It was shown that the
absolute maximum of N (ω,q) achievable at certain values of
ω and q equals 1

4 (we discuss this limit with more detail in
Sec. VI).

Let us express reflection coefficients �12 and �32 in (3) and
(4) through wave impedances Z1,2,3 of the media in regions
1, 2, and 3. The wave impedance defines the ratio between
the transverse electric and magnetic field components in a
plane wave of a given polarization, i.e., in a given harmonic
of the spatial spectrum (see, e.g., in Ref. 30). In terms of the
wave impedances,

�i2 = Zi − Z2

Zi + Z2
, i = 1, 3. (5)

For isotropic dielectrics, the wave impedances are given
by the following expressions (see, e.g., in Ref. 30) for
transverse-magnetic (TM) and transverse-electric (TE) waves,
respectively:

ZTM
i = η0

βi

k0εi

, ZTE
i = η0

k0

βi

, (6)

where η0 is the characteristic impedance of free space η0 =√
μ0/ε0, and βi denotes the normal component of the wave

vector in the ith medium: βi =
√

k2
0εi − q2. If medium 2 is free

space (as it is assumed in the classical theory of Ref. 2), ε2 = 1.
For propagating waves q < k0 and Z2 is real, for evanescent
waves q > k0 and Z2 is imaginary. It is important that the
impedance representation (5) of the reflection coefficients is
general for all spatial frequencies q.

Substituting Eq. (5) into Eq. (3) we obtain after a rather
simple algebra

Np = 16R2
2R1R3

4|(Z1+Z2)(Z2+Z3)+(Z1 − Z2)(Z2 − Z3)e−2jβ2d |2 .

(7)

Here and following, we denote Ri ≡ Re(Zi) and Xi ≡ Im(Zi).
Substituting Eq. (5) into Eq. (4) we easily deduce

Ne = 4X2
2R1R3e

−2|β2|d

|(Z1+Z2)(Z2+Z3) + (Z1 − Z2)(Z2 − Z3)e−2|β2|d |2 .

(8)

In this case, β2 has imaginary value and it is taken into account
that Z2 = jX2. Since X2 = 0 for propagating waves and
R2 = 0 for evanescent waves, Eqs. (7) and (8) can be unified
into an expression suitable for both regions q < k0 and q > k0:

N (ω,q)

= 4|Z2|2R1R3|e−jβ2d |2
|(Z1 + Z2)(Z2 + Z3) + (Z1 − Z2)(Z2 − Z3)e−2jβ2d |2 .

(9)

The heat flux density originated from the medium 1 and
absorbed in the medium 3 can now be represented as integral
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over the complete spatial spectrum (both propagating and
evanescent):

S1→3 = 1

π2

∫ ∞

0
dω

∫ ∞

0
q dq �(ω,T1)N (ω,q). (10)

As we show in the next section, Eq. (9) for the spatial
spectrum N (ω,q) of the heat transfer function can be derived
from the VTLT in a way that allows for a straightforward
generalization of the results of Polder and van Hove2 to the
case of stratified uniaxial magnetodielectric media without a
need to introduce the distributed fluctuating currents.

III. RADIATIVE HEAT TRANSFER RESULTING
FROM AN EQUIVALENT CIRCUIT APPROACH

The possibility to express the radiative heat transfer through
the wave impedances of the material layers provides us with an
evidence that an equivalent circuit model can be formulated
for this problem. Such a model is derived rigorously in the
Appendix directly from the Maxwell equations, which results
in the VTLT generalized to include the effect of thermal
fluctuations. Throughout this section, however, we will use
simple physical reasoning when possible, in order to keep the
derivations easy to grasp.

As in the previous section, we decompose the fluctuating
electromagnetic field into plane waves characterized with
a certain polarization state, angular frequency ω, and the
transverse wave vector kt . For generality, let us assume that
all materials taking part in the heat transfer are optically
uniaxial magnetodielectric media. It is known that in uniaxial
magnetodielectrics, the independent polarization states corre-
spond to the TE and TM plane waves. The same holds for a
multilayered structure composed of uniaxial magnetodielectric
layers (some of them can be isotropic or even vacuum gaps)
under the condition that the anisotropy axes of all layers
are aligned. In such a structure, the two polarizations are
completely independent and can be considered separately. In
the following, we assume that the anisotropy axis of the layers
coincides with the z axis, which is perpendicular to the layers.

In the Appendix we prove that, in a given layer of the
considered multilayered structure (ith layer) being under
the temperature Ti the transverse components of the time-
harmonic fluctuating electric and magnetic fields at the layer
interfaces (labeled here with subscripts 1 and 2) are related as
follows:⎛

⎝Z
i

11 Z
i

12

Z
i

21 Z
i

22

⎞
⎠ ·

(
n1 × Hi

1t

n2 × Hi
2t

)
−

(
Ei

1t

Ei
2t

)
= 1√

A0

(
ei

1

ei
2

)
,

(11)

where Z
i

mn = Z
i

mn(ω,kt ) are the dyadic Z parameters of the
chosen layer, and ei

1,2 are the vectorial fluctuating EMFs equiv-
alently representing the thermal-electromagnetic fluctuations
within the same layer, and n1,2 are the external unit normals at
the interfaces of the layer. The meaning of the factor 1/

√
A0

is explained further in the text. Equation (11) generalizes the
known result of the VTLT to the case of nonvanishing thermal
fluctuations. When the right-hand side of (11) vanishes, this

equation represents the definition of the impedance matrix of
a passive material layer.

It is evident that the equivalent Z-matrix representation (11)
of the thermal-electromagnetic processes within a material
layer, when combined with the Maxwellian boundary condi-
tions for the tangential electric and magnetic fields at the layer
interfaces, forms a complete system of linear equations that
describe the radiative heat generation and transfer in arbitrary
anisotropic multilayer structures.

The result (11) is obtained in a dyadic form and, thus,
is applicable to any polarization state of the electromagnetic
field in an anisotropic (not only uniaxial) layer. However,
when the states split into the TE and TM waves, it is more
convenient to work with scalar Z parameters (elements of
the 2 × 2 impedance matrix) which are defined separately for
each polarization. For a slab of a uniaxial magnetodielectric

characterized by the permittivity dyadic ε = ε⊥
i I t + ε

‖
i z0z0

and the permeability dyadic μ = μ⊥
i I t + μ

‖
i z0z0 (here we

understand these parameters as relative to the vacuum permit-

tivity ε0 and the permeability μ0, respectively, with I t being
the unity dyadic in the transverse plane), the Z parameters are
(see, e.g., Ref. 30)

Zi
12 = Zi

21 = j
Z

TE,TM
i

sin
(
β

TE,TM
i di

) ,

(12)

Zi
11 = Zi

22 = −j
Z

TE,TM
i

tan
(
β

TE,TM
i di

) ,

where β
TE,TM
i di is the electric thickness of the ith layer, and

the wave impedances of a spatial harmonic with wave vector
k = (kx,ky,β

TE,TM
i ) are

ZTE
i = η0

k0μ
⊥
i

βTE
i

, ZTM
i = η0

βTM
i

k0ε
⊥
i

, (13)

where the propagation constants for the two polarizations are

expressed through q =
√

k2
x + k2

y as (see, e.g., Ref. 30)

βTE
i =

√√√√μ⊥
i

(
k2

0ε
⊥
i μ

‖
i − q2

)
μ

‖
i

, βTM
i =

√√√√ε⊥
i

(
k2

0μ
⊥
i ε

‖
i − q2

)
ε

‖
i

.

(14)

Thus, when considering plane waves of fixed polarization
and fixed transverse wave number q ≡ |kt |, such a slab is
described by a 2 × 2 matrix of scalar Z parameters, much
like a four-pole network in the circuit theory.28 To make the
analogy complete, we may introduce the effective currents
flowing into this four-pole network related to the magnetic
fields of the given spatial harmonic at the two interfaces of the
slab,

I
i,TM
1,2 =

√
A0

kt

|kt | · (
n1,2 × Hi

1,2t

)
,

(15)

I
i,TE
1,2 =

√
A0

z0 × kt

|kt | · (
n1,2 × Hi

1,2t

)
,
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FIG. 2. Equivalent four-pole network of a material layer under
temperature T = Ti .

and the effective voltages at the input and the output interfaces
of the slab,

V
i,TM

1,2 =
√

A0
kt

|kt | · Ei
1,2t

, V
i,TE

1,2 =
√

A0
z0 × kt

|kt | · Ei
1,2t

.

(16)

The factor
√

A0 where A0 is the unit area in the transverse
plane ensures that the complex power V

i,TE,TM
1,2 I

i,TE,TM
1,2

∗ =
−A0 n1,2 · (Ei,TE,TM

1,2 × Hi,TE,TM
1,2

∗
) is trivially related to the

complex Poynting vector of a mode. Then, for a given
polarization (TE or TM) relation (11) assumes the form(

Zi
11 Zi

12

Zi
21 Zi

22

)
·
(

I i
1

I i
2

)
−

(
V i

1

V i
2

)
=

(
ei

1

ei
2

)
. (17)

The equivalent circuit that corresponds to this relation is
shown in Fig. 2. The two EMFs at the input and the output
of this circuit represent the effect of thermal fluctuations
inside the chosen layer. The mean-square amplitude of these
equivalent sources is derived in the Appendix using the
approach of the distributed fluctuating current. However, one
can apply the Nyquist theory directly to the electric circuit in
Fig. 2 and obtain the same result. Namely, by disconnecting
the load from the output of the four-pole network, i.e., setting
I i

2 = 0, we eliminate the contribution of ei
2 and obtain a simple

two-pole network with the input impedance Zin = V i
1 /I i

1 =
Zi

11. Therefore, the mean-square amplitude42 of the fluctuating
EMF ei

1 within an angular frequency interval �ω is

(
ei

1

)2 = 2�(ω,Ti)Re
(
Zi

11

)�ω

π
. (18)

Repeating the same procedure while interchanging the roles
of the input and the output, one obtains that(

ei
2

)2 = 2�(ω,Ti)Re
(
Zi

22

)�ω

π
. (19)

It is evident that, in general, the fluctuating sources ei
1 and ei

2
must be partially correlated because they both represent the
fluctuations within the same layer. Therefore, in calculations
involving expressions which are quadratic in voltage and
(or) current (e.g., power), one may also need the correlation
function of these EMFs: (ei

1e
i
2). As is shown in the Appendix,

this correlation can be presented as(
ei

1e
i
2

) = 2�(ω,Ti)Re
(
Zi

12

)�ω

π
. (20)

The set of relations (18)–(20) can be also obtained directly
from the FDT. Indeed, if one identifies the charges qi

1,2 =

FIG. 3. (Color online) An illustration to the calculation of the
radiative thermal flux through a selected boundary z = zi in a
multilayered structure.

I i
1,2/(jω) as the state variables of the circuit depicted in Fig. 2

and the EMFs e1,2 as the random forces associated with the
fluctuations, then the FDT demands that for the fluctuations
concentrated within a narrow frequency interval �ω,

(
ei
ne

i
m

) = jh̄

2
[(α−1)∗mn − (α−1)nm] coth

h̄ω

2kBT
× �ω

π
, (21)

where αmn are the generalized susceptibilities such that qm =∑
n αmn(ω)en. It is readily seen that (α−1)mn = jωZmn. Sub-

stituting this into (21) while taking into account the symmetry
properties of Zmn, we obtain (18)–(20) after dropping the
irrelevant contribution resulting from the quantum zero-point
fluctuations.

The relations (18)–(20) together with (17) written for both
polarizations fully describe the fluctuations within a material
layer. Because of the continuity of the tangential electric
and magnetic fields at the layer interfaces which implies the
continuity of the equivalent voltages and currents, a structure
formed by many layers can now be equivalently represented
by a chain connection of many four-pole networks each
representing a layer. Let us now select an arbitrary boundary
between a pair of layers in a multilayered structure and find
the radiative power flux per unit area of this boundary (Fig. 3).

Because the fluctuating EMFs belonging to separate layers
are uncorrelated, we may first consider only the sources which
are located at z < zi , where zi is the position of the selected
boundary. We number the layers and the boundaries such that
the ith layer is located at zi−1 � z � zi . Then, the layers in the
half-space z > zi can be considered as passive (no radiation is
coming out of them). In the circuit theory terms, these layers
constitute a load for the other, active, part of the structure
located at z < zi , and can be equivalently represented by an
input impedance, which, for a chain connection of four-pole
networks, is given by the following recursive formula:

Zi+1
in+ = Zi+1

11 − Zi+1
12 Zi+1

21

Zi+1
22 + Zi+2

in+
, (22)

where Zi+2
in+ is the input impedance of all the layers behind

the (i + 1)th layer. The recursion is terminated with the input
impedance of the last layer which extends up to z = +∞ (it
can be, for instance, free space behind the structure), i.e., with
the wave impedance of the last layer. Substituting (12) into (22)
for the two main polarizations in uniaxial layers, we obtain

Zi+1
in+ = Zi+1

Zi+2
in+ + jZi+1 tan(βi+1di+1)

Zi+1 + jZi+2
in+ tan(βi+1di+1)

, (23)
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where, for brevity, Zi+1 ≡ Z
TE,TM
i+1 and βi+1 ≡ β

TE,TM
i+1 .

Equation (23) is well known in the theory of transmission lines.
On the other hand, we may apply Thévenin’s theorem to

the active layers located at z < zi . Doing this, one first finds
the internal impedance of Thévenin’s equivalent circuit:

Zi
in− = Zi

22 − Zi
12Z

i
21

Zi
11 + Zi−1

in−
(24)

or, after substituting (12),

Zi
in− = Zi

Zi−1
in− + jZi tan(βidi)

Zi + jZi−1
in− tan(βidi)

, (25)

where Zi−1
in− is the internal impedance of the rest of the layers

located at z < zi−1, and the recursion terminates at the layer
which extends down to z = −∞. Note that because here we
consider reciprocal structures, the Thévenin impedance Zi

in−
equals the input impedance of all the layers located at z < zi

as seen by a wave incident from the half-space z > zi .
Next, the equivalent voltage generator in Thévenin’s theo-

rem (recall that the EMF of this generator is the same as the
output voltage of the network under the open circuit condition)
can be found recursively as

E i
g = −ei

2 + Zi
21

Zi
11 + Zi−1

in−

(
ei

1 + E i−1
g

)
, (26)

where E i−1
g is the equivalent EMF of all the sources located

at z < zi−1. This EMF is defined at the boundary z = zi−1.
Taking into account relations (18)–(20) and the fact that the
EMFs corresponding to distinct layers are not correlated, the
mean-square amplitude of fluctuations of E i

g can be expressed
after some algebra as

(
E i

g

)2 = (
ei

2

)2 +
∣∣∣∣∣ Zi

21

Zi
11 + Zi−1

in−

∣∣∣∣∣
2 (

ei
1

)2

−2 Re

(
Zi

21

Zi
11 + Zi−1

in−

) (
ei

1e
i
2

)

+
∣∣∣∣∣ Zi

21

Zi
11 + Zi−1

in−

∣∣∣∣∣
2 (
E i−1

g
)2

= 2Ri
th�(ω,Ti)

�ω

π
+ F i

(
E i−1

g
)2

, (27)

where

F i =
∣∣∣∣∣ Zi

21

Zi
11 + Zi−1

in−

∣∣∣∣∣
2

= |Zi |2∣∣Zi cos(βidi) + jZi−1
in− sin(βidi)

∣∣2

(28)

and

Ri
th = Re

(
Zi

in−
) − F iRe

(
Zi−1

in−
)
. (29)

This important result shows that the effect of thermal fluctua-
tions within the ith material layer under the temperature Ti is
fully equivalent to the effect of fluctuations in a resistance Ri

th
placed under the same temperature.

In other words, Eq. (29) manifests that the input resistance
Re(Zi

in−) of a stack of layers can be split into two addends:

Re(Zi
in−) = Ri

th + F iRe(Zi−1
in− ). When considered together,

these addends represent the total loss in the stack. However,
when the thermal fluctuations are of concern, Eq. (29) allows us
to separate explicitly a part of the input resistance that appears
in the Nyquist formula as being under physical temperature
of the ith layer. Thus, the noise produced within the ith layer
is associated with Ri

th. The other addend, F iRe(Zi−1
in− ), is due

to the loss in the layers located below the ith layer, and the
thermal noise associated with it is understood as the noise
received by the ith layer from the background.

Similar concepts exist, for example, in the antenna theory
where the thermal noise of an antenna is represented as a
sum of the noise generated locally by the Ohmic loss in
the antenna (analogous to Ri

th) and the noise received from
the environment. The first addend in this case is proportional
to the antenna loss resistance (which vanishes for an antenna
made of a perfect conductor) and the second term is propor-
tional to the radiation resistance of the antenna.

From Eq. (29), Re(Zi−1
in− ) = Ri−1

th + F i−1Re(Zi−2
in− ), there-

fore, we may as well write

Ri
th = Re

(
Zi

in−
) − F iRi−1

th − F iF i−1Ri−2
th − · · · , (30)

where the series terminates at the layer (with the index i −
M) that extends to z = −∞, for which Ri−M

th = Re(Zi−M
in− ) =

Re(ZTE,TM
i−M ). We may analogously expand the last addend in

(27) which corresponds to the effect of fluctuations in the
layers located at z < zi−1. Doing so, we obtain

(
E i

g

)2 = 2Ri
th�(ω,Ti)

�ω

π
+ 2F iRi−1

th �(ω,Ti−1)
�ω

π

+ 2F iF i−1Ri−2
th �(ω,Ti−2)

�ω

π
+ · · · . (31)

Thus, we conclude that the effect of thermal fluctuations in
all layers located at z < zi is the same as in a chain of
resistors with the values Ri

eff = Ri
th, Ri−1

eff = F iRi−1
th , Ri−2

eff =
F iF i−1Ri−2

th , etc., kept under the temperatures Ti , Ti−1, Ti−2,
etc. This result is analogous to the known formula for the
thermal noise in cascaded amplifiers, in which case the
quantities F i are called the noise factors.

The corresponding equivalent circuit is shown in Fig. 4,
in which we split Thévenin’s internal impedance into a
reactive part Xgen ≡ Im(Zi

in−) and a resistive part Re(Zi
in−) =∑

n Ri−n
eff . Respectively, Thévenin’s EMF splits into a series of

uncorrelated fluctuating EMFs: E i
g = ∑

n E i−n
eff , with (E i−n

eff )2 =
(2/π )�(ω,Ti−n)Ri−n

eff �ω, n = 0,1,2, . . . ,M, representing the
effect of thermal fluctuations in the layers located at z < zi .
The rest of the structure at z > zi is modeled by an effective
load impedance Zload ≡ Zi+1

in+ .

FIG. 4. Thévenin’s equivalent network of thermal noise in layered
media.
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The radiative heat flux from any layer located at z < zi

into the half-space z > zi can now be trivially calculated
based on this equivalent circuit. Namely, the power spectral
density associated with the plane waves with a given transverse
wave vector kt = (kx,ky) and a given angular frequency ω,
originated in the slab with the index i − n, can be expressed
as

P i−n
ω,kt

= 1

�ω

(
E i−n

eff

)2∣∣Zi
in− + Zload

∣∣2 Re(Zload)

= 2

π

�(ω,Ti−n)Ri−n
eff∣∣Zi

in− + Zi+1
in+

∣∣2 Re
(
Zi+1

in+
)
. (32)

Respectively, for the total radiative heat flux (associated with
waves of a selected polarization: TE or TM) into the half-space
z > zi we have

Sz>zi
=

∑
n

∫ ∞

0
dω

∫ ∫
dkxdky

(2π )2
P i−n

ω,kt

= 1

2π

∑
n

∫ ∞

0
dω

∫ ∞

0
q dq P i−n

ω,kt
. (33)

The flux crossing the same boundary in the opposite direction
is found by reversing the roles of the active and passive layers.

IV. PARTICULAR CASE I: BLACK-BODY RADIATION

Let us apply this equivalent circuit theory to calculate the
power radiated by a black body per unit of frequency and
surface area. We assume that a very thick black body lies in the
lower half-space z < 0 and is under the constant temperature
T . The upper half-space z > 0 is empty. We are interested in
the thermal radiation into this half-space from the black-body
surface at z = 0.

The equivalent circuit for this system is composed of a
single resistance R

(1)
eff = Re(Z(1)

in−), where Z
(1)
in− is the input

impedance of the half-space z < 0 occupied by the black
body, a corresponding fluctuating EMF E (1)

eff , a reactance
Xgen = Im(Z(1)

in−), and a load Zload = Z
(2)
in+ = Z

TE,TM
0 , which

is the input impedance of the open half-space at z > 0.
By definition, the black body absorbs all incoming radiation

independently of the frequency or the angle of incidence. Thus,
electromagnetically, there are no reflections from such a body
which means that it is perfectly impedance matched to the free
space. Therefore, Z

(1)
in− = Z

TE,TM
0 with

ZTE
0 =

√
μ0/ε0√

1 − q2/k2
0

, ZTM
0 =

√
μ0

ε0

√
1 − q2/k2

0, (34)

and, using Eq. (32), we may write the power spectral density
associated with the radiative heat flux into the open half-space
as

Pω,kt
= 2�(ω,T )

π

[
Re

(
Z

TE,TM
0

)]2∣∣2Z
TE,TM
0

∣∣2

=
{

�(ω,T )/(2π ), q � k0

0, q > k0.
(35)

The result is the same for both polarizations. From here, the
total power emitted from the black body by both polarizations
per unit of its surface, per unit of frequency, is

dS

dω
= 2 ×

∫ ∫
dkxdky

(2π )2
Pω,kt

= �(ω,T )

4π3

∫ ∫
k2
x+k2

y<k2
0

dkx dky

= ω2

4π2c2
�(ω,T ). (36)

The same result can be, of course, obtained from Planck’s
expression for spectral radiance of a black body which reads
as

Bω(T ) = ω2

4π3c2
�(ω,T ). (37)

The spectral radiance is defined as the power emitted from
the black-body surface per unit projected area of the emitting
surface, per unit solid angle, per frequency:

Bω(T ) = �Prad

A⊥���ω
. (38)

Hence, because in spherical coordinates the projected area
A⊥ = A0 cos θ , we find

dS

dω
=

∫ 2π

0

∫ π/2

0
Bω(T ) cos θ sin θ dθ dϕ = ω2

4π2c2
�(ω,T ),

(39)

which is the same as the result predicted by the equivalent
circuit model.

V. PARTICULAR CASE II: GENERALIZED
POLDER–VAN HOVE FORMULA

In this section, we derive a generalization of the Polder–
van Hove formula applicable to layered uniaxial magnetodi-
electrics, using the equivalent circuit model developed in
Sec. III. The geometry of the structure is the same as in
Fig. 1(a). We are interested in the radiative thermal transfer
between the media which occupy the half-spaces z < 0 and
z > d (the media with indices 1 and 3). These half-spaces are
kept under temperatures T1 and T3, respectively. The region
0 < z < d (the region 2) may be filled with another uniaxial
medium kept under temperature T2, or may be left empty
(which is the case of a vacuum gap).

In order to find the radiative heat flux from medium 1
into medium 3, we split the structure at the plane z = d, and
consider the layers located at z < d as active layers. The
half-space z > d plays the role of a load. The equivalent
circuit of such a structure can be represented as in Fig. 4,
with a pair of resistors R

(1)
eff = F (2)R

(1)
th = F (2)Re(Z1) and

R
(2)
eff = Re(Z(2)

in−) − R
(1)
eff , a pair of the corresponding fluctuating

EMFs E (1)
eff and E (2)

eff , a reactance Xgen = Im(Z(2)
in−), and a

complex load Zload = Z3.
One may verify that in the vacuum gap case R

(2)
eff = 0, which

is a consequence of the fact that there is no dissipation in the
gap. Evidently, the same conclusion holds when the gap is filled
with a lossless medium. Nevertheless, the following derivation
is general enough to be applicable to both medium-filled or
vacuum gaps, with or without dissipation.
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We start with calculating the noise factor F (2). Because
Z

(1)
in− = Z1, we obtain from (28)

F (2)= |Z2|2
|Z2 cos(β2d) + jZ1 sin(β2d)|2 =|1 − �12|2|e−jβ2d |2

|1 − �12e−2jβ2d |2 ,

(40)

where �12 is defined in Sec. II. Thus, from (32),

P 1→3
ω,kt

= 2

π

�(ω,T1)F (2)Re(Z1)∣∣Z(2)
in− + Z3

∣∣2 Re(Z3). (41)

Next, Thévenin’s internal impedance Z
(2)
in− is found from (25):

Z
(2)
in− = Z2

Z1 + jZ2 tan(β2d)

Z2 + jZ1 tan(β2d)
= Z2

1 + �12e
−2jβ2d

1 − �12e−2jβ2d
, (42)

from which the total impedance of the network reads as

Z
(2)
in− + Z3 = 2Z2

1 − �32

1 − �12�32e
−2jβ2d

1 − �12e−2jβ2d
, (43)

where �32 is defined in Sec. II. Substituting (40) and (43) into
(41), we obtain

P 1→3
ω,kt

= �(ω,T1)

2π

× |1 − �12|2|1 − �32|2|e−jβ2d |2
|1 − �12�32e−2jβ2d |2

Re(Z1)Re(Z3)

|Z2|2 .

(44)

Respectively, the total radiative heat flux associated either with
TE or TM polarized waves originated from medium 1 and
absorbed in medium 3 is

S1→3 = 1

π2

∫ ∞

0
dω

∫ ∞

0
q dq �(ω,T1)N (ω,q), (45)

where

N (ω,q) = |1 − �12|2|1 − �32|2|e−jβ2d |2
|1 − �12�32e−2jβ2d |2

Re(Z1)Re(Z3)

4|Z2|2 .

(46)

In the vacuum gap case, the wave impedance Z2 and
the propagation factor β2 are purely real (imaginary) for the
propagating waves (evanescent waves) in the gap. Therefore,
because Zi = Z2(1 + �i2)/(1 − �i2), i = 1,3, we have

Re(Zi) =
⎧⎨
⎩

|Z2| 1−|�i2|2
|1−�i2|2 (propagating waves),

−|Z2| 2 Im(�i2)
|1−�i2|2 (evanescent waves),

(47)

which results in the Polder–van Hove formulas when substi-
tuted into (45) and (46). However, the more general result
represented by Eqs. (45) and (46) holds for arbitrary uniaxial
magnetodielectric media filling the gap. It is easy to verify that
Eq. (46) can be as well written in form (9).

Moreover, in general, when the gap is filled with a lossy
medium and T2 	= 0, one also has to take into account the
radiative heat flux to medium 3 that is originated in the gap
(i.e., in medium 2). The power spectral density associated with

it is, from Eq. (32),

P 2→3
ω,kt

= 2

π

�(ω,T2)R(2)
eff∣∣Z(2)

in− + Z3

∣∣2 Re(Z3)

= �(ω,T2)

2π

|1 − �̃12|2|1 − �32|2|
|1 − �̃12�32|2

R
(2)
eff Re(Z3)

|Z2|2 , (48)

where �̃12 = �12e
−2jβ2d is the reflection coefficient defined at

the plane z = d. One may note that (48) has the same form
as (44) with d = 0 and one of the wave impedances replaced
by the effective resistance R

(2)
eff . This is the consequence of

the fact that when the thickness of the middle layer increases,
�̃12 → 0, R

(2)
eff → Re(Z2), and (48) reduces to the Polder–van

Hove’s result for two media in direct contact.

VI. ANTENNA THEORY AND CIRCUIT THEORY
CONCEPTS APPLIED TO RADIATIVE

HEAT TRANSFER

In this section, in order to better understand the circuit
model developed in this work, we establish a connection
between our model and the classical theory of noise in
receiving antennas. We consider the radiative heat transfer
example from Sec. V and employ an analogy between the
heat-receiving half-space (medium 3) and a loaded receiving
antenna. More exactly, in this analogy the unit area of the
interface between the media 2 and 3 is treated as an aperture
antenna that receives the power of thermal radiation from
the half-space z < d and delivers it to medium 3 which is
understood as the antenna load. In what follows, we assume
that medium 2 is lossless, therefore, all the radiative heat
delivered to medium 3 is generated in medium 1.

The equivalent circuit of this problem is the same as the
one discussed in Sec. V with R

(2)
eff = 0. Thus, in the antenna

analogy, there is one noise source with the internal impedance
Z

(2)
in− ≡ ZA ≡ RA + jXA, where XA = Xgen is the antenna

reactance and RA = F (2)Re(Z1) is the radiation resistance of
the antenna. Such analogy signifies that the effective radiation
resistance of an aperture equals the real part of the input
impedance of the half-space seen from the aperture. The
antenna load is represented in this analogy by the impedance
Zload = Z3 which is the wave impedance of medium 3.

As is known from the theory of noise in lossless antennas28

(an aperture by itself has no loss), the mean-square EMF e2 of
the thermal noise of a directive antenna (e.g., a radio telescope)
is given by the Nyquist formula (1), in which one inserts the
radiation resistance of the antenna [as R(ν)] and the effective
temperature of the area of the sky to which the antenna is
directed (which is medium 1 under temperature T = T1 in our
analogy). Applying this to the antenna equivalent circuit, we
may write for the noise power at the antenna load

Pout = e2

|ZA + Z3|2 Re(Z3) = 2

π

�(ω,T1)RA

|ZA + Z3|2 Re(Z3). (49)

For our example of a lossless medium 2, RA = Re(Z(2)
in−),

which brings us to the same result as the more general cascade-
circuit model (41), i.e., Pout = P 1→3

ω,kt
. Let us also note that if

there would be no separating layer, then ZA would be simply
equal to the wave impedance of medium 1. With the separation
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layer in place, antenna model calculation is equivalent to
calculation of input impedance of a transmission-line section
loaded with a known impedance [Eq. (42)].

It is worth noting that the tight connection between the
model of this paper and the theories of noise in antennas and
cascaded electric networks allow one to better understand op-
timal conditions for radiative heat transfer through composite
layers and, consequently, to design these material structures
aiming for desired and optimized performance. In particular,
from (49) and (41) we see that the problem of maximizing
radiative heat transfer for given layer temperatures reduces to
an equivalent problem of matching a generator to a load. Let
us discuss this issue assuming, for simplicity, that the media 1
and 3 are the same, i.e., Z1 = Z3. At the first glance, it appears
that the optimal heat transfer is ensured if we simply connect
the two equivalent media together (or fill the gap with the same
medium as those 1 and 3). However, this is true only if the wave
impedance is real. For complex Z1 and Z3 (which is realistic
even for propagating modes in view of losses in the media),
the best radiative heat transfer corresponds to the conjugate
impedance matching Z1 = Z∗

3 when the negative reactance of
one of two media is compensated by the positive reactance of
the other one. Then, the spatial spectrum of the heat transfer
function in accordance to (9) turns to N = 1

4 , whereas for the
direct contact of two equivalent media with wave impedance
Z = R + jX we have N = R2/|2Z|2. This tells us that the
radiative heat transfer through a properly filled gap can be in
principle made larger than that through the direct contact of
two equivalent media.

In Ref. 24 it was proposed to insert a slab of the so-called in-
definite medium between media 1 and 3 [Fig. 1(b)]. Indefinite
media (also called hyperbolic metamaterials37) are uniaxial
dielectrics characterized by the permittivity tensor that has
opposite signs of the longitudinal and transverse components.
Such filling allows for enhancement of the heat transfer
by increasing the noise factor F (2). This factor increases
compared to the vacuum gap because indefinite media support
propagation of spatial harmonics with high transverse wave
numbers, which would otherwise be evanescent in the gap
[notice the exponential factor in Eq. (40)]. For such waves,
F (2) dramatically increases at the spatial frequencies that
correspond to the minima of the denominator of Eq. (40).
However, it is not straightforward to ensure proper impedance
match in such structures. In this view, the structure suggested
and studied in Ref. 24 is not fully optimal, although it
still demonstrates that a specifically crafted filling may
dramatically enhance the radiative heat transfer through
the gap.

The transmission line analogy, however, suggests an im-
mediate possibility to circumvent the problem of impedance
conjugate match. The key is to make the wave impedances of
all three media real (at least, approximately) and equal in all
layers. This can be realized using a wire medium in region 2
which extends inside regions 1 and 3. Indeed, it is known that
wire media support propagating quasi-TEM modes with high
spatial frequencies (transverse wave numbers) q, including
q > k0 and limited only by the period of the wire array (see,
e.g., in Ref. 43). If the wires extend over all three regions,
then these quasi-TEM modes can be made to have real wave
impedance everywhere in the system, in principle allowing the

conjugate match of the load to the heat source for a wide range
of spatial frequencies q.

In this paper we, however, do not present the studies of
the heat transfer optimization, keeping these results for our
next publications. Instead, in the next section we report some
numerical results illustrating the applicability of our model for
solving practical problems.

VII. NUMERICAL EXAMPLE: RADIATIVE
THERMAL TRANSFER THROUGH

A NANOSTRUCTURED LAYER

In order to demonstrate applicability of the developed
theory to real-world problems, we calculate in this section the
spectral density of the radiative heat flux absorbed in medium
3 of the structure depicted in Fig. 1(b):

s13 ≡ dS1→3

dω
= 1

2π

∫ ∞

0
P 1→3

ω,kt
q dq. (50)

We compare the heat transferred across the vacuum gap with
that transferred across the gap filled with either normally
oriented metal-state single-wall carbon nanotubes (CNT) or
with similarly oriented golden (Au) nanowires. Calculation
for the array of CNT is done in order to validate the present
model using the exact simulations of Ref. 24. Calculations
for metal nanowires are done in order to confirm or decline
the effect of giant enhancement of radiative heat transfer in the
near-infrared (IR) range due to the presence of nanowires. This
effect was predicted but not studied in Ref. 24. In accordance
with the theory presented above, all calculations are done for
homogenized media. The homogenization model for the ith
medium results in explicit formulas for ε⊥

i and ε
‖
i (whereas

μ⊥
i = μ

‖
i = 1).

The mid-IR homogenization model for the array of CNT
was described and validated in Ref. 44. The parameters of
the array of CNT correspond to those of Ref. 24 [see also in
Fig. 1(b)]. The homogenization model for an array of aligned
metal nanowires that represents them as a layer of indefinite
dielectric was described in Ref. 45. This model is applicable
in the visible and near-IR ranges where it offers a rather high
accuracy for optically dense arrays of thin wires. It practice,
for wavelengths in the range λ = 1–2 μm, the array period has
to be below 300–600 nm and the wire diameter should be on
the order of the metal skin depth or smaller.43 For example,
the diameter of Au nanowires in this wavelength range should
not exceed 20–50 nm.

In both cases (CNT in the mid-IR range and nanowires in
the near IR), the presence of the metamaterial enhances the
radiative heat transfer. This effect results from the conversion
of TM-polarized evanescent waves into propagating waves,
which happens inside the effective indefinite material filling
the gap.22,24,39 Respectively, in this section we analyze only
the part of the radiative heat which is transferred by the TM-
polarized waves.

In this numerical example, we neglect the contribution
of thermal sources located in medium 2 (i.e., in CNTs and
nanowires). The impact of the thermal radiation produced and
absorbed in medium 2 will be evaluated in our next paper,
where we will also consider thermophotovoltaic applications
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FIG. 5. (Color online) (a) Coefficient |τ |2 = 4|Z1/R1|2N at λ = 7.5 μm versus normalized spatial frequency qa/π for the gap filled with
free space and for that filled with an array of CNT. Dashed lines: exact (beyond homogenization) simulations from Ref. 24. Solid lines:
analytical calculations in accordance to the present model. (b) Spatial spectrum N of the radiative heat transfer function versus dimensionless
spatial frequency q/k at λ = 1.5 μm. Calculations are done for four cases: nanowires are only in medium 2, nanowires are in both media 1
and 2, nanowires are in medium 1 only, and nanowires are absent.

of our present model. As is clear from Fig. 1(b), medium 2
in the gap is a triple-layered structure, therefore, there are
in total five material layers in the whole structure. However,
since in this example we neglect the thermal processes in
the gap, we may replace the layers in the gap by a single
equivalent four-pole network. Its Z matrix Z(2)

mn is obtained
in a standard manner from its transfer matrix,30 with the
latter being a product of transfer matrices of effectively
homogeneous anisotropic layers with thicknesses h1, h2, and
h3. Next, the power spectral density P 1→3

ω,kt
in Eq. (50) is

calculated from Eq. (41) where the noise factor is F (2) =
|Z(2)

21 |2/|Z(2)
11 + Z1|2 [Eq. (28)], and the internal impedance is

Z
(2)
in− = Z

(2)
22 − Z

(2)
12 Z

(2)
21 /(Z(2)

11 + Z1) [Eq. (24)].
In Fig. 5(a), we depict the energy transfer coefficient |τ |2

introduced in Ref. 24 [Eq. (12) of Ref. 24] which differs from
our heat transfer spatial spectrum N (ω,q) defined by Eq. (10)
by the factor 4|Z3|2/(R1R3). In the present case, media 1 and 3
are equivalent (heavily doped silicon), i.e., Z1 = Z3, R1 = R3.
All parameters in the calculation illustrated by Fig. 5(a)
correspond to those from Ref. 24. The value |τ |2 is calculated
at wavelength λ = 7.5 μm as a function of the normalized
spatial frequency qa/π , where a = 20 nm is the period of the
CNT array in the domains h1 = d/3 and h3 = d/3, where
the gap thickness is d = 1 μm. In the domain h2 = d/3,
the array period is equal to a2 = √

20 nm. Heavily doped
silicon supports so-called surface plasmon-polariton (SPP)
waves generated on the surfaces of the Si half-spaces at
(qa/π ) = 0.01 in the case when the gap is empty. The value
q = 0.01π/a is close to q = 1.8k0, where k0 is the free-space
wave number. The manifestation of this SPP is the maximum of
the corresponding curve in Fig. 5(a). Dashed curves in Fig. 5(a)
correspond to the exact simulations of Ref. 24 which take into
account the microstructure of the material layer in the gap.

In Fig. 5(a), we show only the region of spatial frequencies
(qa/π ) � 0.08 in which the difference between the exact
and homogenized models of the CNT array is negligibly
small (see Ref. 24). For both empty gap and gap filled
with CNT, the agreement between our model and the exact
simulations is excellent. Local maxima of the transmittance
spatial spectrum for the gap filled with CNT correspond to the
thickness resonances of spatial harmonics [in presence of CNT
the whole region (qa/π ) � 0.08 corresponds to propagating
plane waves, though the inequality q > k0 holds for (qa/π ) >

5.6 × 10−3]. Fine agreement between our circuit model and
exact simulations pertains at other wavelengths aside from the
ones mentioned in Figs. 5(a) and 5(b) because with our circuit
model we also have reproduced the frequency dependence of
the heat transfer gain G(ω) = s

(CNT)
13 (ω)/s(0)

13 (ω), calculated in
Ref. 24. Here, s

(0)
13 corresponds to the vacuum gap and s

(CNT)
13

corresponds to the gap filled with CNT.
In Fig. 5(b), we present the dependence of N (q,λ∗) on

the normalized wave number for the case when the gap with
the width d = 2 μm is filled with golden nanowires. The
complex permittivity of gold in the range λ = 1 . . . 2 μm
was taken from Ref. 46. Regions 1 and 3 in this case are
filled with doped germanium used in real thermophotovoltaic
systems whose complex permittivity was taken from Ref. 47.
Function N (q,λ∗) was calculated for nanowires with volume
fraction p = 0.2 in the domains h1 and h3, and p = 0.4 in
the domain h2 (when h1 = h2 = h3). Here, λ∗ = 1.5 μm
has been chosen having in mind possible thermophoto-
voltaic applications, because at this wavelength the doped
Ge has nearly maximal photovoltaic response. The result for
N (q,λ∗) (thick solid curve) was compared with that for the
empty gap with d = 2 μm (thin dashed curve) at the same
wavelength.

155124-10



EQUIVALENT CIRCUIT MODEL OF RADIATIVE HEAT . . . PHYSICAL REVIEW B 87, 155124 (2013)

1200 1300 1400 1500 1600 1700 1800 1900 2000 2100
21

22

23

24

25

26

27

28

29

30

Wavelength nm( )

G
ai

n
(

dB
)

Nanowires in media 1 and 2
Nanowires in medium 2

1200 1300 1400 1500 1600 1700

(a) (b)

1800 1900 2000 2100
16

18

20

22

24

26

28

30

Wavelength nm( )

G
ai

n
(

dB
)

Nanowires in media 1 and 2
Nanowires in medium 2

FIG. 6. (Color online) The gain in the spectral density of the transferred radiative heat flux due to the presence of nanowires (two cases of
their arrangement). (a) Gap of thickness d = 2 μm. (b) Gap of thickness d = 0.5 μm.

It has to be mentioned that the structure shown in Fig. 1(b)
with free-standing metal nanowires is an abstraction; in a
feasible structure, nanowires are partially submerged into the
host material. Therefore, we have also calculated the function
N (q,λ∗) for the case when Au nanowires are semi-infinite
and have the same volume fraction p = 0.3 in media 1 and
2. This calculation [thick dashed curve in Fig. 5(b)] is done
in order to understand how the extension of nanowires into
medium 1 changes the radiative heat transfer. In this case, the
gap is uniformly filled, i.e., in the structure shown in Fig. 1(b),
h2 = h3 = 0 and h1 = d. In this case, the nanowires touch the
surface of medium 3 and the thermal transfer by the direct
thermal conductance may be of significance, in addition to
the radiative one. This effect is not considered in this paper.
Additionally, we have studied the case when nanowires with
p = 0.3 are located only in medium 1 and the gap is empty
[thin solid curve in Fig. 5(b)].

We can see in Fig. 5(b) that the integral increase of N (q,λ∗)
with respect to the empty gap is very significant for both
cases when the nanowires fill in the gap. Function N (q,λ∗)
in the case of the vacuum gap has two local maxima in the
region q < k0 resulting from Fabry-Perot resonances. Because
the structure is not fully impedance matched, these maxima
are much smaller than the achievable limit Nmax = 1

4 , and
N vanishes fast at q > k0. Unlike the situation illustrated by
Fig. 5(a), the real part of the complex permittivity of Ge at
λ = 1.5 μm is positive and SPP can not be excited. Since the
value of N for the empty gap is so small, the heat transfer gain
for the two half-spaces of Ge separated by Au nanowires turns
out to be larger than the same gain for the two half-spaces of
Si separated by CNT, which was considered in Ref. 24.

Presence of nanowires only in medium 1 turns out to be
destructive for the amplitude of N . In this case, medium 1 is an
indefinite metamaterial, and the impedance mismatch between
medium 1 and free space increases. However, if nanowires are
present in both media 1 and 2, we observe higher values of

N for q > k0. Among the studied cases, the case when the
nanowires are located only in medium 2 is the best one because
it corresponds to the smallest impedance mismatch between
all three media.

The dependencies shown in Fig. 5(b) are similar at all
wavelengths that belong to photovoltaic operation band of
Ge (λ = 1−2 μm). This confirms that the heat transfer gain
G = s

(NW)
13 /s

(0)
13 can be made almost uniform over a wide range

of wavelengths with the use of the nanowires. Here, s
(NW)
13

corresponds to the case of nanowires in the gap and s
(0)
13

corresponds to the vacuum gap. Figure 6(a) presents the gain in
logarithmic units (dB) defined as 10 log10 G. These results are
obtained for the case when d = 2 μm. A huge gain is observ-
able within the range of the gap thicknesses d = 0.5 . . . 5 μm.
In Fig. 6(b), we plot the same gain for the case d = 0.5 μm.
We can conclude that by filling the gap with Au nanowires, the
near-IR radiative heat transfer across the gap can be increased
by three orders of magnitude when compared to the vacuum
gap. This result confirms the expectations of Ref. 24.

VIII. CONCLUSIONS

In this work, we have formulated an equivalent circuit
theory of the radiative heat transfer in uniaxial stratified
magnetodielectric media. We have proven that the effect of
thermal-electromagnetic fluctuations in such structures can
be fully determined without an explicit knowledge of the
microstructure of the layers, as well as without a need
to employ any calculations based on distributed fluctuating
currents. Instead, the only physical characteristic on which we
base our theory is the effective input impedance of a stack
of layers, which can be obtained for any spatial harmonic of
the field (including both propagating and evanescent waves)
using the methods of VTLT. We have shown that such
impedance representation, while being in full agreement with
sophisticated full-wave methods known from the literature,
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results in simple formulas analogous to Nyquist theory-based
formulas for thermal noise in cascaded electric circuits (for
example, cascaded amplifiers). Therefore, with this model
some important concepts from the theory of electric networks
(conjugate-impedance match, optimal filtering, etc.) can be
imported into the field of radiative thermal transfer in multi-
layered structures.

From the point of view of practical implementations, the
developed equivalent circuit approach offers significant sim-
plifications as compared to the known theories of radiative heat
transfer based on distributed fluctuating currents. Without any
modifications, our method can be used in heat transfer studies
in uniaxial anisotropic media that include micron and (or)
submicron-thick layers. Moreover, our model is applicable to
radiative heat transfer in composite or nanostructured layers (if
these layers are effectively homogeneous for spatial harmonics
of the electromagnetic field which transfer the radiative heat),
and is readily generalizable to stratified bianisotropic and
spatially dispersive materials. Therefore, we hope that our
work may significantly enlarge the scope of the radiative heat
transfer research in composites, especially in nanostructured
metamaterials. We believe that this may lead to new oppor-
tunities in the design of efficient thermal energy harvesting
devices, such as thermophotovoltaic converters and such.

APPENDIX: NYQUIST FORMULA FOR
A RECIPROCAL ANISOTROPIC AND LOSSY

MAGNETODIELECTRIC SLAB

We consider a uniaxial magnetodielectric slab described
by the macroscopic Maxwell equations for the time-harmonic
fields

∇ × E = −jωμa · H − Jm, ∇ × H = jωεa · E + Je,
(A1)

with the absolute permittivity and permeability dyadics of the

form εa = ε0(ε⊥I t + ε‖z0z0) and μa = μ0(μ⊥I t + μ‖z0z0).
We assume that the material of the slab is lossy, therefore, by
the fluctuation-dissipation theorem (at nonzero temperature)
there appear fluctuating external currents Je and Jm in the slab.
The explicit form of these currents is not important at this stage.
As in the main text, here we use the convention in which the
time-harmonic quantities are understood as root-mean-square
(rms) values.

Let the fields E′, H′ be an arbitrary solution of the
Maxwell equations (A1) with Je = Jm = 0 within the slab.
Then, considering the two systems of Maxwell equations with
nonzero sources and with vanishing sources, respectively, we
can form the Lorentz lemma

∇ · (E × H′ − E′ × H) = E′ · Je − H′ · Jm. (A2)

Integrating it over the volume V of the slab, we obtain the
reciprocity relation∫

S1

n1 · (E × H′ − E′ × H)|S1 dS

+
∫

S2

n2 · (E × H′ − E′ × H)|S2 dS

=
∫

V

(E′ · Je − H′ · Jm) dV, (A3)

where S1,2 are at the two interfaces of the slab, and n1,2 are the
outer unit normals to these surfaces, respectively.

One may select any solution of the uniform Maxwell
equations within the slab for the fields E′, H′. For us it is
convenient to use the one that has the form

E′(r) = E′
−kt

(z)ejkt ·r, H′(r) = H′
−kt

(z)ejkt ·r, (A4)

where the z axis is orthogonal to the slab and the real vector
kt lies in the plane of the slab (the xy plane). Physically, such
a form corresponds to a superposition of plane waves with
the same transverse wave number: −kt . In Eq. (A4), E′

−kt

and H′
−kt

define the field solution profile within the slab as a
function of z.

Substituting (A4) into the reciprocity relation (A3), we
obtain (the first slab interface is at z = z1 and the second
one is at z = z2)

n1 · (
Ekt

× H′
−kt

− E′
−kt

× Hkt

)∣∣
z=z1

+ n2 · (
Ekt

× H′
−kt

− E′
−kt

× Hkt

)∣∣
z=z2

=
∫ z2

z1

(
E′

−kt
· Je

kt
− H′

−kt
· Jm

kt

)
dz, (A5)

where we have decomposed the fluctuating currents Je,m and
the fields E, H into plane waves using the Fourier transform
defined as

F(r) = A0

(2π )2

∫ ∫
Fkt

(z)e−jkt ·r d2kt ,

(A6)

Fkt
(z) = 1

A0

∫ ∫
F(r)ejkt ·r d2r,

where A0 is the unit area in the xy plane, and F can be any of
the fields or currents.

Equation (A5) is the reciprocity relation for the wave com-
ponents characterized with a fixed transverse wave number.
In order to simplify further writing we will use the notation
F1,2 ≡ F±kt

(z1,2) with F being any of the fields or currents.
Then, noticing that only transverse components of the fields
play any role on the left-hand side of (A5), we rewrite it as

n1 · (E1t × H′
1t − E′

1t × H1t )

+ n2 · (
E2t × H′

2t − E′
2t × H2t

)
= E′

1t · (n1 × H1t ) − E1t · (n1 × H′
1t )

+ E′
2t · (n2 × H2t ) − E2t · (n2 × H′

2t ). (A7)

Let us remind that the quantities E′
1,2t

and H′
1,2t

have the
meaning of the transverse components of the electric and mag-
netic fields at the interfaces of a source-free magnetodielectric
slab. Therefore, as follows from the vector transmission line
theory (VTLT) for such slabs, these components are related by
the impedance matrix of the slab

(
E′

1t

E′
2t

)
=

(
Z11 Z12

Z21 Z22

)
·
(

n1 × H′
1t

n2 × H′
2t

)
. (A8)

The components of this matrix are dyadics that are even in

kt : Zmn(−kt ) = Zmn(kt ). Also, due to the symmetry and the

reciprocity, Z11 = Z22, Z12 = Z21, and Z
T

mn = Zmn.30
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Using (A8) on the left-hand side of Eq. (A7), we obtain

A0[E′
1t · (n1 × H1t ) − E1t · (n1 × H′

1t ) + E′
2t · (n2 × H2t ) − E2t · (n2 × H′

2t )]

= I′
1 · [Z11 · I1 + Z12 · I2 − V1] + I′

2 · [Z22 · I2 + Z21 · I1 − V2], (A9)

where we have introduced the vector currents I′
1,2 ≡√

A0 n1,2 × H′
1,2t

, I1,2 ≡ √
A0 n1,2 × H1,2t and the vector

voltages V1,2 ≡ √
A0 E1,2t , and used the symmetry properties

of the impedance dyadics.
Let us now work on the right-hand side of (A5). At a fixed

kt , the Maxwell equations for the fields E′(r), H′(r) reduce
to a system of first-order linear differential equations for the
vector functions E′

−kt
(z) and H′

−kt
(z). From the uniqueness

theorem, it follows that these functions are univocally defined
by boundary conditions imposed either on tangential electric
or tangential magnetic field. Thus, we may consider two
auxiliary boundary-value problems, the first one with the
boundary conditions

n1 × HI
−kt

(z1) = I′
1/

√
A0, n2 × HI

−kt
(z2) = 0, (A10)

and the second one with
n1 × HII

−kt
(z1) = 0, n2 × HII

−kt
(z2) = I′

2/
√

A0. (A11)

The field equations are the same in these two problems. From
linearity it follows that the superposition of the solutions of the
two problems is the same as the fields E′

−kt
(z) and H′

−kt
(z) that

appear in (A9). On the other hand, these problems physically
correspond to the two cases of the magnetodielectric slab
backed with a magnetic wall (perfect magnetic conductor,
PMC) at z = z2 and at z = z1, respectively.

Let us consider the problem with the boundary conditions
(A10). We may split the vector I′

1 into the components parallel
and orthogonal to kt :

I′
1 = I ′

1,TM
kt

|kt | + I ′
1,TE

kt × n1

|kt | . (A12)

Thus, the component I ′
1,TM corresponds to TM-polarized

field, and the component I ′
1,TE corresponds to TE-polarized

field. Because the wave equations in the slab also split into
independent equations for the TM and TE waves, we may also
write for the vector fields

EI
−kt

(z) = E′
1,TM(z) + E′

1,TE(z),
(A13)

HI
−kt

(z) = H′
1,TM(z) + H′

1,TE(z),

where the addends are the TM and TE solutions for the fields
in the PMC-backed slab. The magnitudes of these solutions
are proportional to I ′

1,TM and I ′
1,TE, respectively.

Based on the above discussion, we find for the right-hand
side of (A5)∫ z2

z1

(
EI

−kt
· Je

kt
− HI

−kt
· Jm

kt

)
dz

=
∫ z2

z1

(
E′

1,TM · Je
kt

− H′
1,TM · Jm

kt

)
dz

+
∫ z2

z1

(
E′

1,TE · Je
kt

− H′
1,TE · Jm

kt

)
dz

= 1

A0
I′

1 ·
(

e1,TM
kt

|kt | + e1,TE
kt × n1

|kt |
)

, (A14)

where

e1,TM = A0

I ′
1,TM

∫ z2

z1

(
E′

1,TM · Je
kt

− H′
1,TM · Jm

kt

)
dz, (A15)

e1,TE = A0

I ′
1,TE

∫ z2

z1

(
E′

1,TE · Je
kt

− H′
1,TE · Jm

kt

)
dz. (A16)

In an analogous manner, we consider the second case with a
PMC at z = z1 and find∫ z2

z1

(
EII

−kt
· Je

kt
− HII

−kt
· Jm

kt

)
dz

= 1

A0
I′

2 ·
(

e2,TM
kt

|kt | + e2,TE
kt × n2

|kt |
)

, (A17)

where

e2,TM = A0

I ′
2,TM

∫ z2

z1

(
E′

2,TM · Je
kt

− H′
2,TM · Jm

kt

)
dz, (A18)

e2,TE = A0

I ′
2,TE

∫ z2

z1

(
E′

2,TE · Je
kt

− H′
2,TE · Jm

kt

)
dz. (A19)

Therefore, combining these results together and using (A5),
(A7), and (A9), we obtain

I′
1 · [Z11 · I1 + Z12 · I2 − V1] + I′

2 · [Z22 · I2 + Z21 · I1 − V2]

= I′
1 ·

(
e1,TM

kt

|kt | + e1,TE
kt × n1

|kt |
)

+ I′
2 ·

(
e2,TM

kt

|kt | + e2,TE
kt × n2

|kt |
)

. (A20)

Finally, because the vectors I′
1 and I′

2 are arbitrary,(
Z11 Z12

Z21 Z22

)
·
(

I1

I2

)
−

(
V1

V2

)
=

(
e1

e2

)
, (A21)

where e1,2 = e1,2,TM(kt /|kt |) + e1,2,TE(kt × n1,2)/|kt |. These equations represent the equivalent vector circuit model of a
magnetodielectric slab with fluctuating sources. In this model, I1,2 have the meaning of equivalent vector currents at the
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two ports of a linear four-pole network of dyadic impedances, and e1,2 are the equivalent vector EMFs acting at the two
ports.

Because the equivalent EMFs are expressed through the fluctuating currents, they are also fluctuating, stochastic quantities. As
is readily seen from (A15) and (A16) and (A18) and (A19), the stochastic mean value of the fluctuating EMFs is zero: e1,2 = 0,
because Je,m

kt
= 0. However, the mean-square values of the fluctuating EMFs, as well as their mutual correlations, are in general

different from zero and can be calculated as follows:

(e∗
α,peβ,q ) = A2

0

I ′∗
α,pI ′

β,q

∫ z2

z1

(
E′∗

α,p · Je
kt

∗ − H′∗
α,p · Jm

kt

∗) dz

∫ z2

z1

(
E′

β,q · Je
kt

− H′
β,q · Jm

kt

)
dz′

× A2
0

I ′∗
α,pI ′

β,q

∫ z2

z1

∫ z2

z1

(
E′∗

α,p · Je
kt

∗ − H′∗
α,p · Jm

kt

∗)∣∣
z

(
E′

β,q · Je
kt

− H′
β,q · Jm

kt

)∣∣
z′ dz dz′

= A2
0

I ′∗
α,pI ′

β,q

[∫ z2

z1

∫ z2

z1

E′∗
α,p(z) · Je ∗

kt
(z)Je

kt
(z′) · E′

β,q(z′) dz dz′

+
∫ z2

z1

∫ z2

z1

H′∗
α,p(z) · Jm ∗

kt
(z)Jm

kt
(z′) · H′

β,q(z′) dz dz′
]

, (A22)

where α,β = 1,2 and p,q = TE,TM. There are no cross terms
in the last integral of Eq. (A22) because the electric and
magnetic fluctuations are statistically independent: the dyadic
Je ∗

kt
Jm

kt
is such that Je ∗

kt
Jm

kt
= 0.

From the fluctuation-dissipation theorem, for the fluctuat-
ing currents composed of harmonics within a narrow interval
around a given frequency ω,

Je ∗
kt

(z)Je
kt

(z′) = 1

πA0
jω(εa − ε

†
a)δ(z − z′)�(ω,T )�ω,

(A23)

Jm ∗
kt

(z)Jm
kt

(z′) = 1

πA0
jω(μa − μ

†
a)δ(z − z′)�(ω,T )�ω.

(A24)

The dimensionality factor 1/A0 appears in (A23) and (A24)
because of the form of transformation (A6). Note also that
(A23) and (A24) are written for the rms amplitudes of the
fluctuating currents.

Substituting (A23) and (A24) into (A22) and evaluating the
integrals over z′ we find that

(e∗
α,peβ,q) = jωA0�(ω,T )�ω

πI ′∗
α,pI ′

β,q

∫ z2

z1

[E′∗
α,p · (εa − ε

†
a) · E′

β,q

+ H′∗
α,p · (μa − μ

†
a) · H′

β,q] dz. (A25)

However, from the well-known differential lemma

∇ · (E1 × H∗
2 + E∗

2 × H1)

= −jω[E∗
2 · (εa − ε

†
a) · E1 + H∗

2 · (μa − μ
†
a) · H1],

(A26)

which holds for arbitrary source-free electromagnetic fields
E1,2(r), H1,2(r) within the slab, it follows that∫ z2

z1

[E′∗
α,p · (εa − ε

†
a) · E′

β,q + H′∗
α,p · (μa − μ

†
a) · H′

β,q] dz

= − 1

jω
[n1 · (E′

β,q×H′∗
α,p)|z=z1+n1 · (E′∗

α,p × H′
β,q)|z=z1

+ n2 · (E′
β,q × H′∗

α,p)|z=z2 + n2 · (E′∗
α,p × H′

β,q)|z=z2 ],

(A27)

from which we see that if p 	= q, the integral (A27) vanishes
due to the orthogonality of the TE and TM polarizations. Next,
when p = q and α = β = 1 we obtain from (A27), (A10) and
(A11), and (A8)∫ z2

z1

[E′∗
1,p · (εa − ε

†
a) · E′

1,p + H′∗
1,p · (μa − μ

†
a) · H′

1,p] dz

= 2|I ′
1,p|2

jωA0
Re

(
Z

p

11

)
. (A28)

An analogous result is obtained for α = β = 2. On the other
hand, when α = 1 and β = 2 we obtain∫ z2

z1

[E′∗
1,p · (εa − ε

†
a) · E′

2,p + H′∗
1,p · (μa − μ

†
a) · H′

2,p] dz

= I ′∗
1,pI ′

2,p

jωA0

(
Z

p

12 + Z
p

21
∗)

. (A29)

Combining all these results together and using the reciprocity
property of the Z parameters, we find from (A25) that

(e∗
α,peβ,p) = 2

π
Re

(
Z

p

αβ

)
�(ω,T )�ω, (A30)

where α,β = 1,2 and p = TE,TM. Equation (A30) is the
generalized Nyquist formula for the thermal-electromagnetic
noise in a uniaxial magnetodielectric layer.
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