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Recently, a new class of quantum phases of matter—symmetry protected topological states, such as topological
insulators—has attracted much attention. In presence of interactions, group cohomology provides a classification
of these [Chen et al., Phys. Rev. B 87, 155114 (2013)]. These phases have short-ranged entanglement and no
topological order in the bulk. However, when long-range entangled topological order is present, it is much less
understood how to classify quantum phases of matter in the presence of global symmetries. Here we present
a classification of bosonic gapped quantum phases with or without long-range entanglement in the presence
or absence of on-site global symmetries. In 2 + 1 dimensions, the quantum phases in the presence of a global
symmetry group SG, and with topological order described by a finite gauge group GG, are classified by the
cohomology group H 3(SG × GG,U (1)). Generally, in d + 1 dimensions, such quantum phases are classified by
Hd+1(SG × GG,U (1)). Although we only partially understand to what extent our classification is complete, we
present an exactly solvable local bosonic model, in which the topological order is emergent, for each given class
in our classification. When the global symmetry is absent, the topological order in our models is described by the
general Dijkgraaf-Witten discrete gauge theories. When the topological order is absent, our models become the
exactly solvable models for symmetry protected topological phases [Chen et al., Phys. Rev. B 87, 155114 (2013)].
When both the global symmetry and the topological order are present, our models describe symmetry enriched
topological phases. Our classification includes, but goes beyond, the previously discussed projective symmetry
group classification. Measurable signatures of these symmetry enriched topological phases and generalizations
of our classification are discussed.
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I. INTRODUCTION

Recently there has been significant interest in topological
phases of matter, which are quantum phases of matter be-
yond the Ginzburg-Landau symmetry-breaking description.1

After the discovery of fractional quantum Hall states, the
notion of topological order was proposed.2 Topologically
ordered phases of matter feature ground-state degeneracies
on torus,3 and anyonic quasiparticle excitations in the bulk
in 2 + 1 dimensions.4 These features are robust against
arbitrary local perturbations. Therefore, the global symmetry
is not a requirement for topologically ordered quantum
phases.

More recently, symmetry protected topological (SPT)
phases attracted a lot of attention. SPT phases are defined
to have no topological order in the bulk (and thus no anyons in
the bulk nor ground-state degeneracies on torus); nevertheless,
their distinctions are protected by the global symmetry.5–13

Examples of SPT phases include topological insulators and
superconductors.14–18 One experimental signature of the SPT
phases are the symmetry protected gapless boundary states,
which can be obtained from a Chern-Simons based classifica-
tion of phases.19 Another classification of interacting bosonic
SPT phases for on-site global symmetries is provided in the
original work by Chen et al.20 using the group cohomology
method. At the superficial level, there is no relation between
the SPT phases and the topologically ordered phases. For
example, in 1 + 1d, it can be shown that in the presence
of interactions, there is no topological order but there are
nontrivial SPT phases,20–25 such as the AKLT26,27 integer spin
chain. A recent beautiful work28 shows that SPT phases and
topologically ordered phases are related via certain duality in
spatial dimensions higher than one.

How can one understand/classify gapped quantum phases
when both the topological order and the global symmetry are
present? This is an important question for both fundamental
and practical purposes, and this paper is an attempt to answer it,
at least partially. To illustrate the importance of this question,
as an example, we can consider one famous topologically
ordered phase: the Laughlin’s ν = 1/3 fractional quantum Hall
liquid29 (FQHL), which has threefold ground-state degeneracy
on torus2 and anyonic quasiparticle excitations in the bulk.
In the physical realization of the Laughlin FQHL in 2DEG,
there is also a global symmetry: the U (1) charge conservation
for electrons. One can imagine what would happen if the
U (1) charge conservation was absent, for instance, if a
small electronic pairing was introduced via proximity effect.
Because the topological order is robust towards arbitrary
perturbation, the threefold ground-state degeneracy and the
anyonic statistics of quasiparticles would still be present.

Is the U (1) global symmetry unimportant for the FQHL
physics then? Obviously, this is not the case. In fact, this
U (1) symmetry allows one to find two striking experimental
signatures of Laughlin’s state: the quantized Hall conductance
σxy = e2/3h and the e∗ = e/3 fractional charge carried by
quasiparticles. The second signature is very interesting: The
quasiparticles of a topologically ordered phase can carry a
fraction of the quantum number of the fundamental degrees
of freedom (electrons here) in the quantum system. Such phe-
nomena are often referred to as “symmetry fractionalization.”
These phenomena only occur when the system has topological
order. The e∗ = e/3 charge of quasiparticles is a remarkable
demonstration of how the global symmetry can “act” on the
topological order in a nontrivial fashion.30–32

Another collection of fascinating quantum phases is the
quantum spin liquid (QSL). Quantum spin liquids are often
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defined to be featureless Mott insulator phases, namely phases
that respect full lattice symmetry as well as the SU (2) spin
rotational symmetry, with a half-integer spin per unit cell.
Based on the Hastings’ generalization33 of Lieb-Schultz-
Mattis theorem34 in higher dimensions, we know that gapped
QSLs in two and higher spatial dimensions must host nontrivial
ground-state degeneracies on torus. However, because there is
no symmetry-breaking-induced ground-state degeneracy, this
indicates that the gapped QSLs are topologically ordered.

How can one classify/understand QSL phases? For in-
stance, recent numerical simulations35 point out that the spin- 1

2
Heisenberg model on a Kagome lattice hosts a gapped QSL
phase. It is then an important issue to understand the nature
of this QSL phase. As a matter of fact, numerical evidence
for topological order described by a Z2 gauge theory has been
found.36,37 Is this topological order enough to determine the
nature of this QSL phase? The answer is negative. It turns out
that there are more than one QSL phase on the Kagome lattice
even for a given Z2 topological order.38–42 Their distinctions
are protected by the global symmetries. Roughly speaking, the
way that the global symmetries act on the topological order
is different for different phases. These phenomena have been
called “symmetry enriched topological phases” or “symmetry
enriched topological order.”43–46 When the global symmetries
are absent, all these phases are no longer distinguishable and
are adiabatically connected to one another. However, when
the global symmetries are present, one necessarily encounters
phase transitions while going from one phase to another.
Therefore, for the Kagome lattice gapped spin liquid example,
it remains an unresolved issue to understand which among all
the symmetry enriched topological phases is the one found in
the numerical simulations.

The above physical examples motivate us to consider the
following questions. How are symmetry enriched topological
(SET) phases generally classified? Or, how can one classify
different ways in which the global symmetry “acts” on
the topological order? What are the experimental/numerical
signatures of different SET phases? The last question is quite
urgent for the above Kagome QSL example: Although there
are nice numerical methods (e.g., the topological entanglement
entropy47,48) to detect the Z2 topological order,37,49–51 due to
the lack of theoretical understanding it is still unknown how
to numerically distinguish different SET phases.

This paper attempts to address these questions to a certain
level. We consider on-site global symmetries only; namely, the
global symmetry transformation is a direct product of unitary
transformations, and each transformation only acts in the local
Hilbert space. In addition, we focus on bosonic systems with
finite unitary symmetry groups SG and topological orders that
can be described by finite gauge groups GG. Generalizations
of these conditions are discussed at the end of the paper. Under
these assumptions, we propose that gapped bosonic quantum
phases with SG and GG are classified by group cohomology
H 3(SG × GG,U (1)) in 2 + 1 dimensions, and generally
Hd+1(SG × GG,U (1)) in d + 1 dimensions (d � 2). Here
“×” is the direct product (or the cross product) of two groups,
and we explain the notion of group cohomology shortly.

Let us consider some special limits of our classification.
When the system does not have topological order, GG = Z1,
our classification becomes Hd+1(SG,U (1)). This, in fact,

goes back to the group cohomology classification of SPT
phases.20 When the system does not have global symmetry,
SG = Z1, our classification becomes Hd+1(GG,U (1)). In
2 + 1 dimensions, this coincides with the Dijkgraaf-Witten
classification52 of topological quantum field theories with
discrete gauge groups.

When both the SG and the GG are nontrivial, we show that
the indices of the classification Hd+1(SG × GG,U (1)) can be
expanded as

Hd+1(SG × GG,U (1))

= Hd+1(SG,U (1)) × Hd+1(GG,U (1)) × SET (SG,GG),

(1)

where SET (SG,GG) is introduced later. SET (SG,GG)
describes the nontrivial interplay between the topological order
and the global symmetry and classifies the SET phases.

Some detectable signatures of SET phases, for example, the
symmetry protected degeneracy of excited states, are studied
in this paper. We leave the general numerical/experimental
signatures of SET phases as a subject for future investigation.
Nevertheless, we provide exactly solvable local bosonic
models for every phase in our classification, in which the
topological order is emergent. These models would be useful
tools to further study the properties of these phases, including
detectable signatures.

The plan of this paper is as follows. In Sec. II, we provide
the mathematical background of our classification. We review
a previously known partial classification of SET phases, the
projective symmetry group (PSG), and comment on the general
notion of “symmetry fractionalization.” In particular, we show
that our classification includes the mathematical structure
underlying the PSG classification in 2 + 1 dimensions and
goes beyond it. Namely, our classification contains phases
that are not described by the PSG. In 3 + 1 dimensions,
our classification becomes very different from the PSG
classification and we explain the reason in Sec. VI. In Sec. III,
we focus on 2 + 1 dimensions and present the geometric
interpretation of group cohomology, leading to a class of
exactly solvable models. Each model corresponds to a phase
in our classification. Generalizations to higher dimensions are
briefly discussed. Staying in 2 + 1 dimensions, in Sec. IV
we study the elementary excitations of these models, namely
gauge fluxes and charges, by introducing stringlike operators.
In Sec. V, we will solve these models in 2 + 1 dimensions
for some illuminating examples. One particularly important
case is the simplest example that is not described by the
PSG classification nor “symmetry fractionalization.” In that
example the global symmetry transformation interchanges the
quasiparticle species. Detectable signatures of these examples
will be studied. In Sec. VI we consider generalizations of our
study, comment on relations with previous work, and conclude.

II. THE CLASSIFICATION

A. Mathematical preparation

1. Definition of the cohomology group

We begin with a brief introduction to group cohomology.
A detailed introduction can be found in Ref. 20; in this
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paper, we do not present the most general definition of group
cohomology.

For a finite group G and an Abelian group M (M does
not need to be finite or discrete) one can consider an
arbitrary function that maps n elements of G to an element
in M; ω : Gn → M or equivalently ω(g1,g2, . . . ,gn) ∈ M ,
∀ g1,g2, . . . ,gn ∈ G. Such a group function is called an
n-cochain. The set of all n-cochains, which is denoted as
Cn(G,M), forms an Abelian group in the usual sense: (ω1 ·
ω2)(g1,g2, . . . ,gn) = ω1(g1,g2, . . . ,gn) · ω2(g1,g2, . . . ,gn), in
which the identity n-cochain is a group function whose value
is always the identity in M .

One can define a mapping δ from Cn(G,M) to Cn+1(G,M):
∀ ω ∈ Cn(G,M) define δω ∈ Cn+1(G,M) as

δω(g1, . . . ,gn+1)

= ω(g2, . . . ,gn+1) · ω(−1)n+1
(g1, . . . ,gn)

×
n∏

i=1

ω(−1)i (g1, . . . ,gi−1,gi · gi+1,gi+2, . . . ,gn+1).

(2)

It is easy to show that the mapping δ is nilpotent: δ2ω = 1 [here
1 denotes the identity (n + 2)-cochain]. In addition, for two
n-cochains ω1,ω2, obviously δ satisfies δ(ω1 · ω2) = (δω1) ·
(δω2).

An n-cochain ω(g1, . . . ,gn) is called an n-cocycle if and
only if it satisfies the condition δω = 1, where 1 is the identity
element in Cn+1(G,M). When this condition is satisfied, we
also say that ω(g1, . . . ,gn) is an n-cocycle of group G with
coefficients in M . The set of all n-cocycles, denoted by
Zn(G,M), forms a subgroup of Cn(G,M).

Not all different cocycles are inequivalent. Below we define
an equivalence relation in Zn(G,M). Because δ is nilpotent, for
any (n-1)-cochain c(g1, . . . ,gn−1), we can find the n-cocycle
δc. If an n-cocycle b can be represented as b = δc, for some
c ∈ Cn−1(G,M), b is called an n-coboundary. The set of all
n-coboundaries, denoted by Bn(G,M), forms a subgroup of
Zn(G,M). Two n-cocycles ω1,ω2 are equivalent (denoted by
ω1 ∼ ω2) if and only if they differ by an n-coboundary: ω1 =
ω2 · b, where b ∈ Bn(G,M).

The nth cohomology group of group G with coefficients
in M , Hn(G,M), is formed by the equivalence classes in
Zn(B,M). More precisely, Hn(G,M) = Zn(G,M)/Bn(G,M).

In this paper we make a lot of use of 3-cocycles ω. We
always choose them to be in “canonical” form, which means
that ω(g1,g2,g3) = 1 if any of g1,g2,g3 is equal to 1 (the
identity element of group G). For any of the inequivalent
cocycles mentioned above, it is always possible to choose
a gauge such that ω becomes canonical.20 Specifically, the
explicit elementary cocycles that we use in studying examples
of our models in Sec. V are canonical.

So far the notions of cocycle and cohomology group
are quite formal. However, it turns out that they have clear
geometric/topological meanings, which we describe in Sec. III.

2. Examples

H 1(G,U (1)) and one-dimensional representations of
groups. Let us consider the first cohomology group of a finite
group G with coefficients in U (1): H 1(G,U (1)). In this case,

the cocycle condition becomes

ω(g1) · ω(g2)/ω(g1 · g2) = 1. (3)

This means the 1-cocycle ω(g) is a one-dimensional unitary
representation of the group G. Clearly, different 1-cocycles
are different representations. A 0-cochain is defined to be
a constant c0 ∈ U (1). Consequently, a 1-cocycle is a 1-
coboundary if and only if it is identity: ω(g) = c0/c0 = 1.
We conclude that the H 1(G,U (1)) is formed by inequivalent
one-dimensional unitary representations of G.

For instance,

H 1(Zn,U (1)) = Zn, H 1(Zk
n,U (1)

) = Zk
n. (4)

More generally, for any finite Abelian group G, due to a
fundamental theorem, we know that G can be decomposed
as G = Zk1

n1
× Zk2

n2
× · · · × Z

kq

nq
. Because we know the one-

dimensional representations of all the components, clearly,

H 1(G,U (1)) = G, ∀ finite Abelian G. (5)

H 1(G,Z) = Z1, ∀ finite G. Following the above discussion,
H 1(G,Z) is formed by the group of all group homomorphisms
from G to Z. It is straightforward to show that the only group
homomorphism between a finite G and Z is the trivial one.

H 2(G,U (1)) and projective representations of groups. The
condition for 2-cocycles is

ω(g1,g2) · ω(g1 · g2,g3) = ω(g2,g3) · ω(g1,g2 · g3). (6)

In fact, the 2-cocycle is related to the so-called projective
representations of groups. In usual unitary group representa-
tions, each group element g in G is represented by a uni-
tary matrix D(g), which satisfies D(g1) · D(g2) = D(g1 · g2).
However, for projective representations, this relation can be
modified by a phase factor ω(g1,g2) ∈ U (1): D(g1) · D(g2) =
ω(g1,g2)D(g1 · g2). The phase factor ω(g1,g2), which is a
function of g1,g2, is called a factor system. A factor system
cannot be arbitrary. In order to satisfy the associativity
condition, [D(g1) · D(g2)] · D(g3) = D(g1) · [D(g2) · D(g3)],
the factor system must satisfy Eq. (6), the same condition as
for 2-cocycles.

What is a 2-coboundary? A 2-coboundary ω(g1,g2) can
be written as ω(g1,g2) = c(g1) · c(g2)/c(g1 · g2) for a certain
1-cochain c(g). If two 2-cocycles, ω1,ω2, differ by a 2-
coboundary,

ω1(g1,g2) = ω2(g1,g2) · c(g1) · c(g2)

c(g1 · g2)
, (7)

it is obvious that they correspond to equivalent projective
representations, because one can absorb the 1-cochain into
D(g) by redefining D̃(g) = c(g) · D(g), after which the two
factor systems becomes the same (this is actually the definition
of equivalent projective representations). We conclude that
H 2(G,U (1)) classifies all inequivalent factor systems of
projective representations.

The calculation of H 2(G,U (1)) is nontrivial. We list some
useful results:

H 2(Zn,U (1)) = Z1, H 2
(
Zk

n,U (1)
) = Zk(k−1)/2

n ,
(8)

H 2(Zn × Zm,U (1)) = Zgcd(n,m),

where Z1 is the trivial group.
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H 3(G,U (1)). The 3-cocycle condition is

ω(g1,g2,g3) · ω(g2,g3,g4) · ω(g1,g2 · g3,g4)

= ω(g1 · g2,g3,g4) · ω(g1,g2,g3 · g4), (9)

and a 3-cocycle ω is a 3-coboundary if and only if it can be
represented as

ω(g1,g2,g3) = c(g2,g3) · c(g1,g2 · g3)

c(g1,g2) · c(g1 · g2,g3)
. (10)

These equations may look strange. However, after we
introduce a geometric interpretation in Sec. III, their meanings
become clear.

We list some useful results for H 3(G,U (1)):

H 3(Zn,U (1)) = Zn,
(11)

H 3
(
Zk

n,U (1)
) = Zk+k(k−1)/2!+k(k−1)(k−2)/3!

n .

For instance, H 3(Z2
2,U (1)) = Z3

2 and H 3(Z3
2,U (1)) = Z7

2 .

3. Some useful theorems

First, it is known that for any finite group G, its every
nth cohomology group with n > 0 is a finite Abelian group.
Below we list a couple of theorems on group cohomology that
are used in the following.

Universal coefficients theorem. This theorem relates coho-
mology groups with different coefficients:

Hn(G,B) = [Hn(G,Z) ⊗ B] × Tor(Hn+1(G,Z),B). (12)

This formula allows one to compute cohomology groups with
coefficients in some Abelian group B by using the cohomology
groups with coefficients in the group of integers Z.

Here “×” is the usual direct product of groups, and we need
to define the two new operations: “⊗” and “Tor”. “⊗” stands
for the “symmetric tensor product” (over Z) between two
Abelian groups, while “Tor” stands for the “torsion product.”

Instead of explaining the rigorous mathematical definitions
of these products, we simply list some useful results. A ⊗ B

always equals B ⊗ A (up to isomorphism), and

Zn ⊗ Zm = Zgcd(n,m), Zn ⊗ Z = Zn,

Zn ⊗ U (1) = Z1, Z ⊗ U (1) = U (1), (13)

Z ⊗ Z = Z, (A × B) ⊗ C = (A ⊗ C) × (B ⊗ C).

The last relation means that ⊗ is distributive.
Concerning the torsion product, one also has Tor(A,B) =

Tor(B,A). In addition,

Tor(Zn,Zm) = Zgcd(n,m),

Tor(Zn,U (1)) = Zn,
(14)

Tor(A,Z) = Z1, ∀ A,

Tor(A × B,C) = Tor(A,C) × Tor(B,C).

The torsion product is also distributive (the last relation above).
Using the universal coefficients theorem, one can compute

the cohomology groups with coefficients in Z from those with
coefficients in U (1), and vice versa:

Hn(G,U (1))

= [Hn(G,Z) ⊗ U (1)] × Tor(Hn+1(G,Z),U (1))

= Hn+1(G,Z), for n > 0, (15)

where we used the fact that Hn(G,Z) is a finite Abelian group
for n > 0 so that [Hn(G,Z) ⊗ U (1)] = Z1. Note that the above
equation is invalid if n = 0. At this moment, let us define
the 0th cohomology group. In this paper, H 0(G,M) = M .
Therefore, [H 0(G,Z) ⊗ U (1)] = U (1) �= Z1.

Using Eqs. (15) and (5), we have

H 2(G,Z) = G, ∀ finite Abelian G. (16)

The Künneth formula. This theorem allows one to compute
the cohomology group of a direct product of groups, using the
cohomology groups of its components:

Hn(A × B,Z) =
n∏

i=0

[Hi(A,Z) ⊗ Hn−i(B,Z)]

×
n+1∏
i=0

Tor(Hi(A,Z),Hn+1−i(B,Z)), (17)

where “
∏

” is the usual direct product. For example, this
formula and the basic results

Hp(Zn,Z) =
⎧⎨⎩Zn if p is even,

0 if p is odd,

Z if p = 0,

(18)

together with Eq. (15), allow one to obtain the results for
Hp(Zk

n,U (1)) listed previously.

B. The notion of symmetry fractionalization and the projective
symmetry group

The main goal of this paper is to address the nontrivial
interplay between global symmetry and topological order.
What is already known about that interplay? One phenomenon
famously connected to such an interplay is the so-called
“symmetry fractionalization.”

Topologically ordered phases feature anyonic quasipar-
ticle excitations in the bulk. In fact, in some sense these
quasiparticles are nonlocal, because one cannot create a
single quasiparticle excitation in a system with periodic
boundary conditions (PBCs). One must at least create a pair:
a quasiparticle and its anti-quasiparticle. Therefore, a single
anyonic quasiparticle state is not in the excitation spectrum of
a system with PBC.

The fact that a single anyonic quasiparticle excitation is not
a physical excitation in a system with PBC has an important
physical consequence.53 When the system has a certain global
symmetry group SG, based on quantum mechanics, we know
that all excited states of the quantum system can be labeled
by irreducible representations (irreps) of SG. The irreps
characterize how the ground state and excited states transform
under the global symmetry. Then it is natural to imagine that
each anyonic quasiparticle also has to transform as a certain
irrep of SG. However, this does not need to be true, exactly
because a single quasiparticle is not a physical excited state.

Let us consider a famous example, the ν = 1/3 Laughlin
state. There the physical system has a U (1) charge conservation
symmetry, and therefore any physical state should be an
irrep of this U (1): |ψ〉 → eimθ |ψ〉, for ∀ eiθ ∈ U (1). Here the
integer m ∈ Z is nothing but the total electric charge of the
state. However, we were also told that the anyonic quasiparticle
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carries 1/3, a noninteger, electric charge. A fractional charge
is not an irrep of the global symmetry.

Clearly, the fractional charge of an anyonic quasiparticle
can be realized exactly because the single anyonic quasi-
particle is not a physical state. Only when there are three
(generally multiple of three) quasiparticles in the bulk can it
be a physical state, which carries one more electric charge
compared to the ground state. This phenomenon is called
symmetry fractionalization.

In this example, we can ask a further question: Why do
the quasiparticles have to carry 1/3, not 1/5, or some other
fraction of electric charge? Or, what is the guiding principle
that dictates this fractional charge?

One obvious guiding principle is the fusion rule. We know
that three quasiparticles become an electron after fusion,
which must carry electric charge one. Consequently, each
quasiparticle must carry 1/3 charge. In fact, this point of
view is conceptually very general. For example, one may even
be able to consider topologically ordered phases with non-
Abelian quasiparticles. However, the mathematical framework
behind this point of view, for the most general topologically
ordered phases, is technically highly nontrivial54 and is beyond
the scope of this paper.

In this paper, we choose a different point of view, which
involves a simpler mathematical framework: projective rep-
resentations of symmetry group. The trade-off is that we
can only use this point of view to understand symmetry
fractionalization in certain subclasses of topologically ordered
phases.55 However, this is enough for the purpose of this paper.

The point of view that we choose is the following. Because
only multiples of three quasiparticles correspond to physical
states, we can define a so-called invariant gauge group
(IGG): IGG = Z3 = {1,ei2π/3,ei4π/3}. We can multiply each
quasiparticle in the system by a fixed element in IGG. Clearly,
the total phase becomes unity and the physical wave function
is not modified.

This IGG tells us that when we implement the global U (1)
transformation on each quasiparticle, it is perfectly fine to have
a phase ambiguity, if and only if (iff) this phase ambiguity is
an element in IGG, because this ambiguity does not modify
the physical state at all. Therefore, a single quasiparticle does
not have to form an irrep of SG, but it can form a so-called
projective representation of SG with coefficients in IGG.
Formally, this means that a single quasiparticle can transform
under the global U (1) as ψqp → D(eiθ )ψqp, ∀ eiθ ∈ U (1),
where D(eiθ ) only needs to be a projective representation:

D(eiθ1 ) · D(eiθ2 ) = ω(eiθ1 ,eiθ2 )D(ei(θ1+θ2)), (19)

where ω(eiθ1 ,eiθ2 ) ∈ IGG (this is why we say that the
projective representation has coefficients in IGG). In addition,
as we learned in Sec. II A2, the associativity condition is
satisfied iff ω(eiθ1 ,eiθ2 ) ∈ H 2(U (1),IGG), a 2-cocycle of U (1)
group with coefficients in IGG.

In fact, the 1/3 electric charge (in general, n/3 fractional
charge with n being an integer) is exactly a projective represen-
tation of U (1) with coefficients in IGG. One can check it ex-
plicitly: Let us define the transformation law of a single quasi-
particle under U (1) as D(eiθ ) = eiθ/3,∀ θ ∈ [0,2π ). Clearly,
ω(eiθ1 ,eiθ2 ) = ei2π/3, iff θ1 + θ2 � 2π , ∀ θ1,2 ∈ [0,2π ), and

ω(eiθ1 ,eiθ2 ) = 1 otherwise. This ω(eiθ1 ,eiθ2 ) is a 2-cocycle
∈ H 2(U (1),IGG), because the associativity condition is
obviously satisfied by D(eiθ ).

In this example, we learned that a quasiparticle of a
topologically ordered phase can transform under the global
symmetry group SG as a projective representation of SG with
coefficients in a certain Abelian group IGG. This point of view
is also quite general and is enough to characterize symmetry
fractionalization in this paper. Actually, we use this point of
view to classify symmetry fractionalization. First, we comment
on our choice of notation.

In this paper, “symmetry fractionalization” is a phrase
reserved to characterize how the global symmetry is imple-
mented locally on a single quasiparticle. Here “locally” is the
key word. It basically means that when we claim symmetry
fractionalization, we already made a basic assumption: that the
global symmetry transformations can indeed be implemented
by local transformations of each quasiparticle.

The basic assumption of symmetry fractionalization. Con-
sider an excited state of a topologically ordered phase with a
global symmetry group SG, having n-quasiparticles (which
do not have to be of the same type) spatially located at
positions r1,r2, . . . ,rn, far apart from one another. Let us
denote this state by |ψ(r1,r2, . . . ,rn)〉. For any symmetry
transformation U (g) by a group element g ∈ SG, clearly
U (g) will generally transform this state into another state:
U (g) : |ψ(r1,r2, . . . ,rn)〉 → |ψ̃(r1,r2, . . . ,rn)〉. The basic as-
sumption of symmetry fractionalization is that there exist
local operators U1(g),U2(g), . . . ,Un(g), such that Ui(g) is a
local operator acting only in a finite region around the spatial
position ri , and does not touch the other quasiparticles; in
addition, U1(g),U2(g), . . . ,Un(g) satisfy

U1(g) · U2(g) · · ·Un(g)|ψ(r1,r2, . . . ,rn)〉
= U (g)|ψ(r1,r2, . . . ,rn)〉 = |ψ̃(r1,r2, . . . ,rn)〉 (20)

Pictorially, this assumption is shown in Fig. 1.
Wen56 first attempted to classify symmetry fractionalization

while investigating the parton mean-field states of QSLs
in the presence of global symmetries such as lattice space
group symmetries, time-reversal symmetry, and spin-rotation

FIG. 1. (Color online) Illustration of the basic assumption of sym-
metry fractionalization Eq. (20): Under a symmetry transformation
U (g) with ∀ g ∈ SG, an excited state is transformed by the product of
local transformation operators Ui(g), with each operator only acting
on one quasiparticle locally.
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symmetry. In Ref. 56, Wen introduced the notion of PSG,
a very useful tool to classify parton states, as well as the
low-energy gauge fluctuations, in the presence of these global
symmetries. We do not provide a detailed review of the
PSG classification here; however, we introduce the core
mathematical structure underlying the PSG and comment on
the connection between PSG and the current work, in Sec. II C.
Also, a brief introduction to the parton construction and PSG
can be found in Appendix A.

One way to understand PSG is via the low-energy effective
theory of a state with topological order. Let us consider the
following situation: There is a quantum state whose topologi-
cal order is described by a gauge group GG. Therefore, there
are gauge charge excitations of the gauge group GG in the
system, which are anyonic quasiparticles. In order to write an
effective theory in terms of these gauge charge quasiparticles,
it is crucial to understand how they transform under the global
symmetry SG. Similarly to the usual Ginzburg-Landau theory,
any local term that is allowed by global symmetry will appear
in the effective theory. Naively, one may expect that the gauge
charges must form representations of the symmetry group SG.

However, Wen pointed out56 that these gauge charges do not
have to form representations of the SG. Instead, gauge charges
transform under a larger group: the PSG. The relation between
PSG, SG, and GG is given by

PSG/GG = SG. (21)

Mathematically, PSG is a group extension of SG by the group
GG. From here to the end of this section, we assume for
simplicity that GG is a finite Abelian group. In this case,
PSG can be shown to be the central extension (i.e., GG is
in the center of PSG) of SG by GG (see Appendix A). The
classification of how gauge charge quasiparticles transform
under the SG becomes the classification of all inequivalent
central extensions of the group. There is a nice mathematical
theorem (see, for example, Ref. 57) stating that all inequivalent
central extensions of the group SG by GG are classified by
H 2(SG,GG).

The mathematical structure H 2(SG,GG) underlying the
PSG classification, which has been independently observed
by several people,58 is somewhat mysterious at this moment.
However, in fact, its physical meaning can be easily under-
stood. To proceed, again for simplicity, let us assume GG has
the form GG = Zn × Zm, and one can easily generalize the
following discussion to any finite Abelian gauge group. In this
case, in order to understand the symmetry transformations of
the gauge charges, we only need to consider two fundamental
gauge charge excitations: ψ1 and ψ2, which carry gauge charge
(1,0) and (0,1), respectively. [Note that we adopt the notation
(a,b) to label gauge charge here, 0 � a < n,0 � b < m.]
This is sufficient because one can build any gauge charge
quasiparticle by fusing ψ1 and ψ2.

What are the most general possible ways in which ψ1

and ψ2 can transform under SG? This is a big question and
we attempt to provide an answer later in this paper. In this
section, however, let us consider a smaller question: Under
the assumption of symmetry fractionalization, what are the
most general possible ways in which ψ1 and ψ2 transform
under SG?

Under this assumption, symmetry transformations of quasi-
particles are realized by local operators, which cannot change
the quasiparticle’s species (or more precisely, the superselec-
tion sector of a quasiparticle). Therefore, the gauge charge
will be invariant under SG transformation: ψ1 only transforms
into ψ1 while ψ2 only transforms into ψ2. However, similarly
to the situation with fractional charge in fractional quantum
Hall states discussed above, ψ1 (or ψ2) does not need to
form a representation of SG. This is because any excited
states with PBC must contain a multiple of n number of
Zn gauge charges ψ1, and a multiple of m number of Zm

gauge charges ψ2. Consequently, when we define symmetry
transformations of ψ1 (ψ2), it is perfectly fine to have a phase

ei2π
k1
n (ei2π

k2
m ) ambiguity. The state ψ1 (ψ2) only needs to

form a projective representation of SG with coefficients in
the Zn (Zm) subgroup of U (1), which is exactly classified
by H 2(SG,Zn) (H 2(SG,Zm)). Finally, because we can pair
up any two transformation laws of ψ1 and ψ2, the symmetry
transformations of gauge charge quasiparticles with GG =
Zn × Zm are classified by H 2(SG,Zn) × H 2(SG,Zm).

Based on the universal coefficients theorem, it is straight-
forward to show that

H 2(SG,Zn × Zm) = H 2(SG,Zn) × H 2(SG,Zm), (22)

which is exactly the mathematical structure H 2(SG,GG)
underlying the PSG classification.

Through this example, we learned that H 2(SG,GG) is a
classification of different ways in which anyonic quasiparticles
transform under the global symmetry SG, under the assump-
tion of symmetry fractionalization. Therefore, in this paper
we refer to H 2(SG,GG) as the symmetry fractionalization
classification and the classes contained in H 2(SG,GG) as the
symmetry fractionalization classes.

There is one important point that we have not mentioned.
We have shown that H 2(SG,GG) classifies how gauge charges
transform under SG. However, we also know that there are
other quasiparticle excitations in the system, such as gauge flux
excitations. For instance, in a GG = Z2 topologically ordered
phase, there are three species of nontrivial quasiparticles: Z2

gauge charge e, Z2 gauge flux m, and their bound state em.
In a usual topologically ordered state described by an Abelian
gauge group GG, the gauge charges and gauge fluxes are dual
to each other in 2 + 1 dimensions. For instance, it does not
matter if one labels e or m as the gauge charge in the usual Z2

gauge theory.
In fact, the above discussion indicates that H 2(SG,GG)

is only a classification of symmetry fractionalization for GG

gauge charges (or gauge fluxes) only, but not for both gauge
charges and gauge fluxes. That means that the full classification
of symmetry fractionalization should go beyond H 2(SG,GG).
However, we see shortly in Sec. II C that our classification
of SET phases only contains H 2(SG,GG). In addition, in
our exactly solvable models, we show that this H 2(SG,GG)
only corresponds to the symmetry fractionalization of the
gauge fluxes. It turns out that in these exactly solvable
models, the gauge charges always have trivial symmetry
fractionalization.59 We comment on this issue in Sec. II C and
Sec. VI.
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Now let us consider some simple examples to see the
power of H 2(SG,GG). For the reason mentioned in the
previous paragraph, in the following examples we describe
H 2(SG,GG) as the symmetry fractionalization classification
of the gauge fluxes.

(1) GG = Z2 and SG = Z2. Let us denote the generator of
SG as σ , and denote by Dm(σ ) the transformation of the Z2

gauge flux m by σ . Because SG = Z2, we have

σ 2 = 1. (23)

The universal coefficients theorem allows us to compute

H 2(SG,GG) = H 2(Z2,Z2) = Z2. (24)

It means that there are two symmetry fractionalization classes
of the Z2 gauge flux. They correspond to

Dm(σ )2 = ±1. (25)

These two possible signs are exactly the two inequivalent
cocycles in H 2(Z2,Z2). The positive sign is the trivial
symmetry fractionalization class, while the negative sign is
the nontrivial class.

(2) GG = Z2
2 and SG = Z2. Let us denote the generator of

SG by σ . Now there are two fundamental Z2 gauge fluxes:
m1, the π flux in the first Z2 gauge group, and m2, the π flux
in the second Z2 gauge group. Straightforward computation
gives

H 2(SG,GG) = H 2
(
Z2,Z

2
2

) = Z2
2 . (26)

There are four classes. The corresponding transformations
of the Z2 gauge fluxes m1,m2, denoted by Dm1 (σ ),Dm2 (σ ),
satisfy

Dm1 (σ )2 = ±1, Dm2 (σ )2 = ±1. (27)

(3) GG = Z2 and SG = Z2
2 . Let us denote the two genera-

tors of SG by σ,τ . Because SG = Z2
2, we have

σ 2 = 1, τ 2 = 1, σ τ = τσ. (28)

Straightforward computation gives

H 2(SG,GG) = H 2
(
Z2

2,Z2
) = Z3

2 . (29)

There are eight classes. The corresponding transformations of
the Z2 gauge flux m, denoted by Dm(σ ) and Dm(τ ), satisfy

Dm(σ )2 = ±1, Dm(τ )2 = ±1,
(30)

Dm(σ )Dm(τ ) = ±Dm(τ )Dm(σ ).

C. The classification and connection to previous work

Quite some time ago, Dijkgraaf and Witten pointed out
that the topological orders in 2 + 1 dimensions, described by
discrete gauge theories with a gauge group GG are classified
by its third cohomology group: H 3(GG,U (1)).52 Different
topological orders labeled by H 3(GG,U (1)) can be viewed as
different discrete versions of the Chern-Simons terms.60–62 For
example, because H 3(Z2,U (1)) = Z2, there are two distinct
topological orders described by a Z2 gauge group. In the
language of the K matrix, the two topological orders are
described by K = ( 0 2

2 0 ) and K = ( 2 0
0 −2 ), respectively. The

first one is the usual Z2 gauge theory while the second one is

the so-called double-semion theory. The quasiparticle anyonic
statistics in the two theories are different.

Recently, an original work by Chen et al.20 showed that
bosonic SPT phases protected by a global (unitary) on-site
symmetry group SG in 2 + 1 dimensions are also classified by
H 3(SG,U (1)). Here different phases labeled by H 3(SG,U (1))
can be viewed as different topological θ terms on a discrete
space-time. For instance, because H 3(Z2,U (1)) = Z2, there
are two distinct Ising paramagnetic (namely disordered) phases
(without topological order) in 2 + 1 dimensions. One is the
usual Ising paramagnet, while the other one is the nontrivial
Ising SPT phase which features symmetry protected gapless
edge states.

It appears that the mathematical object H 3(G,U (1)) shows
up in these two completely different physical contexts, and
one may wonder if there is a certain underlying relation
between them. A recent beautiful work by Levin and Gu28

demonstrated such an underlying relation explicitly. It was
known that the deconfined phase of a usual Z2 gauge theory is
dual to the usual Ising paramagnetic phase. What was shown
in Ref. 28 is that following the same duality, using exactly
solvable models, the double-semion gauge theory is dual to
the nontrivial SPT phase. It was proposed that such dualities
between the Dijkgraaf-Witten theories and the SPT phases are
general.63

The observation made by Levin and Gu is illuminating
and motivated us to consider the cases where both a global
on-site symmetry group SG and a topological order described
by a gauge group GG are present. Let us consider such
a gapped quantum phase. On one hand, one can imagine
following the route of duality transformation to transform
SG into a gauge group and eventually having a quantum
phase with topological order described by the gauge group
SG × GG. On the other hand, one can follow the backward
duality transformation to transform GG into a global on-site
symmetry, which eventually gives a quantum phase with a
global on-site symmetry SG × GG. If the initial phases are
distinct, it is natural to expect that the phases after duality are
also distinct, and vice versa.

Therefore, it is reasonable to expect that, in 2 + 1 dimen-
sions, bosonic phases with both a global on-site symmetry
group SG and a topological order described by a gauge group
GG are classified by H 3(SG × GG,U (1)). We construct
exactly solvable models for these phases shortly, and we solve
these models in some examples and discuss the measurable
differences between different phases.

Intuitively, a classification of phases having both SG and
GG should at least include H 3(SG,U (1)) and H 3(GG,U (1)).
This is because one can always consider a system where the
degrees of freedom which give rise to the topological order
and the degrees of freedom on which the symmetry group acts
completely decouple from each other. For instance, we can
consider a bilayer system in which the global symmetry SG

only acts nontrivially on the first layer, while the topological or-
der described by GG only lives on the second layer (see Fig. 2).
In this case, the possible phases living on the first (second)
layer would be classified by H 3(SG,U (1)) (H 3(GG,U (1))).
Because one can tune these phases separately, a classification
of phases with both SG and GG should actually at least
include the cross product: H 3(SG,U (1)) × H 3(GG,U (1)).
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FIG. 2. A bilayer system in which the topological order and the
global symmetry decouple.

These indices are labeling the phases with no interplay between
the global symmetry and the topological order.

This intuitive argument also indicates that, if a classification
contains more phases than H 3(SG,U (1)) × H 3(GG,U (1)),
the extra phases must have nontrivial interplay between the
global symmetry and the topological order.

Using the Künneth formula and the universal coefficients
theorem, we can immediately examine whether our classifica-
tion is consistent with the above physical intuition:

H 3(SG × GG,U (1))

= H 4(SG × GG,Z)

= H 4(SG,Z) × H 4(GG,Z) × SET (SG,GG)

= H 3(SG,U (1)) × H 3(GG,U (1)) × SET (SG,GG). (31)

Note that to obtain the first two terms, we have used
H 0(G,Z) = Z and K ⊗ Z = K , ∀ Abelian finite group K .
Here we define the Abelian group SET (SG,GG) as all the
other terms in the Künneth expansion formula. For reasons that
become clear shortly, we further decompose SET (SG,GG)
into two parts:

SET (SG,GG) ≡ SFC (SG,GG) × EXT RA (SG,GG),

(32)

where

SFC (SG,GG) ≡ [H 2(SG,Z) ⊗ H 2(GG,Z)]

×Tor(H 3(SG,Z),H 2(GG,Z)), (33)

and

EXT RA (SG,GG) ≡ Tor(H 2(SG,Z),H 3(GG,Z)), (34)

where we used the fact that H 1(G,Z) = Z1, ∀ finite G. In
Eq. (31), we see that indeed our classification contains
H 3(SG,U (1)) × H 3(GG,U (1)), which is what one expects.
When we choose the indices in SET (SG,GG) to be trivial,
i.e., the identity group element in SET (SG,GG), these
terms label the phases in which the topological order and
the global symmetry are decoupled. Clearly, the indices in
SET (SG,GG) are characterizing the nontrivial interplay
between the topological order and global symmetry; namely,
global symmetry and topological order together enrich the
classification. The notation SET (SG,GG) follows from
“symmetry enriched topological order.”

The potential physical meaning of SFC (SG,GG) becomes
clear if GG is an Abelian group. In this case we can consider
the symmetry fractionalization classes, which are given by
H 2(SG,GG) as discussed in Sec. II B. Using the universal

coefficients theorem,

H 2(SG,GG)

= [H 2(SG,Z) ⊗ GG] × Tor(H 3(SG,Z),GG)

= SFC (SG,GG) if GG is Abelian, (35)

where we used the fact that H 2(GG,Z) = H 1(GG,U (1)) =
GG, if GG is a finite Abelian group. Indeed, in this case,
SFC (SG,GG) has exactly the same mathematical structure
as the symmetry fractionalization classification, leading to the
notation “SFC.”

When GG is non-Abelian, the PSG is no longer related to
the central extensions of the SG by GG, and H 2(SG,GG)
is not even well-defined. In this case, the mathematical
structure underlying PSG, for symmetry fractionalization
classes, was unknown. However, SFC (SG,GG) in Eq. (33)
is still well-defined. We propose that SFC (SG,GG) is the
correct counterpart of H 2(SG,GG) when GG is non-Abelian.

At this moment, the expansion formula Eq. (31) is com-
pletely mathematical. It appears that the above discussion is
attaching physical meaning to the terms in this formula, such as
symmetry fractionalization for SFC (SG,GG), without justi-
fication. In fact, we do not mathematically prove our physical
interpretation of the formula Eq. (31) generally, although we
believe it. However, because we have exactly solvable models
for every phase in the classification H 3(SG × GG,U (1)), we
can at least justify our physical interpretation in some examples
by solving these models. We show in Sec. V that, in all the
examples that we study, our physical interpretation is correct.

As mentioned earlier, a full classification of symmetry
fractionalization classes should go beyond H 2(SG,GG) even
when GG is Abelian, because one should at least consider
the symmetry fractionalization classes for both gauge charges
and gauge fluxes. However, in the expansion Eq. (31), only
SFC (SG,GG) appears. We show that in the exactly solvable
models, this SFC (SG,GG) is characterizing all the symmetry
fractionalization classes for gauge fluxes only. It turns out that
gauge charges in these models always have trivial symmetry
fractionalization. Intuitively, this means that our classification
for the symmetry fractionalization is incomplete. This may be
due to the fact that we only consider quantum phases with
exactly solvable model realizations, which puts constraints on
our classification.

The extra indices EXT RA (SG,GG) in the expansion
Eq. (31) have a completely different mathematical structure
than symmetry fractionalization classes, and intuitively this
term must be related to the nontrivial interplay between the
global symmetry and the topological order, but should not
be associated with symmetry fractionalization. Indeed, we
show that EXT RA (SG,GG) is related to the phenomena
in which global symmetry transformations interchange the
quasiparticle species (or more precisely, the superselection
sectors). For instance, in the example mentioned in Sec. II B, in
which GG = Zn × Zm, EXT RA (SG,GG) characterizes the
phenomena where the global symmetry could transform a ψ1

gauge flux into a ψ2 gauge flux under certain conditions. Such a
nontrivial interplay between the global symmetry and the topo-
logical order is beyond symmetry fractionalization, because it
violates the basic assumption of symmetry fractionalization:
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It is impossible to change quasiparticle species by operators
acting on the quasiparticles only locally.

Before we move to the exactly solvable models, let us
present the examples that we solve in Sec. V. We consider
three simple cases.

(1) SG = Z2,GG = Z2:

H 3(SG × GG,U (1)) = Z3
2, (36)

and among these,

H 3(SG,U (1)) = Z2, H 3(GG,U (1)) = Z2
(37)

SFC (SG,GG) = Z2, EXT RA (SG,GG) = Z1.

This means that among Z3
2 indices, one Z2 is labeling the

two SPT phases, one Z2 is labeling the two Dijkgraaf-Witten
topological orders. The remaining Z2 is labeling the symmetry
fractionalization classes, whose physical meaning is presented
in Eq. (25). In this case there is no SET indices beyond the
symmetry fractionalization classification.

(2) SG = Z2
2,GG = Z2:

H 3(SG × GG,U (1)) = Z7
2, (38)

and among them,

H 3(SG,U (1)) = Z3
2, H 3(GG,U (1)) = Z2

(39)
SFC (SG,GG) = Z3

2, EXT RA (SG,GG) = Z1.

This means that among Z7
2 indices, one Z3

2 is labeling the
eight SPT phases, one Z2 is labeling the two Dijkgraaf-Witten
topological orders. The remaining Z3

2 is labeling the symmetry
fractionalization classes, whose physical meaning is presented
in Eq. (30). In this case there is also no SET indices beyond
the symmetry fractionalization classification.

(3) SG = Z2,GG = Z2
2:

H 3(SG × GG,U (1)) = Z7
2, (40)

and among them,

H 3(SG,U (1)) = Z2, H 3(GG,U (1)) = Z3
2

(41)
SFC (SG,GG) = Z2

2, EXT RA (SG,GG) = Z2.

This means that among Z7
2 indices, one Z2 is labeling the

two SPT phases, one Z3
2 is labeling the eight Dijkgraaf-

Witten topological orders. One Z2
2 is labeling the symmetry

fractionalization classes, whose physical meaning is presented
in Eq. (27). Finally, the remaining Z2 in EXT RA (SG,GG)
labels the phases beyond the symmetry fractionalization. This
is the simplest example in which SET phases beyond symmetry
fractionalization are realized.

III. EXACTLY SOLVABLE MODELS

In this section we introduce the exactly solvable models
which exhibit all the phases from the general classification
introduced above. First we recall the Dijkgraaf-Witten topo-
logical invariant and then introduce the general form of our
exactly solvable models.

A. The geometric interpretation of group cohomology and the
Dijkgraaf-Witten topological invariants

1. The geometric interpretation of group cohomology

In Sec. II A we introduced group cohomology, which
appears to be a group theoretical concept. However, group
cohomology is actually about topology. In this section, we
introduce the geometric interpretation of group cohomology,
which is the mathematical foundation of our exactly solvable
models.

An n-cocycle ω ∈ Hn(G,U (1)) of a group G allows one to
construct a topological invariant for n-dimensional manifolds.
Generally, different elements of Hn(G,U (1)) correspond to
different topological invariants of n-manifolds. Below we
illustrate the construction of such topological invariants.

Let us consider a three-dimensional manifold as an ex-
ample. We know that tetrahedra can be viewed as building
blocks for arbitrary 3-manifolds. To begin with, we show that
a 3-cocycle ω ∈ H 3(G,U (1)) allows one to assign a complex
number to a tetrahedron following a simple procedure.

The procedure contains two steps (see Fig. 3). The first step
is called ordering, in which one chooses an ordering of the four
vertices of the tetrahedron. We can represent this ordering by
assigning arrows going from lower to higher ordered vertices
on the edges of the tetrahedron. For any given face (i.e., a
triangle) of the tetrahedron, obviously the three arrows never
form an oriented loop.

The second step is called coloring, in which one assigns a
group element to every edge of the tetrahedron. The coloring
must be consistent with certain rules below. Note that an

+

ordering

1
2

3

4

coloring

1
2

3

4
g42

g32
g31

g41

1
2

3

4

g32g21

g43

1
3

2

4
g43

g32
g21 x=gij

z=gkjy=gki

i j

k

-

(a)

(b) (c)

FIG. 3. (Color online) The 3-cocycle ω(h1,h2,h3) assigns a U (1)
complex number (i.e., a phase) to a 3-simplex (tetrahedron). (a) Left to
center: the “ordering” of tetrahedron’s four vertices; we choose here
1 → 2 → 3 → 4. An edge is oriented from lower to higher vertex,
so no triangle forms an oriented loop. (Alternatively, one orients
all edges without forming oriented triangle loops, and a consistent
underlying vertex ordering is guaranteed.) Center to right: “Coloring”
assigns group element gij to j → i edge, with gji = g−1

ij . (Four of
six elements are shown explicitly.) The shown tetrahedron 1 → 2 →
3 → 4 is assigned the phase ω(g43,g32,g21)ε = ω(g43,g32,g21). The
exponent ε = ±1 is determined by (b) chirality. For tetrahedron 1 →
2 → 3 → 4, looking from vertex 1, (counter-)clockwise loop 234
means ε = −1 (+1), which is realized in the right (left) tetrahedron.
(c) The zero-flux rule applies to all tetrahedron faces, i.e., triangles.
Generally, gki · gij · gjk = 1, the group identity element. Recall that
gjk = g−1

kj . Choosing an ordering and assigning elements to ordered
bonds, like shown, leads to the constraint z = y · x.
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edge already has an arrow, or orientation, associated with it.
The assigned group element for a given edge should then
be understood in the following way: If we assign the group
element g ∈ G to follow the direction of the arrow, then we
automatically assign group element g−1 ∈ G to the direction
opposite to the arrow. Let us denote the group element assigned
to the bond connecting vertices j and i as gij , following the
orientation from j to i: j → i. We then automatically assign
gji = g−1

ij .
In addition, the three assigned group elements for any given

face must satisfy the constraint gij · gjk · gki = 1, where 1
is the identity element in group G and i,j,k are the three
vertices of the face. We call this constraint the “zero-flux
rule” throughout this paper. With this constraint, it is easy
to show that among the six group elements for the six edges
of the tetrahedron, only three are independent. In particular,
let us denote the ordered vertices by 1,2,3,4; then, g43,g32,g21

completely determine all the other group elements.
Given a 3-cocycle ω(x,y,z) ∈ H 3(G,U (1)), one assigns the

complex number ω(g43,g32,g21)ε to an ordered and colored
tetrahedron. [Sometimes we use the ωε(g43,g32,g21) notation.]
Here ε = ±1 depending on the chirality of the ordered vertices.
One can determine this chirality by the right-hand rule:
Imagine looking at the face formed by vertices 2-3-4 from
the vertex 1; if the vertices 2-3-4 form a counterclockwise
(clockwise) loop, the chirality of the ordering is positive
(negative) and ε = 1 (ε = −1).

This assignment of ω(g43,g32,g21)ε to an ordered and
colored tetrahedron allows a simple geometric interpretation
of the cocycle condition Eq. (9); see Fig. 4. To see this,
consider an ordered and colored tetrahedron and the associated
complex number ω(g43,g32,g21)ε . One can now add one more
vertex a inside the tetrahedron. With vertex a, the original
tetrahedron can be triangulated into four smaller tetrahedra.

1

2

3

4

1-4

g43

g32

g21

1

2

3

4

g43
ga4

g32

g21

a

FIG. 4. (Color online) The 1-4 move (three dimensions) changes
triangulation but not total product of phases

∏
I W (σI )εI of 3-

simplices σI . (Left) The initial tetrahedron is assigned the phase
W0 ≡ ω(g43,g32,g21)−1 (see Fig. 3). (Right) The vertex a is
added, and we choose the ordering such that 1 → 2 → 3 →
4 → a [obvious from chosen orientations of new (red) edges].
There are now four smaller tetrahedrons, with phases 1, tetrahe-
dron 1 → 2 → 4 → a, W1 ≡ ω(ga4,g42,g21); 2, tetrahedron 2 →
3 → 4 → a, W2 ≡ ω(ga4,g43,g32); 3, tetrahedron 1 → 3 → 4 →
a, W3 ≡ ω(ga4,g43,g31)−1; 4, tetrahedron 1 → 2 → 3 → a, W4 ≡
ω(ga3,g32,g21)−1. The 3-cocycle condition, Eq. (9), says the total
phase does not change by the move: W0 = W1W2W3W4. Note that
only one independent new group element is introduced (we marked
the ga4), and from zero-flux rule ga3 = ga4 · g43. Changing our choice
of ordering for a relative to 1,2,3,4 would lead to an equivalent
3-cocycle condition.

1

2

3

4

2-3

g43

g32

g21

5

g53

1

2

3

4

g43

g32
g21

5

g53

g54

FIG. 5. (Color online) The 2-3 move (three dimensions) changes
triangulation but not total product of phases

∏
I W (σI )εI . (Left) Two

initial tetrahedrons, 1234 and 1235, are assigned the total phase
W0 ≡ ω(g53,g32,g21)ω(g43,g32,g21)−1 (see Fig. 3). (Right) One edge
(red) is added, and we choose the ordering 4 → 5. The volume is now
divided into three smaller tetrahedrons, with phases 1, tetrahedron
1 → 2 → 4 → 5, W1 ≡ ω(g54,g42,g21); 2, tetrahedron 2 → 3 →
4 → 5, W2 ≡ ω(g54,g43,g32); 3, tetrahedron 1 → 3 → 4 → 5, W3 ≡
ω(g54,g43,g31)−1. The 3-cocycle condition, Eq. (9), says the total
phase does not change by the move: W0 = W1W2W3. Note that the
new group element g54 is not independent, e.g., g54 = g52 · g−1

42 .

One can further continue the ordering and coloring procedure
for the four smaller tetrahedra. Since we already have the
ordering and coloring for the large tetrahedron, we only need
to assign an order to vertex a, as well as to color the four
newly created edges 1a, 2a, 3a, and 4a. Actually, according to
the zero-flux rule, it is easy to show that only one of the four
new edges is independent. After we complete ordering and
coloring the four small tetrahedra, we have four new complex
numbers, each of which is associated with a small tetrahedron.
It is straightforward to show that, no matter how one performs
the complete ordering and coloring procedure, the cocycle
condition Eq. (9) dictates that the product of the four new
complex numbers exactly equals the original complex number
ω(g43,g32,g21)ε .

Such a procedure of completing the triangulation and
ordering and coloring of tetrahedra after adding a vertex is
called a 1-4 move. A specific example of a 1-4 move is shown
in Fig. 4.

Similarly, there is a 2-3 move; see Fig. 5. Namely, one can
consider two face-sharing tetrahedra, both of which have been
ordered and colored. There are then two complex numbers,
each of which is associated with a tetrahedron. One can now
connect the two vertices that are on opposite sides of the shared
face, and the volume enclosed by the original two tetrahedra
can be triangulated into three tetrahedra. One can continue
the ordering and coloring procedure for the three tetrahedra
and obtain three new complex numbers. It is also easy to
show that, no matter how one performs the further ordering
and coloring procedure, the cocycle condition Eq. (9) dictates
that the product of the three new complex numbers equals
the product of the two original complex numbers. A specific
example of such a 2-3 move is illustrated in Fig. 5.

In this paper we use “canonical” 3-cocycles ω, meaning that
ω(g1,g2,g3) = 1 if any of g1,g2,g3 is equal to 1 (the identity
element of group G). It is always possible to choose a gauge for
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ω such that it becomes canonical.20 Specifically, the explicit
elementary cocycles that we use in studying examples of our
models in Sec. V are going to be canonical.

2. The Dijkgraaf-Witten topological invariants

The above examples of 1-4 move and 2-3 move suggest that
the products of the assigned complex numbers ω(glk,gkj ,gji)ε

for a given volume may be related to a certain invariant that
is independent of the triangulation, ordering, and coloring
procedure. This is indeed true, as stated by two mathematical
theorems presented in the following.

Let us first consider a closed 3-manifold M without a
boundary. One can triangulate M by a finite number of
3-simplices (i.e., tetrahedra) and then order the vertices of
this triangulation. Next, one can have a coloring ϕ of all the
edges in the triangulation obeying the zero-flux rule. Note
that under a fixed triangulation and ordering of vertices, there
can be many different colorings. Let us denote a 3-simplex
of the triangulation, together with the ordering of its vertices,
by σI , where I = 1,2, . . . ,S labels 3-simplices and S is the
total number of 3-simplices. For a given coloring ϕ, let us
also denote the assigned complex number ω(glk,gkj ,gji)ε for
the simplex-σI as W (σI ,ϕ)ε(σI ), and we can further compute
the product of all these complex numbers for 3-simplices:∏S

I=1 W (σI ,ϕ)ε(σI ). For each given coloring ϕ, we have one
such product.

Theorem 1. The sum of such products for all possible
colorings, with an appropriate normalization factor, is a
topological invariant of the closed manifold M:52

ZM = 1

|G|V
∑

ϕ ∈ all
possible
colorings

S∏
I=1

W (σI ,ϕ)ε(σI ). (42)

Here |G| is the number of elements in group G, and V is
the number of vertices in the triangulation. Note that without
Theorem 1, one would naively expect that ZM depends on both
the triangulation and the ordering of vertices (while different
colorings are already summed over). However, with Theorem
1, we know that ZM does not depend on either of them; it only
depends on the topology of the manifold M and the 3-cocycle
ω ∈ H 3(G,U (1)). One can further show that equivalent 3-
cocycles (i.e., 3-cocycles differing by a 3-coboundary) give
exactly the same topological invariant ZM ;52 namely, ZM only
depends on inequivalent elements in H 3(G,U (1)).

The topological invariant ZM is exactly the partition
function of the Dijkgraaf-Witten (DW) topological quantum
field theory (TQFT) for discrete gauge group G in 2 + 1
dimensions.52,64 In order to have a well-defined TQFT, it turns
out that one not only needs to define partition functions for
closed space-time manifolds, but one also needs to define
quantum transition amplitudes for space-time manifolds with
boundaries. This is given by the second theorem.

Consider a 3-manifold M with boundary ∂M . ∂M is formed
by a collection of closed 2-manifolds. One can triangulate
∂M by a finite number of 2-simplices (i.e., triangles), order
the vertices of the 2-simplices, and then color their edges
again following the zero-flux rule (i.e., gijgjkgki = 1 for all

2-simplices). Let us denote the triangulation, ordering, and
coloring of the boundary ∂M by τ .

Next, we fix the coloring τ and extend it into the bulk
of M . This means that we consider a triangulation of M , an
ordering of its vertices, and a coloring ϕ such that they become
exactly the same as τ when limited to the boundary ∂M . In
this case, we also say that the bulk triangulation, ordering, and
coloring in M are compatible with τ on ∂M . For instance, the
triangular faces of a tetrahedron can be viewed as the boundary
of a three-dimensional ball. Then a 1-4 move can be viewed
as a specific extension of the boundary τ into the bulk of the
ball.

Now let us fix the bulk triangulation and ordering of vertices
in M that is compatible with τ . There are still many possible
colorings ϕ in M that are compatible with τ , and they form
a set which we denote as Col(M,τ ). As in Theorem 1, with a
fixed ϕ ∈ Col(M,τ ) one can compute the product of complex
numbers

∏S
I=1 W (σI ,ϕ)ε(σI ) assigned to all the 3-simplices in

the bulk of M . It turns out the sum of all such products satisfies
the following theorem.

Theorem 2. The complex number ZM (τ ) does not depend on
the triangulation of M or the ordering of its vertices, whenever
the topology of M and τ on ∂M are fixed:52,64

ZM (τ ) = 1

|G|V + V∂M
2

∑
ϕ∈Col(M,τ )

S∏
I=1

W (σI ,ϕ)ε(σI ). (43)

Here V is the total number of vertices inside M (i.e., not
including ∂M), while V∂M is the number of vertices in ∂M .
Obviously, ZM (τ ) becomes ZM in Eq. (42) when M does not
have a boundary.

To see the physical meaning of ZM (τ ), let us consider
a special case: M = B × [0,1], where B is a certain closed
orientable 2-manifold. ∂M is formed by two disconnected
but identical closed 2-manifolds: B1

∼= B and B2
∼= B, corre-

sponding to 0 ∈ [0,1] and 1 ∈ [0,1], respectively (see Fig. 6).

(a) (b)

B1
B1

B2 B2

......
Bx[0,1]

Bx[0,1]

Bx[1,2]

τ1

τ2

τ1

τ3

τ2......

FIG. 6. (Color online) The DW topological invariant ZM and
TQFT for manifold M with boundary. (a) Two copies of 2-manifold
B: B1,B2, with colorings τ1,τ2, form the boundary of 3-manifold
M = B × [0,1]. The triangulation and ordering in B1 and B2 are
chosen identical, as sketched. The triangulation and ordering in the
bulk of M (example red vertices and edges) does not influence the
value of DW invariant ZM (τ = τ1 ∪ τ2). A coloring τi of B represents
a quantum state |τi〉, and then ZM (τ ) = 〈τ2| P |τ1〉 is a quantum
amplitude of operator P in the DW TQFT associated with B. The
image of P is the ground-state manifold of the TQFT. (b) The operator
P is a projector: The quantum amplitude 〈τ2| P 2 |τ1〉 is sketched,
representing a product of amplitudes of P from τ1 to τ3, and τ3 to
τ2, with a sum over colorings τ3. This becomes a sum over internal
colorings in space M = B × [0,2] with boundary B1 ∪ B2. The latter
is equal to the amplitude 〈τ2| P |τ1〉 from panel (a).
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We can then triangulate and order the vertices on B1 and B2 in
the same fashion.

For each edge ij of the triangulation of B1, we construct
a |G|-dimensional local Hilbert space HDW

ij ≡ {gij ∈ G};
namely, each group element labels a quantum state in Hij .
Then we consider the tensor product of all such local Hilbert
spaces HDW ≡ ⊗all edgesHDW

ij . Now we can associate each
possible coloring on B1 with a quantum state in HDW.
Because a coloring must satisfy the zero-flux rule, clearly all
possible colorings of B1 span a subspace H̃DW ⊂ HDW. All
possible colorings of B2 then also form the exact same Hilbert
subspace H̃DW.

Let us choose a coloring |τ1〉 ∈ H̃DW on B1, and another
coloring |τ2〉 ∈ H̃DW on B2. τ1 and τ2 completely specify
the triangulation, ordering, and coloring τ on ∂M . Theorem
2 means that there is a well-defined quantum transition
amplitude from the state |τ1〉 to the state |τ2〉:

〈τ2|P |τ1〉 ≡ ZM (τ ). (44)

Because all possible |τ1〉 (|τ2〉) form a basis of H̃DW, this
equation defines a quantum operator P on H̃DW.

Theorem 2 immediately dictates that P is a pro-
jector: P 2 = P . This is because after we insert an
identity operator

∑
τ3

|τ3〉〈τ3| = 1 in H̃DW, 〈τ2|P 2|τ1〉 =∑
τ3
〈τ2|P |τ3〉〈τ3|P |τ1〉 has a simple geometric interpretation

(see Fig. 6): We can consider two copies of the manifold
M , M1 = B × [0,1] and M2 = B × [1,2], so that 〈τ3|P |τ1〉
(〈τ2|P |τ3〉) is the quantum amplitude due to an internal
triangulation and ordering of M1 (M2). We can then glue
the top boundary of M1 with the bottom boundary of M2.
After the gluing, the vertices on the glued boundary B × {1}
become internal vertices. Then

∑
τ3
〈τ2|P |τ3〉〈τ3|P |τ1〉 can be

simply interpreted as the quantum amplitude due to an internal
triangulation and ordering of M1 ∪ M2

∼= M , which must be
the same as 〈τ2|P |τ1〉 according to Theorem 2.

Because P is a projector, the image of P forms a subspace in
the Hilbert space Img(P ) ⊂ H̃DW in which P acts as identity.
Img(P ) turns out to be the ground-state sector associated
with the DW TQFT for the closed 2-manifold B. One can
also prove52 that the dimension of Img(P ) (i.e., the ground-
state degeneracy of the TQFT) and the partition function of
the closed space-time 3-manifold M̃ ≡ B × S1 are identical:
dim[Img(P )] = ZM̃=B×S1 .

At this point, it is useful to introduce an example. Consider
the simplest group G = Z2. According to Eqs. (15) and (18),
H 3(Z2,U (1)) = Z2. This means that there are two inequivalent
3-cocycles and let us choose the trivial one: ω(x,y,z) = 1,
∀x,y,z ∈ Z2, which gives rise to a DW TQFT. This particular
TQFT turns out to be a familiar one: the Z2 gauge theory
of the toric code model.65 We can then use Theorem 1 to
compute the partition function ZM for a closed 3-manifold M

and use Theorem 2 to compute the ground-state degeneracy
via the projector P . For instance, for a 3-sphere and a 3-torus,
ZS3 = 1/2 and ZT 3 = 4, respectively. The latter result implies
that the ground-state degeneracy on a torus is 4, since T 3 =
T 2 × S1. More generally, the ground-state degeneracy on a
closed orientable 2-manifold B is dim[Img(P )] = 4g , where g

is the genus of B.

ordering

12

3

coloring g32

x=gij

z=gkjy=gki

i j

k

+

12

3

g21

g31

g32

12

3

g21

-

g32

12

3

g21

(a)

(b) c)

FIG. 7. (Color online) The 2-cocycle ω(h1,h2) assigns a U (1)
complex number (i.e., a phase) to a 2-simplex (triangle). (a) Left to
center: the “ordering” of triangle’s three vertices; we choose here
1 → 2 → 3. An edge is oriented from lower to higher vertex, so no
triangle forms an oriented loop. (Alternatively, one orients all edges
without forming oriented triangle loops, and a consistent underlying
vertex ordering is guaranteed.) Center to right: “Coloring” assigns
group element gij to j → i edge, with gji = g−1

ij . The shown triangle
1 → 2 → 3 is assigned the phase W = ω(g32,g21)ε = ω(g32,g21).
The exponent ε = ±1 is determined by (b) chirality. For triangle
1 → 2 → 3, (counter-)clockwise loop 123 means ε = +1 (−1),
which is realized in the left (right) triangle. (c) The zero-flux rule
applied to a triangle. Generally, gki · gij · gjk = 1, the group identity
element. Recall that gjk = g−1

kj . Choosing an ordering and assigning
elements to ordered bonds as shown leads to the constraint z = y · x.

3. The generalization to other dimensions

The above discussion has been limited to 2 + 1 dimensions.
In fact, the geometric interpretation of an n-cocycle can be
easily generalized to any n � 2 space-time dimensions. Some
aspects of this generalization have been discussed in Ref. 20.
Here for the purpose of the current paper, we briefly discuss
the n = 2 and the n = 4 cases.

Geometric interpretation of a 2-cocycle ω(x,y) ∈
H 2(G,U (1)) (see Fig. 7). Let us choose a 2-cocycle ω(x,y) ∈
H 2(G,U (1)). Consider a 2-simplex (i.e., triangle). Again, one
needs to perform the ordering and coloring procedure. Let us
choose an ordering of the vertices 1 → 2 → 3. We then color
the edges by group elements g31,g32,g21 under the zero-flux
rule: g31 = g32g21. Therefore, we can choose g32,g21 to be
the only independent elements. Next, we assign the complex
number ω(g32,g21)ε to this 2-simplex. Here ε = ±1 depending
on the chirality of the ordering of vertices: If 1 → 2 → 3 is
clockwise (counterclockwise), ε = 1 (ε = −1).

The geometric interpretation of the 2-cocycle condition
Eq. (6) can now be understood as the invariance of the product
of these assigned complex numbers in a 1-3 move or a 2-2
move (see Fig. 8). For instance, in a 1-3 move, we consider
an ordered and colored triangle, together with the assigned
complex number ω(g32,g21)ε . Then we add one new vertex
inside the triangle. After connecting the new vertex with the
original three vertices, three new edges are created and the
original triangle is thus further triangulated into three smaller
triangles. We now can choose any ordering and coloring
of the new vertex and new edges under the zero-flux rule,
which then assigns three new complex numbers for the three
smaller triangles. The 2-cocycle condition Eq. (6) dictates that
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FIG. 8. (Color online) The 1-3 and 2-2 moves (in two dimensions)
change triangulation but not total product of phases

∏
I W (σI )εI of

2-simplices σI . (a) The 1-3 move. (Left) The initial triangle is assigned
the phase W0 ≡ ω(g32,g21) (see Fig. 7). (Right) The vertex a is added,
and we choose the ordering such that 1 → 2 → 3 → a [obvious from
chosen orientations of new (red) edges]. There are now three smaller
triangles, with phases 1, triangle 1 → 2 → a, W1 ≡ ω(ga2,g21);
2, triangle 2 → 3 → a, W2 ≡ ω(ga3,g32); 3, triangle 1 → 3 → a:
W3 ≡ ω(ga3,g31)−1. The 2-cocycle condition, Eq. (6), says the total
phase does not change by the move: W0 = W1W2W3. Note that only
one independent new group element is introduced (we marked the
ga3), and from zero-flux rule ga2 = ga3 · g32. Changing our choice of
ordering for a relative to 1,2,3 would lead to an equivalent 2-cocycle
condition. (b) The 2-2 move. (Left) Two initial triangles, 123 and 124,
are assigned the total phase W0 ≡ ω(g32,g21)ω(g42,g21)−1. (Right)
The area is divided into two triangles by the other possible edge
(red), and we choose the ordering 3 → 4. The phases of new triangles:
1, triangle 1 → 3 → 4, W1 ≡ ω(g43,g31)−1; 2, triangle 2 → 3 → 4,
W2 ≡ ω(g43,g32). The 2-cocycle condition gives W0 = W1W2. Note
that the group element g43 is not independent; e.g., g43 = g42 · g−1

32 .

the product of the three new complex numbers equals the
original one ω(g32,g21)ε .

Theorem 1 and Theorem 2 can also be generalized to
2-manifolds and 2-cocycles. For example, let us consider
Theorem 2. For a 2-manifold M with boundary ∂M , one first
chooses a triangulation (using 1-simplices, i.e., line segments),
an ordering of vertices, and a coloring on ∂M , which we
denote by τ . Note that now there are no zero-flux rule
constraints for τ , because there is no triangle in a 1-simplex.
Then one can extend the triangulation, ordering, and coloring
into the bulk of M (where the zero-flux rule holds). We
denote the assigned complex number for a 2-simplex σI

in M as W (σI ,ϕ)ε(σI ) as before, where ϕ denotes the bulk
coloring. With a fixed bulk triangulation and ordering, there
will be many possible colorings that are compatible with τ .
Theorem 2 for 2-manifolds and 2-cocycles states that Eq. (43)
defines a complex number ZM (τ ) which is independent of the

choice of bulk triangulation and ordering of vertices, as long
as τ is fixed.

Following the discussion from the previous section, The-
orem 1 and Theorem 2 suggest that a cocycle ω(x,y) ∈
H 2(G,U (1)) may define a 2D TQFT. This is indeed true
and was discussed in a mathematical context.66 In 2 + 1d,
we know that different topological orders can be characterized
by different TQFTs. One may ask: Does this mean that there
are nontrivial topological orders in 1 + 1d? However, we also
know from previous research that nontrivial topological orders
do not exist in 1 + 1d.67 It turns out that the 2D TQFTs
induced by 2-cocycles do not give rise to physically nontrivial
topological order. This is because the ground-state degeneracy
is not robust, as one can lift it by a local perturbation.68

Geometric interpretation of a 4-cocycle ω(x,y,z,u) ∈
H 4(G,U (1)). Similarly to the n = 3 case, for a given 4-simplex
one can choose an ordering of its vertices 1 → 2 → 3 → 4 →
5, color the edges following the zero-flux rule, and assign the
complex number ω(g54,g43,g32,g21)ε to it. Here again ε is
determined by the chirality of the ordering of vertices. The
4-cocycle condition δω = 1 in Eq. (2) when n = 4 can be
understood as the invariance of the product of the assigned
complex numbers to 1-5, 2-4, and 3-3 moves. Theorem 1 and
Theorem 2 also hold for 4-manifolds. For any fixed 4-cocycle
ω(x,y,z,u) ∈ H 4(G,U (1)), these theorems give rise to a 4D
TQFT. Equivalent 4-cocycles induce the same TQFT. These
4D TQFTs characterize different topological orders in 3 + 1d.

B. Exactly solvable models

In this section we define our exactly solvable models.
Although we discuss the generalization to other dimensions
in Sec. VI A, from now on we constrain ourselves to the
2 + 1-dimensional case. It will become clear that our models
exhibit both a global symmetry forming a group SG, as well
as topological order described by a discrete gauge group GG.
We explain our models’ relation to both the SPT models of
Ref. 20 and the DW gauge theories of Ref. 52. Through
these connections it also becomes clear that each inequivalent
choice of 3-cocycle in our models leads to a model with
specific topological and symmetry properties, as labeled by
the classification in Sec. II.

We consider a triangular (two-dimensional) lattice with ori-
ented edges (bonds), where these orientations are compatible
with an ordering of lattice sites, i.e., each edge oriented from
a lower to higher ordered site and no triangle edges form an
oriented loop, just as we discussed in Sec. III A and Fig. 7. For
concreteness, in Fig. 9 we show our choice of edge orientations
on the triangular lattice. We next introduce the “coloring” ϕ by
assigning an element hij ∈ GG to each oriented edge j → i,
again as discussed in Sec. III A; however, we now also assign
a group element ui ∈ SG to each lattice site i.

Actually, we further introduce the group element

gij ≡ hij · ui · u−1
j ∈ G (45)

as our variable on edge ij . This definition might seem
somewhat redundant, since the ui elements appear both on sites
and on edges through gij . It has important meaning, however.
As discussed in Sec. II C, it is already known that some
cohomology based classifications of phases with symmetry
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FIG. 9. (Color online) Action of the operator B̂s
p , s = hs · s̃, with

hs ∈ GG, s̃ ∈ SG, on plaquette p centered on site i: For six elements
hil ∈ GG on edges il it resembles a local gauge transformation
preserving zero flux through all triangles, e.g., h′

ij = hs · hij and h′
ki =

hki · h−1
s , while the on-site element transforms as u′

i = s̃ui , leading to,
e.g., g′

ij = s · gij and g′
ki = gki · s−1; additionally, there is an overall

phase factor which is the product of complex numbers assigned
by the 3-cocycle ω ∈ Z3(SG × GG,U (1)) to the six 3-simplices
(tetrahedrons) forming the “pyramid” [see Fig. 3 and Eq. (51)]. Note
that fixing the initial and final state (i.e., the values ui,u

′
i , etc.) leads

to a unique value of s for which the operator matrix element does
not vanish. In that sense, this picture also describes the action of the
plaquette operator B̂p .

and phases with topological order can be explicitly connected
by duality. Due to the direct product structure of the group
G = SG × GG we consider here, it is simple to dualize either
SG or GG (entire groups or their subgroups) without having
to change the formalism. We, in fact, use dualization of SG

explicitly when considering symmetry protected degeneracy
in examples; see Sec. V G.

Let us then briefly consider how SG is dualized. The group
variables ui defined on lattice sites i are replaced by group
variables uij living on oriented edges j → i according to the
rule79

uij ≡ ui · u−1
j . (46)

Due to importance of duality, we want to ensure that all
gauge degrees of freedom present in a theory are treated
equally. This is our motivation for using the edge variables
gij defined in Eq. (45) as degrees of freedom on equal footing
with hij .

An arbitrary quantum state in the Hilbert space H of our
model is therefore labeled by |i〉 = |{ui},{gij }〉, or by |i〉 =
|{ui},{hij }〉.

The elementary building block for the theory is the operator
B̂s

p labeled by a group element s ∈ G ≡ SG × GG, and a
plaquette p containing six triangles sharing a lattice site i

at the center. The plaquette operator therefore acts on seven
group elements, one at the site i and six on the edges that
share this site. To define its action, we need an additional edge
oriented vertically up into the third dimension at site i, to which
we assign the element s ∈ G which can always be uniquely
factored as

s = hs · s̃, (47)

with hs ∈ GG, s̃ ∈ SG (Fig. 9). The operator B̂s
p transforms

the seven values of elements in the plaquette by s, preserving
the orientation of edges, and these new values are represented
on edges lifted above the original ones; see Fig. 9. With p

centered on site i, we have

ui → s̃ · ui, hij → hs · hij , hki → hki · h−1
s , (48)

leading to

gij → s · gij , gki → gki · s−1. (49)

Further, nonzero matrix elements of B̂s
p,

Bs
p = 〈f(s)|B̂s

p|i〉, (50)

are assigned the quantum amplitude

Bs
p ≡

6∏
I=1

W (σI ,ϕ)ε(σI ), (51)

where the six 3-simplices σI are built using the six triangles
of the plaquette p (with the initial group element values
assigned), the vertical edge (assigned the group element s), and
the six lifted edges [assigned the final element values according
to Eq. (49)]. This action is shown in Fig. 9. The orientation of
new (lifted) edges is chosen to match the orientation of original
edges upon downward projection.

It is important to note that the zero-flux rule (discussed in
Sec. III A) is by construction satisfied on all faces (triangles)
of the six tetrahedra, if it is satisfied in the six triangles of
the plaquette p. The zero-flux rule must hold on all faces of
the tetrahedra for which we are calculating the phase W . The
operator Bs

p is therefore defined only in a Hilbert subspace Kp

which consists of states having the zero-flux rule satisfied in
all six triangles of the plaquette p. Finally, note that choosing a
final state |f〉 in a nonzero matrix element fixes a unique value
of s.

We finally define the plaquette operators B̂p as having
matrix elements

Bp = 1

|G|
∑
s∈G

Bs
p. (52)

To explicitly illustrate the plaquette operator (as well
as the full Hamiltonian defined below) through examples,
in Appendix D we will consider the models for two Z2

topologically ordered phases, i.e., the well-known “toric
code”65 and “double-semion” theory.69

Returning to the most general case, our plaquette operators
B̂p turn out to be projectors. Namely, using the properties of
3-cocycles, one finds that applying a B̂s

p operator twice at the
same plaquette leads to a group multiplication in the amplitude,

〈f| B̂s
pB̂s ′

p |i〉 = Bs·s ′
p . (53)

Using the normalization in Eq. (52) it follows that

〈f| B̂pB̂p |i〉 = Bp (54)

and also that B̂p is a projector.
Crucially, we show further below that the plaquette opera-

tors commute:

[Bp,Bp′ ] = 0, ∀ p,p′. (55)

155115-14



CLASSIFICATION OF SYMMETRY ENRICHED . . . PHYSICAL REVIEW B 87, 155115 (2013)

Let us next introduce the operator Qt , which projects flux in
a triangle t to zero; i.e., it enforces the zero-flux rule discussed
in Sec. III A. In other words, Qt is nonzero (and equal to 1)
only when acting on a triangle t made out of lattice sites i,j,k

such that

hij · hjk · hki = 1GG, gij · gjk · gki = 1, (56)

where 1 is the group identity in G, and the second equality
follows directly from the definition Eq. (45).

We can at last define the Hamiltonian as

H = −
∑

t

Qt −
∑

p

B̂p

∏
t∈p

Qt , (57)

where the label t ∈ p enumerates the six triangles making up
the plaquette p. As mentioned above, the factor

∏
t∈p Qt is

actually crucial to ensure that H is well-defined: It ensures
that B̂p acts within the subspace Kp on which it is defined [see
discussion after Eq. (51)].

Further, it is easy to see that plaquette operator term
B̂p

∏
t∈p Qt actually commutes with the projectors Qt ′ .

Namely, the transformation rule by s in operator B̂s
p, as

introduced above, preserves the product rule Eq. (56) on all
triangle faces of simplices in Fig. 9, if it is satisfied in either
the upper or the lower triangles, i.e., in either the |i〉 or the
|f〉 state. Obviously, then the zero-flux rule enforced by action
of Qt ′ commutes with the action of B̂p

∏
t∈p Qt even when t ′

belongs to the plaquette p.
Our model has the global symmetry group SG, following

from the fact that the Hamiltonian commutes with the global
symmetry operations,

ui → ui · s̃−1, ∀ i, (58)

and s̃ ∈ SG. The symmetry operation obviously does not
influence the zero-flux rule in Eq. (56) and therefore commutes
with every Qt . Considering a plaquette operator, the symmetry
operation leaves the edge elements gij invariant, and also the
final value of site elements ui is the same no matter the order
in which apply B̂p and s̃, due to the group property.

Next, our model H is exactly solvable: All terms in the
Hamiltonian H commute with each other (we still have to
prove the commutation of B̂p, B̂p′ ), so the model is exactly
solvable.

Let us now consider the ground-state manifold of our
model. Since all the terms in H are also projectors, the
ground-state manifold is the image of the projector P =∏

p B̂p

∏
t∈p Qt . Actually, it is also easy to see that B̂s

pB̂p =
B̂p due to Eq. (53) and the group property. This means that for
a ground state it also holds that B̂s

p = 1,∀ p,s.
First, let us consider the special cases in which SG = Z1

is trivial. In this case, the projector P = ∏
p B̂p

∏
t∈p Qt is

exactly the projector in the DW theory [Eq. (43)]. Namely,
applying all B̂p operators in the plane creates a lifted copy
of the plane, leaving the volume between them triangulated
by tetrahedrons; the transition amplitude for this operation is
equal to the product of

∏6
I=1 W (σI ,ϕ)ε(σI ) phases contributed

by all the
∏

p B̂p. The initial and final states fix the coloring τ

on the two planes, so the transition amplitude exactly equals
the DW topological invariant ZM (τ ) [Eq. (43)] evaluated on the
manifold having the two planes as boundaries. [Note that there

are no vertices inside the volume, and the number of plaquettes
p is equal to V∂M/2 since there are two planes in ∂M , leading
to correct prefactor from Eq. (43).] We can therefore conclude
that when SG = Z1, the ground-state sector of our model, to
which P projects with eigenvalue 1, is also the ground-state
sector of the DW TQFT52 defined on the triangular plane.
We generally study the topological order of our models in
Appendix B.

On the other hand, we can consider the opposite situation
where the gauge group is trivial GG = Z1, so that G = SG.
In that case, our models become equal to the exactly solvable
models for SPT phases constructed by Chen et al. in Sec. II F
of Ref. 20. Namely, since the only degrees of freedom on
the edges are from SG [see Eq. (45)], the zero-flux rule is
automatic so Qt = 1. The Hamiltonian is just a sum of the B̂p

plaquette operators, and these are obviously identical to the
plaquette operators forming the Hamiltonian in Ref. 20. We
can conclude, as claimed in the Introduction, that our exactly
solvable models in the case of trivial gauge group GG become
the models for SPT phases classified by H 3(SG,U (1)).

Our exactly solvable model is in-between these two extreme
situations (the DW theory and the SPT model), and it can be
understood as a partially dualized version of either of them.

In general, the ground states of our models do not break
the physical symmetry SG so that they describe symmetric
quantum phases. The simplest way to convince oneself of this
is by noting that the B̂s

p operators in our models [see Eq. (50)]
create/annihilate small domain walls in a quantum state when
s ∈ SG. Since in a ground state it holds that B̂s

p = 1, ∀ p, the
ground state is a domain wall condensate, i.e., the symmetric
phase.

Let us now prove Eq. (55) by using the DW topological
invariant from Eq. (43). Consider the picture of action of two
overlapping plaquette operators, described by matrix elements

BB1 = 〈f| B̂pB̂p′ |i〉 , (59)

and

BB2 = 〈f| B̂p′B̂p |i〉 , (60)

where p and p′, the plaquettes centered on sites i,j , respec-
tively, necessarily share two triangles, while only the ij edge
is acted upon by both operators; see Fig. 10. The operator
product B̂pB̂p′ is obviously defined within the Hilbert subspace
Kpp′ = Kp ∩ Kp′ .

First note that because the final state is the same in both
BB1,2 cases [Figs. 10(a) and 10(b)], the final values on the
ij bond, g′′ and ḡ′′, respectively, have to be equal (the initial
value is g ≡ gij ). Applying the rule Eq. (56) on triangular
faces created by s,s ′,g edges shows that indeed g′′ = ḡ′′ =
s · g · s ′−1, with conventions as in Figs. 9 and 10. Next, note
that fixing the initial and final states amounts to choosing a
coloring on the surface of the tent-shaped body formed on
top of the p,p′ plaquettes. The only unconstrained internal
edges are s,s ′. By construction of the model and the properties
of the ground-state manifold, the edge orientations and the
constraints on elements are consistent with a triangulation
and coloring of the tent-shaped manifold as required in the
definition [Eq. (43)] of ZM (τ ). The surface coloring τ is fixed
by the choice of initial and final states, while the sum over
s,s ′ in the expressions for BB1,BB2 is the sum over internal
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s s’

i j
gij

gij’

gij’’

s s’

i j
gij

gij’’

gij’
-

FIG. 10. (Color online) Overlapping plaquette operators commute. As in Fig. 9, the action and matrix elements of BB1 = 〈f| B̂pB̂p′ |i〉
(right) and BB2 = 〈f| B̂p′ B̂p |i〉 (left) are shown. Note that fixing |f〉 and therefore g′′

ij in both cases is consistent, giving g′′
ij = s · gij · s ′−1.

Concerning the overall phase factor due to the 3-cocycle factors in Eq. (51), the two images differ only in the choice of the single internal edge
(dark blue on left, pink on right) of the triangulation of the tent-shaped object. The summation over elements s,s ′ inherent in the plaquette
operators, Eq. (52), amounts to the sum over internal colorings, while |i〉 , |f〉 fix the surface coloring of the “tent.” The phase factor in both
quantities BB1,2 becomes just the DW topological invariant [Eq. (43)] of the “tent” calculated with different triangulation choices, therefore
having the same value.

colorings in the definition of ZM (τ ); see Eq. (43). The BB1

and BB2 are therefore equal to the DW invariant ZM (τ ) of the
tentlike object in Fig. 10, and they differ from each other only
in the choice of triangulation, i.e., the position of one internal
edge (notice that the value of element on this edge is also
different in the two cases, but in both consistent with general
coloring demands from Sec. III A). According to the properties
of the DW invariant expressed by Theorem 2 [Eq. (43)], this
difference in triangulation does not change its value, meaning
that BB1 = BB2.

IV. ELEMENTARY EXCITATIONS

In this section we introduce the low-energy excitations in
our models, and study their general properties. We define
ribbon operators which describe excitations at the ends of open
strings in Sec. IV B, having first introduced the motivation for
the definition in Sec. IV A. In Sec. IV C we use the algebra
of ribbon operators (extended by some local operators) to
study the general structure of these excitations. The 3-cocycles
present in our models introduce a “twist” into this extended
ribbon algebra and therefore play a key role.

Further, we explicitly show through examples in Sec. V
that excitations in our models can have distinctive symmetry
protected properties. Appendix B presents in detail the general
braiding and fusion of quasiparticles based on the twisted
extended algebra.

Up to now, the SG and the GG groups in our models were
either Abelian or non-Abelian. From now on, for simplicity
we assume both the SG and the GG to be Abelian.

A. Towards ribbons: Loop operators

We study closed-string (loop) operators in this section,
which will motivate the subsequent expression for open-string
(ribbon) operators. The loop operators we describe commute
with the Hamiltonian in Eq. (57). The open-string operators
will inherit this property locally along their string, except at
the string ends, where the excitations are located.

To define a loop operator, let us consider a contiguous area A

of the lattice. This area is bounded by a sequence of connected
edges on the triangular lattice forming the lattice loop P . Next,
if a lattice site i is inside the area A, or is lying on its boundary

P , we define the plaquette p centered on i to be “inside A”, i.e.,
p ∈ A. Now, the loop operator is just a product of plaquette
operators B̂s

p inside the area:

L̂s
P =

∏
p∈A

B̂s
p, (61)

where the ordering of the product is defined below, although it
is physically irrelevant since the plaquette operators B̂s

p oper-
ators commute for p �= p′. Obviously, the Hilbert subspace on
which the loop operator is defined has the zero-flux rule obeyed
in all triangles belonging to all plaquettes p ∈ A. This space is
given by Kp1 ∩ · · · ∩ Kpa

, with p1, . . . ,pa the plaquettes in A.
For the purpose of this section, we can for simplicity consider
only states which satisfy the zero-flux rule in all triangles of
the lattice.

The loop operator will, for s ≡ hss̃ ≡ hs · 1SG, hs ∈ GG,
have an action only on the boundary P of the area, and
therefore we label L̂s

P by P only.
To prove this basic property of the loop operator, we start

by considering the bulk of A, meaning the sites, edges, and
triangles within A including its boundary P . We now need
to fix the choice of ordering the operators B̂s

p in the product
Eq. (61) according to their plaquettes p. A natural choice is
according to the order of lattice sites i ≡ p on the lattice,
putting highest p rightmost in the product. (As before, i ≡ p

means the site i on which the plaquette p is centered.) This
choice turns out to be the simplest and most convenient for
calculations. The action of L̂s

P in the bulk of A is then given
by the expressions presented in Fig. 11(a). The SG elements
on the sites are unchanged due to s̃ ≡ 1, while the GG elements
on the edges get conjugated by s (contrast to Fig. 9). Since we
focus on Abelian groups, the loop operator acts trivially on
edges lying inside A, including its boundary P .

The nontrivial action of the loop operator is therefore
limited to the edges which lie outside A but still share a site
with the loop P , and this action is due to the B̂s

p operators
having p centered on a site on the loop P ; see Fig. 11(b).

Returning to the contribution from the bulk of A, it reduces
to the phase factors of 3-simplices (tetrahedrons) lying on top
of the bulk of A, according to the action of operators B̂s

p. To
evaluate these, we need to consider further the chosen ordering
of p’s in the product. Consider an oriented edge j → i inside A
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FIG. 11. (Color online) Creating a loop operator L̂s
P = ∏

p∈A B̂s
p by multiplying plaquette operators centered on sites within area A bounded

by a lattice loop P . This leads to two types of phase factors in the bulk of A, coming from (a) left, down triangles; right, up triangles. The B̂p’s
in the product are chosen to be ordered according to order of vertices i on which they are centered (p ≡ i), with highest p being rightmost (i.e.,
applied first). For an Abelian group and the choice s ≡ hs · 1SG the elements within A and P do not change, i.e., u′′

4 = u4, g′′
32 = g32, etc., and

phase factors from all tetrahedrons cancel up to a total phase due to a 2-cocycle evaluated on edges along P [Eq. (70)]. (b) The loop operator
only acts on triangle edges (thicker black) lying outside A but sharing one site with P (red edges).

(including P ), so that its arrow points towards i. By our choice
B̂s

p≡i is applied before B̂s
p≡j . The action of B̂s

p≡i assigns the
orientation j → i to the lifted edge as in Fig. 9, so the lifted
edge must have its arrow pointing “upwards” (towards the
lifted i vertex). This property applies to all edges in the plane,
so every lifted edge, connecting a vertex to a lifted vertex, will
have its arrow pointing upwards, i.e., towards the lifted plane.

Having determined this fact, it is simple to determine
the tetrahedrons formed by action of L̂s

P in bulk of A; see
Fig. 11(a). It becomes obvious that the bulk of the area is
spanned by only two different types of triangles. For the up (�)
and down (�) triangles on the lattice, as labeled in Fig. 11(a),
the resulting phases are

s
� = cs(g32,g24), s

� = c−1
s (g13,g32), (62)

where using the 3-cocycle ω we have introduced the function

cs(g1,g2) ≡ ω(s,g1,g2) ω(g1,g2,s)

ω(g1,s,g2)
, (63)

with g1,g2 ∈ G. The function cs(g1,g2) is most generally
parametrized by an arbitrary group element s ∈ G, even
though here s ∈ GG, and it can be directly shown that this
function satisfies the 2-cocycle condition introduced in Eq. (6).

On the other hand, the 2-cocycle (cs) value appearing in
the phases Eq. (62) exactly corresponds to the phase assigned
to the 2-simplices (i.e., triangles) on our ordered and colored
lattice, according to the general considerations from Sec. III A.
More precisely, just as in that section, a 2-simplex σ is defined

by a triangle with ordered vertices and group elements assigned
to its edges. The 2-simplex is assigned the complex number

�s(σ,ϕ) = W (σ,ϕ)ε(σ ), (64)

where W (σ,ϕ) ≡ cs(gkj ,gji) for a triangle with ordered ver-
tices i → j → k. The sign ε = ±1 is given by the chirality;
see Figs. 7 and 12.

The bulk of A is formed by the 2-simplices σI , so the total
phase contributed by the bulk of A is

s
A =

∏
I∈A

�s(σI ,ϕ), (65)

which one can calculate by changing the triangulation of this
area as in Fig. 12. (Recall that this retriangulation will not
change the total phase due to the allowed “moves” from Fig. 8.)
Namely, we make all the triangles share the vertex i = N ∈ P .
Labeling the vertices i on the lattice loop in CW order P = {i |
i = 0,1, . . . ,N} [see Fig. 12(c)], the phase s

A ≡ �s
P becomes

�s
P = cs(gN,N−1,gN−1,N−2) cs(gN,N−1 · gN−1,N−2,gN−2,N−3)

· · · cs(gN,N−1 · · · g21,g10), (66)

where we took into account the zero-flux rule as well as gij =
g−1

ji . Equation (66) shows explicitly that the contribution of
bulk of area A depends only on the edges along its boundary
loop P .

This expression becomes useful for us later on, but let us
now consider in more detail the case when the 2-cocycle cs is

g1

g2 g3 g4

g5

N

N-1
N-2

...

0 1 ...

(a) (b) (c)

FIG. 12. (Color online) (a) The loop operator L̂s
P , with P the loop of lattice edges bounding area A, has total contribution from triangles

within A which equals the product of 2-cocycle cs [Eq. (67)] evaluated on the triangles as oriented 2-simplices (compare to Figs. 7 and 11).
(b) An example loop P (red edges). (c) The phase can be calculated by retriangulating the area A inside the loop P . The resulting expression
for the phase �s

P , Eq. (66), is given in terms of elements along edges on P with clockwise ordered vertices i = 0, . . . ,N . The expression is
used for the definition of an open string; see Sec. IV B.
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trivial, which means that it can be rewritten in the form

cs(g1,g2) = εs(g1) εs(g2)

εs(g1 · g2)
. (67)

Because in expression Eq. (67) the three elements g1,g2,g1 · g2

belong to the three sides of the triangle, it is easy to check that
contributions to �s from an edge shared by an up triangle and
a down triangle cancel. The total phase then becomes a simple
expression obtained by going around the loop:

�s
P = εs(gN,N−1) εs(gN−1,N−2) · · · εs(g20) εs(g10)

=
∏
i ∈ P

CW

εs(gi+1,i). (68)

Let us now return to the general case of arbitrary 2-cocycle
cs . Having dealt with the bulk contribution of A, the action of
the loop operator is presented in Fig. 11(b), where a segment
of the loop is marked by red edges, as in Fig. 12. Note again
that along the loop i,i ′ ∈ P , elements ui,gii ′ are unchanged
between the initial and final states, just as they are not changed
inside the loop.

1. Summary for loop operators

In summary, the loop operator L̂s
P only acts on two edges

per triangle that has a vertex or edge on the loop P . This
action follows from the action of B̂s

p [see Eq. (48)] with p

centered on the loop P . [Such edges are marked thick black in
Fig. 11(c).] Additionally, the loop operator has a phase factor
contribution from the 3-cocycle of tetrahedrons σt on top of
each such triangle [see shaded triangles in Fig. 11(c)], which
we do not explicate as they cannot be simplified further; this
phase factor we label succinctly by

�s
P ≡

∏
t∈P

W (σt )
ε(σt ). (69)

Finally, there is the overall phase �s
P , giving the total

amplitude for the loop operator:

Ls
P = �s

P �s
P

=
N−1∏
i = 1

cs

⎛⎝ N−1∏
j = i

gj+1,j ,gi,i−1

⎞⎠ ∏
t∈P

W (σt )
ε(σt )

=
∏
i ∈ P

CW

εs(gi+1,i)
∏
t∈P

W (σt )
ε(σt ), (70)

where the last line holds only for trivial 2-cocycles cs and the
CW loop P contains vertices P = {i | i = 0,1, . . . ,N}.

One can show, using a direct method as in Fig. 10, that
the plaquette operator B̂p overlapping with the loop P , e.g.,
p ∈ P , commutes with the loop operator.

The final expression Eq. (70) motivates a definition of an
open-string operator, to which we now turn.

B. Ribbon operator

In this section we introduce the open-string (ribbon)
operators, which describe the low-energy excitations in our
models.

Let us start by defining a geometric object: the open ribbon
�. The ribbon has two ends, end A and end B, which we
need to define first. Choosing two neighboring vertices on
the triangular lattice, vertex iA and vertex i ′A, there is a
unique 2-simplex (triangle) formed by vertex iA and vertex
i ′A and another vertex that is not contained in �. We denote
this 2-simplex by tA. We then use the label A = (iA,tA), the
collection of the vertex iA and the triangle tA, to formally define
the end A of the ribbon �. Similarly, we use B = (iB,tB) to
define the end B of �. The 2-simplices tA,tB are not inside
�. We also define the edges of ribbon � at the two ends: For
end A, there is a single 1-simplex that is shared between �

and tA, which we denote as edge A. Similarly, we can define
edge B.

Having defined its ends, the open ribbon � is finally
specified by its two “ribbon edges.” Namely, � has an “inner
edge,” which is a sequence of connected edges on the triangular
lattice, going from the vertex iA to the vertex iB . Further, � also
has an “outer edge,” running from the vertex i ′A to the vertex
i ′B , which is displaced from the inner edge of � by one lattice
spacing. (See Fig.15 for an illustration of these definitions.)
As a geometric object, the ribbon � contains all the vertices
on the inner and outer edges, together with all 1-simplices and
2-simplices connecting these vertices (for these simplices, we
say that they are inside �, or we write ∈�).

We now proceed to define the operator F̂ (h,g)(�) for a given
open ribbon �.

Let us define a Hilbert subspace K(�) ⊂ H, formed by
those states which satisfy the zero-flux rule everywhere inside
�. Namely, ∀ |ψ〉 ∈ K(�) and ∀ t ∈ �, Qt |ψ〉 = |ψ〉. (Note
that, however, |ψ〉 may violate the zero-flux rule at tA,tB , for
instance.) For the purpose of this paper, we only define the
operator F̂ (h,g)(�) in the Hilbert subspace K(�).

Based on the understanding of the loop operator from the
previous section, we define the ribbon operator F̂ (h,g)(�) such
that it modifies the gauge degrees of freedom living on the
lattice edges connecting the inner and outer ribbon edges
of �, while leaving all degrees of freedom living elsewhere
unchanged. In particular, for a lattice edge ij inside �,
such that it connects the inner and outer ribbon edges, the
group element hij living on it is changed into h′

ij = h · hij

[h′
ij = hij · h−1] if the lattice edge is oriented to point towards

the inner [outer] ribbon edge. The operator F̂ (h,g)(�) therefore
has nonzero matrix element only between states |{ui},{h′

ij }〉
and |{ui},{hij }〉.

Finally, we need to define the nonzero matrix element of
F̂ (h,g)(�). This matrix element has two factors: one chosen
in accordance with the closed-loop operator and the other
dependent on the degrees of freedom at the two ends of the
open ribbon �. We define

〈{ui},{h′
ij }|F (h,g)(�)|{ui},{hij }〉 = fA · fB · fAB · w�

h (g),

(71)

where (1) w�
h (g) is motivated by the closed-loop operator and

is presented shortly, and (2) fA,fB,fAB are rather complicated
phase factors depending only on the degrees of freedom living
on ends of �, and we present them in Appendix B. To motivate
the expression for w�

h (g), let us start from the expression for
loop operator Eq. (70). Let the � ribbon’s inner edge go
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along the sequence of lattice sites {i | i = 0, . . . ,N}, where
now the sites i = 0 and i = N are not nearest neighbors, but
rather vertex iB and vertex iA, respectively. For convenience

(see Fig. 13 for the pictorial definition), we define the group
elements an ∈ G, n = 1, . . . ,N by ai ≡ gi,i−1. We then define
the phase

w�
h (g) = �h

� �h
� δ

(
N∏

i=1

gi,i−1,g

)

≡
(∏

t∈�

W (σt )
ε(σt )

)
ch(1,aN ) ch(aN,aN−1) ch(aN · aN−1,aN−2) · · · ch(aN · · · a2,a1) δ(a1 · · · aN,g)

=
(∏

t∈�

W (σt )
ε(σt )

)
ch

(
g · a−1

1 ,a1
)
ch

(
g · a−1

1 · a−1
2 ,a2

) · · · ch

(
g · a−1

1 · · · a−1
N−1,aN−1

)
× ch

(
g · a−1

1 · · · a−1
N ,aN

)
δ(a1 · · · aN,g), (72)

with δ(g,g′) the Kronecker δ function, which we used in the
second line to obtain a simple pictorial definition; see Fig. 13.

A way to understand the meaning of phase in Eq. (72)
is to note that “cutting open” the loop to get an open string
introduced the parameter g ∈ G which is related to the charge
carried by the excitations at the string ends. We consider it
in more detail below. [Compared to the loop, there is one
extra factor ch(1,aN ), which is inconsequential for canonical
cocycles; see Eq. (87c).]

In accordance with the definition of the loop operator, the
element h ∈ GG ⊂ G; see after Eq. (61). Physically, the loop
operator L̂h

P can be seen as a closed, P loop-shaped, domain
wall inside which we acted using element h (through action
of B̂h

p). For a gauge element h ∈ GG there is actually no
transformation inside the domain wall. It is further possible
to create an “open domain wall” (i.e., open-string �) in the
gauge transformation h, and it defines gauge excitations at
the ends of �. (On the other hand, one could define L̂h̃

P for
a global symmetry operation h̃ ∈ SG, which would create a
closed domain wall inside which the transformation h̃ ∈ SG

a1a2a3a4
a5

-1

-1
s

a1

g

a2a3a4a5

11

u0

u5

FIG. 13. (Color online) The phase contribution w�
s (g) =

�s
� �s

� δ (
∏N

n=1 an,g) to matrix element of ribbon operator F (s,g)(�),
with s ∈ GG, on a length N = 5 example. (Left) The operator
acts nontrivially only on elements adjacent to path � (thick black
edges). Note that elements ai ≡ gi,i−1 ≡ hi,i−1uiu

−1
i−1 are defined to

be directed along the path, so for n = 4,5 they are opposite to the
standard definition, which is along the edge orientation. Elements at
ends A, B of the ribbon �, i.e., vertex iA and vertex iB , are u5 ∈ SG

and u0 ∈ SG, respectively. The phase factor �s
� is the product of

3-simplex phases W (σI )ε(σI ) shown on top of shaded triangles. (Right)
The phase �s

� is the product of 2-simplex phases W (σt )ε(σt ) shown,
where 1 is the identity element, and the parameter g = a1 · · · aN ∈ G.

is applied. However, it is physically unsound to try to define
an open domain wall of such a transformation h̃ ∈ SG.)

It is important to realize that the δ function in the ribbon
operator, δ(a1 · · · aN,g), with ai ≡ gi,i−1 = hi,i−1 · ui · u−1

i−1,
has a different effect on the global symmetry and gauge parts
of G = GG × SG. Namely, given the factorization g = hg · g̃,
the δ function separates into

δ(a1 · · · aN,g) = δ(h10 · · · hN,N−1,hg) δ
(
uNu−1

0 ,g̃
)
. (73)

The δ function therefore constrains the product of gauge
degrees of freedom along the inner edge of ribbon to the
value hg , while leaving only one constraint on the undualized
elements of SG at the two ends of the ribbon: uN = g̃ · u0.
(Recall that actually uN is the element on site vertex iA, while
u0 is on vertex iB .)

A special case that offers insight occurs when the 2-cocycle
ch is trivial. In that case, using the property Eq. (67) of trivial
cocycles, we get

w�
h (g) =

(∏
t∈�

W (σt )
ε(σt )

)
δ(a1 · · · aN,g) ε−1

h (g)
N∏

i=1

εh(ai),

(74)

where εh is a family of U (1) valued functions on G (i.e., a
1-cochain) parametrized by the element h.

We now show that away from its end points the ribbon
operator F (s,g)(�) commutes with B̂s ′

p and, therefore, also with
the Hamiltonian in Eq. (57). Obviously, the nontrivial situation
occurs when the plaquette p is centered on a site i ∈ �, which
is positioned on the inner edge of �; see Fig. 14(a). Note that
by definition of the operators, elements s ∈ GG and s ′ ∈ G.
The product of the two operators is defined in the Hilbert
subspace K(�) ∩ Kp. Physically, we do not allow states with
a flux-carrying excitation positioned on the ribbon � or inside
the plaquette p, as we consider this commutator. We also
choose p that does not overlap with tA or tB ; i.e., we consider
the commutation away from ribbon ends.

It is clear that the final states of the system are the same
no matter the order of applying the two operators, since G is
Abelian. The two resulting quantum phases 〈f|F (s,g)(�)B̂s ′

p |i〉
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FIG. 14. (Color online) Inner segment of ribbon operator F (s,g)(�), with s ∈ GG, commutes with plaquette operator B̂s′
p , having p centered

on inner edge of �, and therefore also with the Hamiltonian. (a) Only elements on two edges (thick black) are changed, but in the same way
for FB̂ and B̂F due to Abelian G. (b) Quantum phase for FB̂ (top row) and B̂F (bottom row) differ only due to shown 3-simplices which
are on top of three blue shaded triangles in (a). (c) The phase contribution due to string phase � is shown. (d) The 3-simplices contribution to
phase factor ratio WB/BW (from panel b) equals precisely the phase W (σt )ε(σt ) due to two blue 2-simplices [see Eq. (78)]. The WB (top) and
BW (bottom) cases are therefore graphically seen to be the same, as interior points of the polygon can be removed in a 1-3 move (Fig. 8).

and 〈f|B̂s ′
p F (s,g)(�)|i〉 we label by wB and Bw, respectively,

and we show that their ratio is 1.
The wB and Bw differ in their phase factor �s

� (which
was defined in Fig. 13), and these are shown on the right of
Fig. 14(b). Recalling that ai ≡ gi,i−1 = hi,i−1 · ui · u−1

i−1 and
i = 1, . . . ,N , the difference is due to operator B̂s ′

p sending

ai → s ′ · ai
(75)

ai+1 → ai+1 · s ′−1

[see the basic definition, Eq. (48)], and we remind the reader
that p is centered on the site i. Due to the product structure
in �s

� , there are only two factors affected by this change, and
these are the shaded 2-simplices in Fig. 14(b)(right). The ratio
of quantum amplitudes is

�wB

�Bw

= cs

(
A · s ′−1 · a−1

i ,s ′ · ai

)
cs

(
A · a−1

i · a−1
i+1,ai+1 · s ′−1

)
cs

(
A · a−1

i ,ai

)
cs

(
A · a−1

i · a−1
i+1,ai+1

)
= cs(s ′−1 · ai+1,s

′)
cs(,s ′,ai)

, (76)

where A is the product of ai ′<i elements, and we used the
2-cocycle condition [see Eq. (6)].

Further, it is obvious that the phase difference coming from
3-simplices is only due to ones stacked on top of three triangles
that are shared by the ribbon and the plaquette, Fig. 14(a), and
these simplices are presented in detail in Fig. 14(b). Grouping
the phases according to the triangles from left to right, and
using the definition of the 2-cocycle [Eq. (63)], we get

�1
wB

�1
Bw

= cs(ai+1,h) c−1
s (s ′−1 · ai+1,s

′ · h) ω−1(s ′,h,s),

�2
wB

�2
Bw

= ω(s ′,s,h) ω−1(s,s ′,h) ω(s,s ′,ai · h) ω(s ′,s,ai · h),

�3
wB

�3
Bw

= cs(s
′,ai) ω(s ′,s,ai · h) ω−1(s,s ′,ai · h), (77)

where h is the element on the leftmost edge of left triangle in
Fig. 14(a). The total phase due to 3-simplices becomes

�wB

�Bw

= cs(s ′,ai)

cs(s ′−1 · ai+1,s ′)
. (78)

This phase ratio exactly cancels the contribution from the string
of 2-cocycles in Eq. (76), completing the proof that the inner
piece of ribbon operator commutes with plaquette operators.

We point out in the pictorial interpretation of the result that
the 3-simplex contributions to the phase ratio, Eq. (78), are
exactly equal to the phase of the two blue-shaded triangles in
Fig. 14(c). The total phase ratio is then equal to the ratio of
the upper and lower polygons in Fig. 14(c), which obviously
equals 1 due to the rule that allows removal of internal points
in polygons (rule from Fig. 8).

C. Local symmetric operators and the twisted
extended ribbon algebra

In this section we introduce local symmetric operators
which have a nontrivial algebra with the ribbon operators. This
will allow us to understand the general structure of excited
states. The focus is on states with a single pair of excitations,
or two pairs when discussing braiding. The obtained results
will be directly relevant for studying examples in Sec. V.
The fully general case of many quasiparticle pairs, including
their braiding and fusion properties, are studied in detail in
Appendix B by using the extended algebra.

Before giving the formal definitions, let us remark that given
the positions of excitations, the “extended algebra” contains
the set of ribbon operators F (with their strings connecting
pairs of excitations), as well as a set of local operators D acting
at the positions of excitations. However, the presence of the
3-cocycle ω adds a twist in the algebra and crucially determines
the resulting properties of excitations. It has been shown61 that
certain broken gauge theories with Chern-Simons terms lead to
discrete (group H̃ ) gauge theories having such twisted algebra
describing their quasiparticles.61 In that situation, the cocycle
is generated by the Chern-Simons term, and the resulting
discrete gauge theory can be classified using H 3(H̃ ,U (1)),60

making connection with discrete DW TQFTs. Importantly,
a nontrivial cocycle twisting of the algebra can render the
resulting theory non-Abelian even though its gauge group
H̃ is Abelian.62 Our models inherit this interesting property,
and we discuss this briefly concerning properties of multiple
pairs of excitations in Sec. V G. In Appendix B we also show
explicitly how the considered operators of our models form
a Hopf algebra (more precisely, a quasitriangular quasi-Hopf
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FIG. 15. (Color online) (a) Ribbon operator with both ends (red
dots), shown schematically at the bottom. It only acts on the thick
black edges, consistent with zero-flux rule on all 2-simplices above
and within the ribbon. The transition amplitude of the ribbon is given
in Fig. 13 without the phase factor fAfBfAB local at the string ends; f
is involved (Appendix B), but includes the edges of two triangles tA,tB
at the ends (shaded light orange). Dashed violet lines indicate edge
elements that are not acted on by the operator. (b) The local operator
at position B ≡ (i,t), with i the lattice site and triangle t (dark blue)
having vertices i,j,k (shaded dark blue), has the transition amplitude
〈f| D(h,g)(B) |i〉 = δ(gij · gjk · gki,h) Wh W6. It acts as the plaquette
operator B̂g

p (Fig. 9) with plaquette p centered on i (changing only
thick black edge elements), except that it also projects flux in t to value
h, and also has an additional phase factor Wh, which is the phase of the
2-simplex (shaded light blue). [For operator D(A), the triangle iki ′ is
used instead.] The phase factor W6 depends on six drawn 3-simplices
(tetrahedrons) having altered elements o (red edges) such that it is
well defined even if the zero-flux rule is violated in the plane (as
occurs at ribbon string ends); see after Eq. (79).

algebra due to the cocycle twist; see Refs. 61 and 70) and how
they describe the braiding and fusion of excitations.71

It is important to emphasize that in the present context the
local operators D are also crucial for determining the interplay
of symmetry and topological order: After we explicitly con-
struct the D operators, we show that they are symmetric, i.e.,
commute with transformations from SG, and further we expect
them to span the algebra of all local symmetric operators.72

Thereby the set D will provide us all symmetry-allowed local
perturbations and therefore the possibility of calculating the
symmetry protected degeneracy and other properties of excited
states in Sec. V.

Let us briefly recall some relevant details about the ribbon
operator F (h,g)(�) from Sec. IV B; see Fig. 15. By definition,
the element h ∈ GG, while g ∈ G. The operator definition
demands that the zero-flux rule is satisfied for all triangles in
ribbon �; i.e., it acts within the Hilbert subspace K(�). The
two ends of ribbon � we label by A,B. For this section it is
important to recall the structure of the ribbon ends (Fig. 15),
which are completely determined by a site and a lattice triangle
A = (iA,tA), B = (iB,tB) (tA,tB are not considered to be
within �).

We next define the local operator D(h,g)(B) positioned at
B ≡ (iB,tB); see Fig. 15. [Operator D(A) is very similar,
below.] Let the triangle tB have ordered vertices k → j → i

as in Fig. 15. The D(h,g)(B) operator acts on the elements in
the plaquette centered on iB in the same way as the plaquette
operator B̂

g

p≡iB
; however, D(h,g)(B) additionally projects the

2-simplex at tB to having flux h ∈ GG and also has an
additional phase factor. Actually, in contrast to B̂

g

p≡iB
, we

define the operator D(h,g)(B) in the entire Hilbert space H, as
will become clear soon. Let us first state the quantum amplitude

of the local operator:

〈f| D(h,g)(B) |i〉 = δ(gij · gjk · gki,h) Wh W6(i), (79)

where Wh ≡ Wh(σij ,ϕ)ε(σij ) is the phase of 2-simplex σij (light
blue shaded in Fig. 15) formed by edge ij and vertical edge g,
so it equals ch(g,gij ) (see Fig. 15). Of course, by the definition
of group elements on edges, Eq. (45), δ(gij · gjk · gki,h) =
δ(hij · hjk · hki,h) depends only on the elements of gauge
group GG.

The phase W6(i) is due to 3-simplices (tetrahedrons) on top
of the plaquette; although analogous to the B̂p operator (Fig. 9),
in this case operator D has to be well-defined even if the
zero-flux rule is violated in the plane, as can occur at the tA,tB
of the ribbon �. On the other hand, the 3-cocycle can assign a
phase to a tetrahedron only if the zero-flux rule is satisfied on
all its faces. Because of this, just for the purpose of calculating
the phase due to the six tetrahedrons

∏6
I=1 W (σI ,ϕ

′)ε(σI ), we
redefine the values o1, . . . ,o6 of elements on six outer edges
of the plaquette [red in Fig. 15(b)] such that the zero-flux rule
is satisfied in all six triangles of the plaquette in the plane.
The six internal edge elements of the plaquette in the plane are
considered unchanged from their value in |i〉, and they suffice
to fix the redefined values o′

1, . . . ,o
′
6 on the outer edges of the

plaquette according to the zero-flux rule in all six triangles of
the plaquette. Formally, this phase contribution is

W6(i) = 〈o′
1, . . . ,o

′
6; f1, . . . ,f6|B̂p|o′

1, . . . ,o
′
6; i1, . . . ,i6〉,

(80)

with i1, . . . ,i6 the initial values of elements on six internal
edges of plaquette, and f1, . . . ,f6 their final values. (Note that
the redefined values on outer edges o′

1, . . . ,o
′
6 have to stay the

same in the initial and final state.)
It is now clear that operator D(h,g)(B) is well defined in

H. Actually, it is also well-defined within the subspace K(�)
because it does not influence the flux in triangles belonging to
ribbon � (recall that by definition tB is not inside �).

The definition and properties of the D(A) operator, relevant
due to its action at the A end of a string, is almost identical
to the D(B) case just described. The only difference is in the
phase Wh, which in this case is not the phase of the 2-simplex
ij i ′ [light blue triangle in Fig. 15(b)], but the 2-simplex iki ′
instead.

Obviously, a nontrivial algebra between D(A),D(B) and F

is due to their overlap at the triangles tA,tB . For concreteness,
we presented ribbon ends of the form in Fig. 15, i.e., tA,tB being
the bottom up-pointing triangles, omitting versions rotated by
multiples of 60◦.

The local operators D(h,g)(C), with C = A,B, are sym-
metric. As noted before (see discussion of plaquette operator,
Sec. III B), a global symmetry transformation s̃ ∈ SG does not
alter the elements on the edges, leaving the phases in Eq. (79)
intact. Further, even though the local operator acts on the site
iC by the element g̃ ∈ SG, where g = hg · g̃, hg ∈ GG, this
action automatically commutes with the action of s̃ since we
have restricted G to be Abelian in the present analysis of
elementary excitations in our models.

We emphasize again that for local operators D(h,g)(C), with
C = A,B, by definition h ∈ GG while g ∈ G.
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Having the definitions of ribbon � having ends C = A,B,
the ribbon operator F (�), and the local operators D(A), D(B)
at hand, one can tediously but straightforwardly derive the
following algebra:

D(h2,g2)(C) D(h1,g1)(C) = δh1,h2 ch1 (g2,g1) D(h1,g1g2)(C),

(81a)

F (h2,g2)(�) F (h1,g1)(�) = δg1,g2 cg1 (h2,h1) F (h2h1,g1)(�),

(81b)

F (h1,g2g1)(�) D(h2h1,g2)(A) = cg2 (h2,h1) ch1 (g2,g1) D(h2,g2)(A)

×F (h1,g1)(�), (81c)

D(h2h1,g2)(B)F (h1,g2g1)(�) = cg2 (h1,h2) ch1 (g1,g2) F (h1,g1)(�)

×D(h2,g2)(B), (81d)

where Eq. (81a) holds in the entire Hilbert space H [and also
within K(�)], while the three other relations hold within the
subspace K(�), where the ribbon operators are well-defined.

To understand the implications of the operator algebra
in Eqs. (81), we need to consider the precise form of the
excited state. Starting from a two-particle excited state, having
excitations at the two ends A,B of the string �, one would
expect it to be given by the simple action of the ribbon operator
on the ground state:

|ψ (h,g)〉 = F (h,g)(�)|gs〉. (82)

These states can be shown to be orthogonal. However, the
space L(A,B) spanned by these states needs to be specified
further. Namely, as Eq. (73) shows, the ribbon operator puts
only one constraint on the values of two elements at the lattice
sites iA,iB , i.e., uiA · u−1

iB
= g̃ ∈ SG, with the factorization g =

hg · g̃. We already know that the local operators transform
these elements, e.g., under action of D(h,g1)(A), the element
uiA → g̃1 · uiA , where g1 = h1 · g̃1, h1 ∈ GG, g̃1 ∈ SG. We
therefore need to specify the value of one element (of either
uiA or uiB ) in the excited state. By using the projectors

P̂u(A)|{ui},{gij }〉 = δuiA
,u|{ui},{gij }〉, (83)

we can consider the subspace LuA
(A,B) of the Hilbert space

H spanned by projected states:∣∣ψ (h,g)
uA

〉 ≡ P̂uA
(A)|ψ (h,g)〉, (84)

with a fixed element uA ∈ SG. The value of uiB is then
automatically fixed by the action of ribbon operator uiB =
g̃−1 · uA.

Completely analogously we define the subspace LuB
(A,B)

spanned by |ψ (h,g)
uB

〉 ≡ P̂uB
(B)|ψ (h,g)〉, by using the projector

P̂uB
(B) at the vertex iB . Note that the projectors P̂ (A),P̂ (B)

commute with the ribbon operator F (�). It is also easy to
check that D(h,g)(C)P̂uC

(C) = P̂g̃·uC
(C)D(h,g)(C), where C is

either A or B, and the usual group element factorization is
g = hg · g̃, hg ∈ GG, g̃ ∈ SG.

The subspaces LuC
(A,B) were introduced using the action

of ribbon operators on the ground state. The end A and end B

of ribbon �, in principle, carry excitations, and LuC
(A,B) does

not depend on the particular shape of � (as long as � does not
change topological class). It is, however, not trivial to prove
that the subspace L(A,B) = ⊕uC∈SGLuC

(A,B), with C either
A or B, actually exhausts all possible excited states with two

quasiparticles positioned at A and B. In Appendix E we prove
that the space L(A,B) indeed contains all such excited states.
(We do not, however, have a proof that all multiparticle states
having more than two particles are also given by the action of
appropriate ribbon operators on the ground state.)

Now that we established the appropriate Hilbert space, it is
easy to show that the local operators form a unitary projective
representation of the group G within this two-particle Hilbert
space. We give the precise definition and explicit proof of this
fact in Appendix E.

Let us next show that the local operators, as well as
the ribbon operators, form Hopf algebras. (The succinct
notation we introduce here will be useful in Appendix E.)
More precisely, let us denote the algebra formed by local
operators D(h,g)(A), with h ∈ GG, g ∈ G, by the symbol
D(A). Analogously, the operators D(h,g)(B) form the algebra
D(B). Since D(A) and D(B) are formally algebraically the
same, we use D to denote this abstract algebra, keeping in
mind that D(A) and D(B) act at physically different positions.
The algebra of ribbon operators F (h,g), h ∈ GG, g ∈ G,
having ribbon �, will be denoted by F . We now consider
the subspace K(�) of Hilbert space, so that all these operators
are simultaneously well-defined, and Eqs. (81) holds.

To start with, the operator relations in Eqs. (81) can
be rewritten succinctly using double index notation: The
Latin indices i,j,k, . . . ,r are shorthand for group element
pairs i ≡ (hi,gi), j ≡ (hj ,gj ), etc., with hi,hj , . . . ∈ GG and
gi,gj , . . . ∈ G. We can then write

Dm(C) Dn(C) = �k
mn Dk(C), (85a)

Fm(�) Fn(�) = �mn
k F k(�), (85b)

Fm(�) Di(A) = �
jk

i �m
kl Dj (A) F l(�), (85c)

Di(B) Fm(�) = �
kj

i �m
lk F l(�) Dj (B), (85d)

where we defined the tensors

�k
ij ≡ δhi ,hj

δhk,hi
δgk,gigj

chk
(gi,gj ), (86a)

�
ij

k ≡ δgi ,gj
δgk,gi

δhk,hihj
cgk

(hi,hj ), (86b)

and summation over repeated double indices is understood as,
e.g.,

∑
i ≡ ∑

hi∈GG,gi∈G.
The tensors in Eqs. (86) contain the twist due to the

cocycle ω present in our models. Similar realizations of twisted
algebra, but describing broken gauge theories, are analyzed
in, e.g., Ref. 71. We also note that only when the cocycle
is trivial, ω(g1,g2,g3) ≡ 1 ⇒ cg(g′,g′′) = 1, do these tensors
reduce to the form occurring in the generalization of toric code
to arbitrary finite groups, as given in Ref. 65.

To derive the properties of this algebra, we have to use
several properties of a 2-cocycle c derived from an arbitrary
3-cocycle ω [Eq. (63)], listed here for convenience:

ca(g,h) ca(gh,s) = ca(h,s) ca(g,hs), (87a)

ca(g,h) cb(g,h) cg(a,b) ch(a,b) = cgh(a,b) cab(g,h), (87b)

ca(g,h) = 1, if any of a,g,h equals 1,

(87c)

ca(g,g−1) = ca(g−1,g). (87d)
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(We note that all these properties actually hold generally, i.e.,
for arbitrary elements a,b,g,h,s ∈ G.) The identity (87a) is
the general condition for a 2-cocycle, Eq. (87b) can be derived
directly using the definition Eq. (63), identity (87c) follows
from our choice to use only canonical cocycles ω (1 is the
identity group element), and finally the useful relation (87d)
follows from Eqs. (87a) and (87c).

Using these identities we can prove that the ribbon and local
operators form Hopf algebras.

A basic axiom of Hopf algebra is the associativity of
multiplication with identity, which holds for F and D algebras,
as shown by the following two relations, respectively:

�lm
i �in

k = �
lj

k �mn
j , εi�

im
k = εj�

mj

k = δm
k , (88a)

�i
lm�k

in = �k
lj�

j
mn, ei�k

im = ej�k
mj = δk

m, (88b)

where for double indices the Kronecker δ function
δi
j ≡ δhi ,hj

δgi ,gj
and the functions εi ≡ δhi ,1, ei ≡ δgi ,1 define

the unit and counit of the algebras, 1F = εkF
k , 1D = ekDk ,

ê(Fk) = ek , and ε̂(Dk) = εk . Both Eqs. (88a) and (88b) hold
due to Eqs. (87a) and (87c).

The comultiplication in the Hopf algebra is physically
related to fusion, and instead of presenting a formal definition
here, we show in Sec. IV D and Appendix B that the braiding
and fusion properties of excitations are consistent and contain
the twist by the 3-cocycle characteristic of a quasi-Hopf
algebra first introduced in Ref. 70.

Having established the Hopf algebra relations in Eqs. (88a)
and (88b), we are in a position to prove that all two-particle
excited states in our models are indeed within the Hilbert
subspace L(A,B) we defined in this section. The proof is
presented in Appendix E and is based on a derivation given in
Ref. 65. This Hilbert space for an excitation pair is especially
important here since it will be studied explicitly for several
example groups in Sec. V.

In summary, the local operators are the set of nontrivial
operators acting on excitations, and they are also symmetric
and form a projective representation of the group. We use these
properties to study the symmetry protected properties of our
models in Sec. V.

We close this subsection by briefly introducing the Hilbert
space of many-particle excitations. (It is studied in more
detail in Appendix B.) Let us consider a system having n

quasiparticles at positions A1, . . . ,An, and one quasiparticle at
position B, and no other excitations. Such a system is described
by the Hilbert space L̃(A1, . . . ,An,B). To study these states,
we consider a space L(A1, . . . ,An,B) spanned by the action
of ribbon operators, as described in the following. Let us
connect each position Ai through a ribbon �i having end-Ai to
the common isolated position B. Therefore, all ribbons’ end
Bi coincide, and all are equal to B. (For further discussion
and lattice realization, see Appendix B.) Focusing on the
subspace K(�1, . . . ,�n) in which all ribbon operators having
ribbons �i are simultaneously well-defined (i.e., zero-flux rule
obeyed inside all ribbons), we can now define its subspaces
LuB

(A1, . . . ,An,B) spanned by states of the form∣∣ψk1,...,kn

uB

〉 = P̂uB
(B)Fk1 (�1) · · · Fkn(�n) |gs〉 . (89)

The states in Eq. (89) form the subspaces with uB fixed. We
actually expect that the space L̃(A1, . . . ,An,B) coincides with

the space L(A1, . . . ,An,B) = ⊕uB∈SGLuB
(A1, . . . ,An,B).

[We have a proof of this only in the two-particle case (see
Appendix E), but, as mentioned, this is hard to prove in
general.]

At the same time, the extended algebra of each given ribbon
F (�i) contains the local operators D

(i)
k ≡ Dk(B) which we

define to affect only that (i.e., the ith) ribbon. These operators,
being local at B, commute with all local operators Dm(Aj ),
j = 1, . . . ,n at the excitations Aj . The D

(i)
k operators therefore

act, in view of Eq. (85d), as

D
(1)
j1

⊗ · · · ⊗ D
(n)
jn

∣∣ψk1,...,kn

uB

〉 = �
k1
m1j1

· · ·�kn

mnjn

∣∣ψm1,...,mn

uB

〉
.

(90)

In this definition we constrain the elements in D(B) strictly to
GG, e.g., the double index j = (hj ,hgj

· 1SG) with hj ,hgj
∈

GG. This constraint to GG elements is exactly encountered
when describing braiding in the next section.

Because the D
(i)
k operators are nonlocal with respect to the

excitations at Ai while commuting with D(Ai) they are called
“topological operators.”65

Topological operators and braiding in many-particle states
are analyzed in detail in Appendix B.

D. Braiding matrix

In this section we calculate the braiding matrix of two
quasiparticles, restricting ourselves to a system that has quasi-
particles at most at three positions, A1,A2,B (see previous
section). An alternative and more explicit way to obtain the
braiding properties of quasiparticles is by considering ribbons
of strings that cross, but this approach is applicable to Abelian
quasiparticles only; we present it in Appendix C and show there
that the results of the two approaches agree for Abelian quasi-
particles. The braiding as well as fusion in states with many
quasiparticles introduce additional subtleties, and this situation
is presented in detail in Appendix B. Here we focus only on
braiding of two particles and show that the braiding properties
are entirely determined by the topological order, i.e., the gauge
group GG. The effects of interplay of topological order and
symmetry are revealed in the concrete examples in Sec. V.

Recall that we define the ribbon operator matrix element
[see Eq. (71)] such that the operator algebra in Sec. IV C is ob-
tained. (The matrix element is fully presented in Appendix B.)
That definition also leads to the following algebra for two
ribbon operators having strings �1,�2 which share their B

end:

F (h2,g2)(�2) F (h1,g1)(�1)

= ch1

(
g1h

−1
2 ,h2

)
F (h1,g1h

−1
2 )(�1) F (h2,g2)(�2)

ω(h2,h1,hB)

ω(h1,h2,hB)
,

(91)

where hB is the value of flux in triangle tB . Equation (91)
is well-defined only in the subspace K(�1,�2) of the Hilbert
space, i.e., when zero-flux is obeyed in every triangle inside
�1 or �2 (note that tB is outside both ribbons). Figure 16(a)
sketches this situation, which will enable us to determine the
braiding of the two quasiparticles at the end A1 and end A2.
(Appendix B considers in detail the case when the end A is
shared by the ribbons.)

155115-23



ANDREJ MESAROS AND YING RAN PHYSICAL REVIEW B 87, 155115 (2013)

Γ1 Γ2

A1 A2

B

Γ1 Γ2=Γ1

A1 A2

B

A1 A2
’

Γ2’
(a) (b) (c)

FIG. 16. (Color online) (a) Ribbon operators for two-particle
excited state and braiding two excitations at A1,A2 (see also Fig. 15).
The common end point B contains no excitation, but “topological”
operators of ith ribbon D(i)(B), i = 1,2, local at B, can be used
to represent braiding. (b) Applying different ribbons (blue) than in
original state shown in (a) leads to a braided state (see Sec. IV D).
(c) The resulting counterclockwise braid of particles 1 and 2.

The 3-cocycle factor on the right-hand side of Eq. (91) has
to be considered with care in a many-particle situation, as is
done in Appendix B; in this section we, however, focus on a
system with only the two ribbons �1,�2. Because of this, a
product of two ribbon operators, such as appearing on both
sides of Eq. (91), can only act on the ground state; i.e., there
are no other excitations in the system. Because of this, the
value of flux in triangle tB on the right-hand side of Eq. (91)
is necessarily zero, which means that the element hB = 1 (see
also Appendix B). Due to our choice of canonical cocycles,
the two ω factors on the right of Eq. (91) therefore disappear.

Let us now formally introduce the braiding matrix relevant
for ribbons sharing their end B by rewriting Eq. (91) in a
compact form,

F j (�2) F l(�1) = Rqr�l
mr�

j
nqF

m(�1) Fn(�2), (92)

where according to Eq. (91), the R matrix of our model equals
Rik = δhi ,gk

δgi ,1.
We now calculate the operator RCC describing the coun-

terclockwise braiding operation by 180◦ of the two exci-
tations positioned at A1 and A2. This operator is defined
by setting |ψab〉braid = RCC |ψab〉. We consider the original
state, Fig. 16(a), and the one where excitations are exchanged
[Fig. 16(b)] by braiding particle 2 counterclockwise around
particle 1: ∣∣ψab

uB

〉 = P̂uB
(B)Fa(�1)Fb(�2)|gs〉 (93)∣∣ψab

uB

〉
braid = P̂uB

(B)RCC |ψab〉 (94)

= P̂uB
(B)Fa(�′

1)Fb(�′
2)|gs〉, (95)

where we used the double index notation, i.e., a ≡ (ha,ga),b ≡
(hb,gb). Note that we choose to project the states by fixing the
value of uiB equal to uB ; the ribbon operators then determine
the values of uiA1

,uiA2
[see the definition in Eq. (84)].

According to the definition of states in Eq. (89), the order
of applying ribbon operators reflects the order of particles,
while the new strings �′

1,�
′
2 compared to original ones �1,�2

represent the braiding movement. Figures 16(a) and 16(b)
illustrate this. We see that the new string of particle 1 coincides
with the old string of particle 2, �′

1 = �2, while the new string
�′

2 is topologically equivalent (and the operator therefore the
same) to �1 only if there is no particle at original position of
2 at the time these two strings are compared; see Fig. 16(b).

Therefore, the new ribbon operator on �′
2 is the same as a

ribbon on �1 if it is applied before the new �′
1. This is actually

true in Eq. (94), and we therefore have

Fa(�′
1)Fb(�′

2) = Fa(�2)Fb(�1). (96)

We now only need to commute the ribbon operators to make a
comparison to Eq. (93). The commutation relation in Eq. (92)
directly gives

P̂uB
(B)RCC |ψab〉 = Rqr�b

mr�
a
nq

∣∣ψmn
uB

〉
(97)

= RqrD(1)
r ⊗ D(2)

q

∣∣ψba
uB

〉
. (98)

We note that the Rqr matrix in this expression constrains the
group elements in D(1,2) to be strictly in GG, e.g., r ≡ (hr,h

′
r ·

g̃r ), hr,h
′
r ∈ GG, is constrained to g̃r = 1SG; this implies that

the site element uiB is not changed from its value uB by the
action of D(1),D(2). The explicit form of the braiding operation
is therefore

RCC

∣∣ψab
uB

〉 = chb

(
gbh

−1
a ,ha

)∣∣ψ (hb,gbh
−1
a )(ha,ga )

uB

〉
, (99)

which one can of course obtain directly using the commutation
in Eq. (91), without first defining the Rik matrix. The result
nontrivially involves the cocycle ω of our model.

Applying RCC twice, we obtain for the 360◦ braiding

R2
CC

∣∣ψab
uB

〉= cha

(
gah

−1
b ,hb

)
chb

(
gbh

−1
a ,ha

)∣∣ψ (ha,gah
−1
b )(hb,gbh

−1
a )

uB

〉
=D

(1)
(ha,hb) ⊗ D

(2)
(hb,ha )

∣∣ψab
uB

〉
, (100)

where we remind that D(i)
g ≡ Dg(B) is acting on the ith ribbon

operator in the product state Eq. (89).
The case when the braided quasiparticles are positioned at

B ends of their ribbons which share the end A, is similar and
discussed in detail in Appendix B. Here we just quote the result
for the 2π braiding of particles at end B1 and end B2:

R̄2
CC

∣∣ψ̄ab
uA

〉 = D
(1)
(h−1

a ,h−1
b )

⊗ D
(2)
(h−1

b ,h−1
a )

∣∣ψ̄ab
uA

〉
, (101)

where we use the bar over symbols to signify that the state and
braiding concern particles at end B’s of strings.

Equations (100) and (101) explicitly show that the braiding
of quasiparticles is described by the action of “topological
operators” [see Eq. (90)], which act only on the gauge
degrees of freedom, obviously since they are labeled only
by elements ha,hb ∈ GG. This fact means that the braiding
properties follow directly from the topological order in our
models, which is described by the gauge group GG. In
Appendix B we show explicitly that the topological operators
form an algebra called “quasi-quantum double,”70,71 which
is mathematically a realization of a quasi-Hopf algebra. The
prefix “quasi” denotes the presence of the twist by cocycle
ω, which is here restricted to elements of GG. Appendix B
also clarifies how representations of the quasiquantum double
label the quasiparticle species, while the multiplication and
comultiplication operations in the algebra directly determine
the braiding and fusion of quasiparticles.

The quasiquantum double construction, i.e., the presence of
a cocycle twist in the algebra of braiding and fusion operators,
appeared in the description of excitations in gauge theories
broken to a discrete subgroup.61 This is to be expected since
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both those theories and our models describe topological order
classified by DW TQFTs.52,61

In Appendix B we also discuss in detail the situation with
an arbitrary number of quasiparticles (either end-A or end-
B ones), describing their braiding and fusion as well as the
quasi-quantum double mathematical structure.

V. EXAMPLES

As will become clear through this section, the gauge charge
and gauge flux quasiparticles in our theories do not behave
in the same way regarding the phenomena of symmetry
fractionalization. We therefore focus on the gauge fluxes,
which have nontrivial properties, while leaving the case of
gauge charges, which behave trivially, to Sec. V F.

At the end of this section, we also discuss the degeneracy
of states with multiple quasiparticle pairs by considering the
dualization of the global symmetry SG.

A. Hilbert space for a pair of gauge fluxes

We now analyze the properties of excitations in our exactly
solvable models, as announced in Sec. II. We later study in
detail examples where the groups SG and GG are products of
Z2. In general, we study a pair of gauge fluxes positioned at
the ends A and B (which also label the lattice sites there) of a
string �, created by the action of a ribbon operator,

|hv,g; uA〉 ≡ ∣∣ψ (hv,g)
uA

〉 = P̂uA
(A)F (hv,g)(�) |gs〉 , (102)

where we introduced more succinct notation. These projected
states span L(A,B,hv). According to the general definition
of ribbon operators, hv ∈ GG and g ∈ G = SG × GG, and
we label the unique factors of the latter element as g = hg · g̃,
with hg ∈ GG, g̃ ∈ SG. The value of uB is automatically fixed
by the action of ribbon operator uB = g̃−1 · uA, with uA,uB ∈
SG. We focus on a pair of gauge fluxes, so that hv is chosen
as a fixed nontrivial element of GG. (In Z2 gauge theory, such
a flux quasiparticle is called “vison”.)

Recalling the discussion in Sec. IV C, D(hv,g)(A)P̂uA
(A) =

P̂g̃·uA
(A)D(hv,g)(A) because the local operators transform these

elements, e.g., uA → g̃ · uA with g = h · g̃, h ∈ GG, g̃ ∈ SG.
The action of local operators on the Hilbert space of the gauge
flux pair having flux hv is therefore given by

D[g1](A)|hv,g; uA〉
= c−1

g1

(
hv,h

−1
v

)
chv

(g1,g)|hv,g1 · g; g̃1 · uA〉,
(103)

D[g1](B)|hv,g; uA〉
= chv

(
g−1

1 · g,g1
)∣∣hv,g

−1
1 · g; uA

〉
,

where we remind the reader that g1 = h1 · g̃1, h1 ∈ GG, g̃1 ∈
SG, and since the flux hv is fixed we introduced the shorthand
notation D[g](A) ≡ D(h−1

v ,g)(A) and D[g](B) ≡ D(hv,g)(B). Our
analysis of the examples will use Eqs. (103) to explicitly
construct the matrices of local operators in this basis.

B. Construction of local symmetry operators in
symmetry-fractionalized models

Let us now, from a general viewpoint, consider the possi-
bility of symmetry fractionalization in our models. According

to Eq. (20), we seek to factorize the global symmetry trans-
formation U (g̃ ∈ SG), when acting in the flux-quasiparticle
Hilbert space L(A,B,hv), into two local factors:

U (g̃) = Ug̃(A) · Ug̃(B), g̃ ∈ SG. (104)

First of all, we observe that the global symmetry transfor-
mation g̃ acts by transforming elements on each lattice site
i by sending ui → ui · g̃−1, while the operators D perform
a similar operation on a single site, i.e., locally, for example
D(h,g)(A) : uiA → g̃ · uiA, where g = hg · g̃, hg ∈ GG, g̃ ∈
SG. (Recall that we deal with Abelian groups G here.) This is
reasonable, since for any local operator in L(A,B,hv), such as
the tentative Ug̃(C), we expect that it is representable in terms
of the local operators D(C).

We therefore see that whenever symmetry fractionalization
occurs, it should be possible to find a local phase ϕ such
that Ug̃(C) = eiϕ(hv,g̃,C)D(h,g̃−1)(C), where g̃ ∈ SG and C =
A,B. [Note that although the phase ϕ(C) can depend on local
variables at C, e.g., on uC , the functional form cannot depend
on the position C, since the local symmetry operation cannot
depend on the spatial position at which it is applied.] We now
show under which conditions (i.e., for what kind of 3-cocycle
ω) it is possible to find such a phase ϕ.

We can effectively use the demand on the global symmetry
transformation U (σ ) which says that U (σ ) commutes with the
ribbon operator creating the quasiparticles; more precisely,
only uA,uB of the projected basis vectors [Eq. (102)] in
L(A,B,hv) are transformed by uC → σ−1 · uC . Tentatively
writing Uσ (A) = D(h−1

v ,σ−1)(A), Uσ (B) = D(hv,σ−1)(B) (note
that the gauge fluxes at end A and end B are h−1

v and hv ,
respectively), with σ ∈ SG, we get

Uσ (A)Uσ (B)|hv,g; uA,uB〉
= εhv,σ−1,g c−1

σ−1

(
hv,h

−1
v

)|hv,g; σ−1 · uA,σ−1 · uB〉, (105)

where we have introduced the 1-cocycle

εx,y,z ≡ cx(z,y)

cx(y,z)
, x,y,z ∈ G. (106)

Obviously, with this choice of U (C), the quasiparticle state is
properly transformed only up to a phase, but we can proceed
to absorb the resulting phase by a nontrivial ϕ(C). We need
some useful properties of the introduced 1-cocycle:

εx,y,z·w = εx,y,z εx,y,w,

εx,y,z = εy,z,x = εz,x,y = ε−1
y,x,z = ε−1

x,z,y = ε−1
z,y,x, (107)

εx,y,z = ε−1
x,y,z−1 .

Using the fact that g = hg · uAu−1
B and the listed properties of

ε, we can define a valid phase ϕ by

Uσ (A) ≡
√

cσ−1 (h,h−1) εh,σ−1,uA
D(h,σ−1)(A),

(108)
Uσ (B) ≡

√
cσ−1 (h,h−1) εh,σ−1,uB

D(h,σ−1)(B).

Note that the h in Uσ (A) (Uσ (B)) is defined to be the gauge
flux at the end A (end B), which can be measured locally. This
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leads to

Uσ (A)Uσ (B)|hv,g; uA,uB〉
= εhv,σ−1,hg

|hv,g; σ−1 · uA,σ−1 · uB〉
= εhv,σ−1,hg

U (σ )|hv,g; uA,uB〉. (109)

Symmetry fractionalization U (σ ) = Uσ (A)Uσ (B) can there-
fore occur if

εhv,σ,hg
= 1, ∀ hv,hg ∈ GG, σ ∈ SG. (110)

It is not physical to absorb this phase factor into the local opera-
tors Uσ (C). The reason is that the phase depends on the element
value hg carried by the quasiparticles (recall the definition of
ribbon operators Eq. (73): hg = h1,0 · · · hN,N−1 ∈ GG for a
ribbon on lattice sites 0, . . . ,N ), while, on the other hand, the
symmetry transformation should not depend on such specific
properties of the quasiparticles. The presented argument at
least gives an indication when symmetry fractionalization
should be impossible. We will see that for GG = Z2 × Z2

and SG = Z2 there is one 3-cocycle, ω(123) (see Table III),
for which Eq. (110) is violated, in accordance with our claim
about a single Z2 index beyond SFC (see example “3” at the
end of Sec. II C). For that example, we additionally show that
global symmetry exchanges the two species of excitations,
thus giving a strong physical argument against the possibility
of representing symmetry by local operators.

In Appendix F we show that this construction of fraction-
alized symmetry operators is generally correct for multiple
quasiparticles in the examples below.

Returning to the present single-ribbon case, let us for a
moment assume that symmetry fractionalization is explicitly
possible in a given model, i.e., Eq. (110) is satisfied. We
can then give general formulas for the transformation of a
single quasiparticle at position C under fractionalized sym-
metry transformations Uσ (C), where again C = A,B is either
end of ribbon. The fractionalized symmetry transformations
physically only need to be projective, as discussed in Sec. II B.
In the examples of the following sections, these general
expressions will be used to check whether the symmetry group
generators obey the SFC relations shown at the end of Sec. II B.
[The results will be corroborated by explicit constructions of
Uσ (C)]. Because our examples will be based on the group
Z2 and on direct products of the group Z2, we can make
some simplifications. Namely, we can set h−1

v = hv . Further,
considering arbitrary symmetry operations g̃0,g̃1,g̃2 ∈ SG, we
have that g̃2

0 = g̃2
1 = g̃2

2 = 1, with 1 the group identity element.
Finally, for such groups the inequivalent cocycles ω can be
chosen to only take values ±1, see Tables I and III. Now, using
Eqs. (103) and (108), as well as properties of the 2-cocycle [see
Eqs. (87a)–(87d)], it is easy to show that in the Hilbert space
of a hv flux pair:

Ug̃2 (C)Ug̃1 (C) = εhv,g̃2,g̃1Ug̃1 (C)Ug̃2 (C), (111)

Ug̃0 (A)2 = chv
(g̃0,g̃0) cg̃0 (hv,hv), (112)

D[g̃0](A)2 = chv
(g̃0,g̃0), (113)

where the fluxes are positioned at ribbon ends C = A,B. In
Eq. (113) we show the result for the standard local operator
D, to contrast it with the fractionalized symmetry operator in

TABLE I. Inequivalent basic 3-cocycles ω(I ) for G ≡ GG ×
SG = Z2 × Z2, which label classes in H 3(G,U (1)) = Z3

2 . A cocycle
ω(x,y,z) has value 1, except when the group elements x,y,z ∈ G take
the special values shown in the table, in which case ω(x,y,z) is equal
to −1. The element notation x = (g1,g2) signifies the direct product
factorization, i.e., g1 ∈ GG and g2 ∈ SG, and the elements of Z2 are
0,1 (additive group action). The star symbol ∗ stands for “any value
of element.”

ω(x,y,z) = −1 x,y,z

ω(1) (1,∗),(1,∗),(1,∗)
ω(2) (∗,1),(∗,1),(∗,1)
ω(12) (1,∗),(∗,1),(∗,1)

Eq. (112) (in both cases the operator on the right-hand side is
just the identity operator).

Equipped with this formalism, we can proceed to solve the
instructive examples introduced in Secs. II B and II C.

C. The simplest example with symmetry fractionalization
(PSG): Vison pair in GG = Z2 and SG = Z2

Let us from now on use the additive notation for our groups,
i.e., any element g ∈ Z2 takes values g = 0,1, with 0 the
identity element, and the group product becomes addition
g1 · g2 ≡ g1 + g2 (mod 2).

The different classes of phases described by our models
are classified by the inequivalent 3-cocycles ω. An explicit
expression for all representatives of inequivalent 3-cocycles in
the case where the group is a product of Zn factors is given
in Ref. 60, and the result for the case G = Z2 × Z2 is shown
in Table I. This means that there are three indices p1,p2,p3 ∈
Z2, labeling the elements of H 3(SG × GG,U (1)) = Z3

2 . The
trivial phase has p1 = p2 = p3 = 0 and can be described by
the trivial cocycle ω(x,y,z) = 1,∀ x,y,z ∈ G. When an index
pI is 1, the representative 3-cocycle ω ∈ H 3(SG × GG,U (1))
of that phase is chosen to satisfy the property described
in the definition of ω(I ); when the index pI is 0, this
index does not affect the value of cocycle. In other words,
the elementary cocycle properties ω(I ) in Table I generate
all representative cocycles that are elements of H 3: The
three basic 3-cocycles ω(I ) generate a total of 23 3-cocycles
in H 3(SG × GG,U (1)) = Z3

2, each of them leading to a
physically different model, as stated at the end of Sec. II C.

Let us now consider a pair of visons hv = 1 ∈ GG ≡
(1,0) ∈ G, which are the only flux quasiparticles for this
group G.

Since the value of hv is fixed, we omit it from the label
of local operators; i.e., we use the labels D[g≡(h,g̃)] with h ∈
GG,g̃ ∈ SG [this notation was introduced after Eq. (103)].
Let us introduce Pauli matrices μi,ρi,τi acting in the Hilbert
space of the visons on the basis |hv = 1,g; uA〉 ≡ |(hg,g̃); uA〉
from Eq. (102), with the usual g ∈ G ≡ (hg ∈ GG,g̃ ∈ SG).
The action of the matrices is naturally defined through setting
μz as (−1)g̃ , ρz as (−1)hg , and finally τz as (−1)uA . The
local operators, Eq. (103), together with the global and

155115-26



CLASSIFICATION OF SYMMETRY ENRICHED . . . PHYSICAL REVIEW B 87, 155115 (2013)

TABLE II. The values of local operators and fractionalized symmetries for GG = Z2, SG = Z2 for (the only possible) vison pair
hv = (1,0) = 1 ∈ GG. D and D′ are shorthand for D(A) and D(B), respectively. The cocycle ω(12) is the only one leading to nontrivial
projective realization of local symmetry, Uσ (C)2 = −1, and is therefore identified as the cocycle in H 3(G,U (1)) which generates the nontrivial
symmetry fractionalization classes; i.e., the index p12 labels the SFC (Z2 × Z2,U (1)) = Z2. (The action of the matrices in the vison pair
Hilbert space is given in the text.)

D[(0,0)] D[(0,1)] D[(1,0)] D[(1,1)] D′
[(0,0)] D′

[(0,1)] D′
[(1,0)] D′

[(1,1)] Uσ (A) Uσ (B) U (σ )

ω(1) 1 μxτx iρy μxiρyτx 1 μx iρy μxiρy μxτx μx τx

ω(2) 1 μxτx ρx μxρxτx 1 μx ρx μxρx μxτx μx τx

ω(12) 1 −iμyτx ρx −iμyρxτx 1 iμy ρx iμyρx −iμyτx iμy τx

fractionalized symmetry operators, Eq. (108), are presented
in Table II for all basic 3-cocycles ω(I ).

We can see that the global symmetry U (σ ≡ 1 ∈ SG),
which sends uC → uC + 1 is in this basis equal to τx and,
as expected, commutes with all local operators, for any choice
of cocycle.

The phase in the definition of fractionalized symmetry,
Eq. (108), is for all cocycles trivial (note that the cocycle εx,y,z

contains one factor of ω for each permutation of x,y,z). The
fractionalized symmetry is then just equal to the local operator
Uσ (C) = D[(0,1)](C), and clearly for each cocycle it is true that
U (σ ) = Uσ (A)Uσ (B) = D[(0,1)](A)D[(0,1)](B) = τx .

There is a nontrivial symmetry-fractionalized phase in
case of ω(12), since Uσ (C)2 = −1. [One can also confirm
this from the general expression Eq. (112).] That means
precisely that the index p12 labels a nontrivial realization
of symmetry fractionalization, where the local symmetry
operation on a single vison at position C is projectively
realized Uσ (C)2 = (−1)p121, exactly as claimed in Eq. (25).
The index p12 is obviously the only index classifying the SFC,
SFC (Z2 × Z2,U (1)) = Z2, as presented in Eq. (37).

We can now consider the influence of interplay between
global symmetry and topological order on the physical system
with excitations. Let us assume that the excitations are a vison
pair at A,B. The topological nature of the state must be robust
against arbitrary local perturbations; i.e., we have to consider
adding arbitrary local perturbation terms to the Hamiltonian
[Eq. (57)]. The local perturbations, however, also have to be
symmetric, i.e., commute with the global symmetries. The set
of all local perturbation terms is formed by the local operators,
i.e., D̃ = {D(A),D(B)}, so that

Hperturb = H +
∑

α

aαD̃α, (114)

where the index α labels all operators in the set D̃, and aα

are arbitrary coefficients. The operators D̃ are by construction
symmetric, which is easily explicitly checked by showing that
their matrices commute with the global symmetry operation τx .
For any fixed elementary cocycle in Table II, one can see that
there are no other matrices that commute with the perturbations
(except the global symmetries, of course). Further, all the local
operators, for any fixed cocycle, commute with each other.
Therefore, the algebra of conserved observables is trivial,
and there are no degeneracies protected by symmetry. (This
changes in the next examples.)

Physically, it is important to note that the eigenvalues of
the local operator D[(1,0)∈GG] are actually the values of gauge
charge of the vison excitations [note that they act on the
hg element in the ribbon operators, where from Eq. (73):
hg = h1,0 · · · hN,N−1 ∈ GG for a ribbon with inner edge on
lattice sites 0, . . . ,N]. These operators are indeed the same
on both visons, D[(1,0)∈GG](A) = D[(1,0)∈GG](B). The gauge
charge value is an important quantity that will be nontrivial
when the GG is enlarged in our third example.

D. Example with symmetry protected degeneracy:
Vison pair in GG = Z2 and SG = Z2 × Z2

In this example, we again have only one type of vison, hv =
1 ∈ GG, but two Z2 global symmetry generators, σ = (1,0) ∈
SG ≡ (0,1,0) ∈ G and τ = (0,1) ∈ SG ≡ (0,0,1) ∈ G.

We use the elementary 3-cocycles for the group G = Z2 ×
Z2 × Z2 according to the results of Ref. 60 and present them
in Table III. This means that there are seven indices pI =
0,1, labeling the elements of H 3(G,U (1)) = Z7

2 . The seven
elementary 3-cocycles ω(I ) generate a total of 27 cocycles
in H 3(G,U (1)) = Z7

2, each of them leading to a physically
different model, as stated at the end of Sec. II C. However,
the physical properties of the models will be very different
depending on the particular choice of SG and GG, even though
G is the same in this and the next example.

TABLE III. Inequivalent elementary 3-cocycles ω(I ) for G ≡
GG × SG = Z2 × Z2 × Z2, which label classes in H 3(G,U (1)) =
Z7

2 . A cocycle ω(x,y,z) has value 1, except when the group elements
x,y,z ∈ G take the special values shown in the table, in which
case ω(x,y,z) is equal to −1. The element notation x = (g1,g2,g3)
signifies the direct product factorization, and so in the example GG =
Z2, SG = Z2 × Z2, g1 ∈ GG, while in the example GG = Z2 × Z2,
SG = Z2, g3 ∈ SG. The elements of Z2 are 0,1 (additive group
action). The star symbol ∗ stands for “any value of element.”

ω(x,y,z) = −1 x,y,z

ω(1) (1, ∗ ,∗),(1, ∗ ,∗),(1, ∗ ,∗)
ω(2) (∗,1,∗),(∗,1,∗),(∗,1,∗)
ω(3) (∗, ∗ ,1),(∗, ∗ ,1),(∗, ∗ ,1)
ω(12) (1, ∗ ,∗),(∗,1,∗),(∗,1,∗)
ω(23) (∗,1,∗),(∗, ∗ ,1),(∗, ∗ ,1)
ω(13) (1, ∗ ,∗),(∗, ∗ ,1),(∗, ∗ ,1)
ω(123) (1, ∗ ,∗),(∗,1,∗),(∗, ∗ ,1)
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TABLE IV. Relevant local operators and fractionalized symmetries for GG = Z2, SG = Z2 × Z2, for (the only possible) vison pair
hv = (1,0,0) ≡ 1 ∈ GG located at A,B. The symmetry generators are σ = (1,0) ∈ SG, τ = (0,1) ∈ SG, and they act as U (σ ) = νx and
U (τ ) = ρx . There is symmetry fractionalization U (s) = Us(A)Us(B), nontrivial (projective) for cocycles ω(12), ω(13), and ω(123), which “mix”
GG with SG (Table III). The fractionalized symmetries differ (by a local operation) from local operators D[σ ], D[τ ] only for the ω(123) cocycle
[see Eq. (108)]. The definitions of all matrices in the vison pair Hilbert space are given in the text.

σ = (0,1,0)
τ = (0,0,1) ω(1) ω(2) ω(3) ω(12) ω(23) ω(13) ω(123)

D[τ ](A) σxρx σxρx σxρx σxρx σxρx −iσyρx σxρx

Uτ (A) σxρx σxρx σxρx σxρx σxρx −iσyρx σxνzρx

D[τ ](B) σx σx σx σx σx iσy μzσx

Uτ (B) σx σx σx σx σx iσy σxνz

D[σ ](A) μxνx μxνx μxνx iμyνx μxνx μxνx μxσzνx

Uσ (A) μxνx μxνx μxνx iμyνx μxνx μxνx μxσzνxρz

D[σ ](B) μx μx μx iμy μx μx μx

Uσ (B) μx μx μx iμy μx μx μxσzρz

D[(1,0,0)](A) iτy τx τx τx τx τx τx

D[(1,0,0)](B) iτy τx τx τx τx τx τx

After fixing hv , it is straightforward to construct the
matrices for all local operators by using Eqs. (103), as well
as to construct the fractionalized symmetry operators using
their definition, Eq. (108), for each cocycle in Table III.
We use the tensor product of Pauli matrices which are
defined through setting τz as (−1)hg , μz as (−1)g̃1 , σz as
(−1)g̃2 , νz as (−1)uA1 , and ρz as (−1)uA2 in our standard
basis |hg,g̃; uA〉 ≡ |hg × g̃1 × g̃2; uA1 × uA2〉, with hg ∈ GG,
(g̃1,g̃2) ∈ SG, (uA1,uA2) ∈ SG.

Direct inspection of the obtained matrices, which are
presented in Table IV, reveals the results quoted in Secs. II B
and II C. Namely, for all cocycles one indeed finds that both
global symmetries, U (σ ) = νx and U (τ ) = ρx , are fractional-
ized: U (s) = Us(A)Us(B). Although U (σ )2 = U (τ )2 = 1 and
U (σ )U (τ ) = U (τ )U (σ ), the fractionalized symmetry can be
realized projectively:

(i) for cocycle ω(12) (which “mixes” the GG and the first Z2

of SG), one finds the only nontrivial case Uσ (A)2 = Uσ (B)2 =
−1;

(ii) for cocycle ω(13) (which “mixes” the GG and the second
Z2 of SG), one finds the only nontrivial case Uτ (A)2 =
Uτ (B)2 = −1;

(iii) for cocycle ω(123) (which “mixes” all three sub-
groups), one finds the only nontrivial case Uσ (C)Uτ (C) =
−Uτ (C)Uσ (C), for both C = A,B.

One should note that only in the case ω(123) the local
operators had to be modified to obtain the fractionalized
symmetry operators, as clearly seen in the last column of
Table IV. We can directly confirm that these are local
redefinitions by noticing that the operators (−1)uA1 = νz,
(−1)uA2 = ρz are local at A, while operators (−1)uB2 = σzρz,
(−1)uB1 = μzνz are local at B.

We can now consider the influence of interplay between
global symmetry and topological order on the physical system
with excitations by repeating the analysis of local symmetric
perturbations as in the previous example. [In this example
it is also easy to explicitly check that the local, symmetric
perturbation terms D̃ = {D(A),D(B)} indeed commute with
the global symmetry operations νx , ρx .]

We can now ask: What operators can be used to label this
state? Let us for concreteness consider the state having the
cocycle ω(123). The matrices that commute with the entire D̃

algebra (which includes D[g∈G] operators not shown explicitly
in Table IV), and therefore with the arbitrarily locally perturbed
Hamiltonian [Eq. (114)], are

(i) ρx and νx , which are just the global symmetries;
(ii) τx , which measures the gauge charge, as is explained

further below;
(iii) σxνz, μxσzρz, σxρxνz, and μxσzνxρz, which are just

the fractionalized symmetries Uτ (B), Uσ (B), Uτ (A), and
Uσ (A), respectively. [Note that these operators are not
symmetric themselves, as a consequence of Uσ (C)Uτ (C) =
−Uτ (C)Uσ (C).]

In the algebra formed from these conserved operators,
there are exactly two disjunct pairs, Uτ (B),Uσ (B) and
Uτ (A),Uσ (A), respectively, which anticommute, as we already
learned through the symmetry fractionalization for ω(123). Each
anticommuting pair, acting on one of the visons, forces a
twofold degeneracy on the state. [We checked this degeneracy
numerically by considering an arbitrary perturbation term from
Eq. (114).] We arrive at the physical signature of this phase,
which is as follows.

The symmetry protects a twofold degeneracy per vison of
the pair in the p123 = 1 phase of GG = Z2, SG = Z2 × Z2

model. The degeneracy due to a vison at C is labeled by the
fractionalized symmetry operators Uσ (C),Uτ (C).

Let us now discuss the gauge charge observables τx . These
are just the local operators D[1∈GG], listed in Table IV.
Physically, the operators D[1∈GG](B) appear in the braiding
matrix R2

CC , Eq. (100), describing the braiding of two visons
at A ends of two ribbons which share a B end; see Fig. 16,
Sec. IV D, and Appendix B.

Finally, let us emphasize that, at least in the case when G

is a product of simple Z2 factors, there is no need to explicitly
construct all the matrices as was done here. One can directly
resort to Eqs. (109) and (111)–(113) to test whether a cocycle
allows SF, and then whether this SF is nontrivial. For this
purpose, we note that the cocycle ε is easy to use since it
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TABLE V. Relevant local operators for GG = Z2 × Z2, SG = Z2: (top half) for a vison pair hv = (1,0,0) ≡ (1,0) ∈ GG located at A,B;
(bottom half) for a vison pair hv = (0,1,0) ≡ (0,1) ∈ GG located at A,B. The only global symmetry generator is σ = (0,0,1) ≡ 1 ∈ SG,
acting as U (σ ) = ρx . Except for ω(123), there are fractionalized symmetry operators Uσ (C) ≡ D[σ ](C), with C = A,B [see Eq. (108)], such
that U (σ ) = Uσ (A)Uσ (B). The fractionalized symmetries are nontrivial (projective) for cocycles ω(13) and ω(23), which “mix” GG with SG

(Table III). Phase having ω(123) is beyond SFC, since for it D
hv=(010)
[σ ] (A)Dhv=(010)

[σ ] (B) = τzρx , D
hv=(100)
[σ ] (A)Dhv=(100)

[σ ] (B) = μzρx , and no local
redefinition of D[σ ] can remove the τz,μz factors. The definitions of all matrices are given in the text.

σ = (0,0,1) ω(1) ω(2) ω(3) ω(12) ω(23) ω(13) ω(123)

Vison pair: hv = (1,0,0)
D[σ ](A) σxρx σxρx σxρx σxρx σxρx −iσyρx σxρx

D[σ ](B) σx σx σx σx σx iσy μzσx

D[(1,0,0)](A) iτy τx τx τx τx τx τx

D[(1,0,0)](B) iτy τx τx τx τx τx τx

D[(0,1,0)](A) μx μx μx −iμy μx μx μxσz

D[(0,1,0)](B) μx μx μx iμy μx μx μx

Vison pair: hv = (0,1,0)
D[σ ](A) σxρx σxρx σxρx σxρx −iσyρx σxρx σxρx

D[σ ](B) σx σx σx σx iσy σx τzσx

D[(0,1,0)](A) μx iμy μx μx μx μx μx

D[(0,1,0)](B) μx iμy μx μx μx μx μx

D[(1,0,0)](A) τx τx τx −τx τx τx τxσz

D[(1,0,0)](B) τx τx τx τx τx τx τx

contains six factors of ω(x,y,z), such that each permutation
of x,y,z appears exactly once; importantly, when G has only
Z2 factors, the generating 3-cocycles in H 3(G,U (1)) (Ref. 60)
can only take values ±1, as is the case in Tables I and III.

E. The simplest example beyond symmetry fractionalization:
Vison pairs in GG = Z2 × Z2 and SG = Z2

In this example there are two fundamental vison types. We
consider in parallel a pair of hv = (1,0) ∈ GG ≡ (1,0,0) ∈ G

visons and a pair of hv = (0,1) ∈ GG ≡ (0,1,0) ∈ G visons.
We again construct the matrices of all local operators by

using Eqs. (103). Before proceeding, one should notice that
the condition stated in Eq. (110) is violated for the cocycle
ω(123): Only in that case does εhv,σ,hg

= −1 become possible
since hv and hg can differ while both being nontrivial elements
of GG. According to Eq. (109), we then expect that in that case
the symmetry fractionalization will fail.

Let us nevertheless continue with the explicit construction
of fractionalized symmetry operators. Using their definition,
Eq. (108), for each cocycle in Table III including ω(123), each
fractionalized symmetry operator is just equal to its corre-
sponding local operator D. We therefore avoid repetition in
Table V, and one should keep in mind that Uσ (C) ≡ D[σ ](C),
where the only global symmetry generator is σ = 1 ∈ SG.

The Pauli matrices are here defined through setting τz

as (−1)hg1 , μz as (−1)hg2 , σz as (−1)g̃ , and ρz as (−1)uA

in our standard basis |hg,g̃; uA〉 ≡ |hg1 × hg2 × g̃; uA〉, with
(hg1,hg2) ∈ GG, g̃ ∈ SG, uA ∈ SG.

Direct inspection reveals that the global symmetry, repre-
sented by U (σ ) = ρx , is fractionalized for both visons, i.e.,
U (σ ) = Uhv

σ (A)Uhv
σ (B) = ρx , except for the cocycle ω(123). In

the case of this cocycle, we get

Uhv=(1,0)
σ (A)Uhv=(1,0)

σ (B) = μzρx

Uhv=(0,1)
σ (A)Uhv=(0,1)

σ (B) = τzρx
(cocycle ω(123)), (115)

for the vison pairs hv = (1,0) and hv = (0,1), respectively. We
discuss this further below.

Considering all the cocycles (except ω(123)), we find phases
with nontrivial SF, i.e. where the fractionalized symmetry is
realized projectively:

(i) for cocycle ω(13) (which “mixes” the first Z2 in GG

with SG), one finds the only nontrivial case Uhv=(1,0)
σ (A)2 =

Uhv=(1,0)
σ (B)2 = −1;
(ii) For cocycle ω(23) (which “mixes” the second Z2 in GG

with SG), one finds the only nontrivial case Uhv=(0,1)
σ (A)2 =

Uhv=(0,1)
σ (B)2 = −1.
These results match the claims in Sec. II B. There are

obviously two symmetry-fractionalization Z2 indices, p13 and
p23, in accordance with the general results: H 2(SG,GG) =
Z2

2 and, for this group, SFC (SG,GG) = H 2(SG,GG) (see
Sec. II C).

We can try to use our explicit matrix expressions to “force”
symmetry fractionalization in the case of cocycle ω(123). This
attempt will fail, as expected from general arguments above,
and therefore this state is beyond SFC, with the index p123

labeling the EXT RA (SG,GG) class. What we would need
to achieve is the removal of μz and τz factors in Eq. (115).
Inspecting the operators

(−1)uA = ρz, (−1)uB = σzρz, (116)

the first being local at A and the second local at B, we see
that there is no hope in manipulating the μ and τ subspaces.
Physically, μz and τz measure the GG degrees of freedom,
and these are connected to the vison gauge charge, which is
nonlocal.

The local operators D[hv ] (which we use to measure the
gauge charge shortly) by definition change this group element
(i.e., τx) and cannot provide us with τz,μz.

We next ask: Which operators can be used to physically
label this state? Let us consider the especially interesting
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cocycle ω(123). As explained in the previous example, we need
to find matrices that commute with the entire D̃ algebra (which
includes all D[g∈G] operators). These are:

(i) ρx , which is just the global symmetry;
(ii) ê1, ê2, which measure the two Z2 gauge charges in

GG, as we explain further below. [For the hv = (1,0) vison
pair, ê1 ≡ τx , ê2 ≡ μxσzρz, while for hv = (0,1) vison pair,
ê1 ≡ τxσzρz, ê2 ≡ μx .]

In the algebra of these conserved operators, exactly one
pair anticommutes: The global symmetry anticommutes with
the gauge charge of Z2 complementary to the visons’ flux
hv . For example, considering a vison pair with flux set by
hv = (1,0) ∈ GG, the second Z2 gauge charge of GG (ê2)
anticommutes with the global symmetry. A signature of this
phase is then as follows.

The symmetry protects a twofold degeneracy of a single
vison pair in the p123 = 1 phase of GG = Z2 × Z2, SG = Z2

model.
This result for the cocycle ω(123) reveals its physical

interpretation. To understand it better, we need to explicitly
consider the consequences of anticommutation between sym-
metry and gauge charge. Let us proceed with that goal and
leave for later the detailed explanation of why ê1, ê2 can indeed
be understood as gauge charge operators.

The quasiparticles of this theory are labeled by the values of
flux and charge, and we consider the elementary ones: (1) Flux
particle m1 = 1[m2 = 1] has flux in the first[second] Z2 of
GG, which is set by the values of hv = (∗,0)[hv = (0,∗)],
and no gauge charge; (2) charge particle e1 = 1[e2 = 1] has
charge in the first[second] Z2 of GG, which is set by the
values of hg = (∗,0)[hg = (0,∗)], and has no flux. A general
quasiparticle will have arbitrary values (0 or 1) for these four
numbers, so we label it (e1,e2,m1,m2). For instance, (1,1,0,0)
is the particle bound state of charge and flux in the first Z2

of GG. When symmetry anticommutes with ê, that means it
switches the two eigenvalues of ê, and therefore switches the
particles’ ê number between trivial (0) and nontrivial (1). As
we established, symmetry anticommutes with ê1 when the
particle pair in question is m2, while it anticommutes with
ê2 when the particle pair is m1. This leads to the following
transformation of elementary quasiparticles under the action of
symmetry:

(e1,m1,e2,m2)
σ→ (e1 + m2,m1,e2 + m1,m2), (117)

where (mod 2) algebra is understood. As expected, the
symmetry changes the charges of particles, but we can further
assign a deeper meaning to this transformation. Namely, in Z2

theories the charge and flux are physically equivalent: They
are dual to each other, and we can rename them at will without
changing the physics (e.g., the braiding properties) of particles.
We therefore assign new fluxes m̃ and charges ẽ according
to the rules: (ẽ1,m̃1,ẽ2,m̃2) ≡ (e1 + m2,m1,m2,e2 + m1).
Note that the quasiparticle statistics is indeed conserved, i.e.,
bosonic except between ei and mi , when it is fermionic. This
leads to the elegant transformation rule,

(ẽ1,m̃1,ẽ2,m̃2)
σ→ (ẽ2,m̃2,ẽ1,m̃1), (118)

so that the global symmetry transformation only exchanges the
particle types 1 and 2. (We note that this physical interpretation

might carry on to higher dimensions. For instance in 3d,
charge excitations are pointlike while fluxes are stringlike, so
they cannot be interchanged among each other; however, it is
still well defined to change their type, e.g., 1 ↔ 2.)

We have therefore found the physical nature of this state:
The global symmetry operation exchanges the two quasi-
particle types in p123 = 1 phase of GG = Z2 × Z2, SG =
Z2 model. This shows that symmetry performs a nonlocal
transformation on the excitation pair, and the state is beyond
symmetry fractionalization classification.

Let us now discuss in detail the gauge charge observables
ê1, ê2, as promised above. We focus on a particular vison
pair hv . As in the previous example, one naively expects
the gauge charge observables to just equal the appropriate
local operators: D[(1,0)∈GG≡(1,0,0)] and D[(0,1)∈GG≡(0,1,0)], which
are listed in Table V. Focusing on the cocycle ω(123), we
however see that these local operators differ at the two
quasiparticles, e.g., D[(1,0,0)](A) �= D[(1,0,0)](B), which would
mean that measuring the gauge charge of a vison and antivison
in the pair would give differing answers. This is physically
wrong, but it is easy to resolve the problem. Namely, the
physical operators ê1,ê2 differ from the corresponding local
operators D by a simple local operation. Using the local
transformations in Eq. (116), one immediately obtains that

(i) for vison pair hv = (1,0),

ê1 = D[(1,0,0)](A) = D[(1,0,0)](B) = τx,

ê2 = (−1)uAD[(0,1,0)](A) = (−1)uB D[(0,1,0)](B) = μxσzρz;

(119)

(ii) for vison pair hv = (0,1),

ê1 = (−1)uAD[(1,0,0)](A) = (−1)uB D[(1,0,0)](B) = τxσzρz,

ê2 = D[(0,1,0)](A) = D[(0,1,0)](B) = μx. (120)

These ê1,ê2 operators exactly match the ones we found to
commute with the entire local D̃ algebra.

We already know that the local operators D[hg](B) appear in
the braiding matrix R2

CC , Eq. (100), describing the braiding of
two visons at A ends of two ribbons which share a B end; see
Fig. 16. Physically, we expect these local operators to equal the
gauge charge operators and thereby transparently provide the
braiding rules of anyons in Z2 topologically ordered theory. A
question that arises then is: If we redefine the local operators so
that they become exactly equal to the gauge charge operators
[following Eqs. (119) and (120)], do the braiding properties
change? The answer is negative. Namely, if we choose to braid
to visons of same type h1

v = h2
v ≡ hv , the braiding operator

[Eq. (100)] will apply the same D(hv,hv )(B) on both visons,
and these local operators are not even redefined. When we
braid two differing vison types, e.g., h1

v = (1,0), h2
v = (0,1),

the braiding will apply D(h1
v,h

2
v ) and D(h2

v,h
1
v ), both of which

are redefined by (−1)uB according to Eqs. (119) and (120).
As pointed out earlier, our analysis of vison Hilbert space
revealed that such braiding operations should be considered
after choosing, and keeping fixed, some value of uB . Since
the two ribbons share the end at B, the (−1)uB operation
applied on both braided quasiparticles cancels. Therefore, we
can freely redefine the considered local operators to be equal
to the physical gauge charge operators ê1,ê2.
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F. Gauge charges

In the previous subsections we considered in detail pairs
of gauge fluxes, i.e., visons. The other fundamental type of
excitations is a pair of gauge charge excitations, which is
created by the ribbon operator:

|g〉 ≡ F (h=1,g)(�) |gs〉 , (121)

i.e., the special case of the flux h ∈ GG being trivial. As
always, g ∈ G = SG × GG uniquely factorizes as g = hg ·
g̃, with hg ∈ GG being related to the gauge charge of the
excitations, and g̃ ∈ SG. [Recall again the definition of ribbon
operators Eq. (73): hg = h1,0 · · ·hN,N−1 ∈ GG for a ribbon
on lattice sites 0, . . . ,N .]

Recall that in this paper we use “canonical” 3-cocycles ω,
meaning that ω(g1,g2,g3) = 1 if any of g1,g2,g3 is equal to
1. Specifically, the elementary cocycles for a group G which
is a product of Zn factors are written in Ref. 60, and are all
canonical.

Since hv = 1 for gauge charges, it then follows immediately
from Eqs. (111), (112), and (108) that for these excitations the
symmetry fractionalization is always trivial. Further, Eq. (99)
shows that the braiding matrix between various gauge charges
is also trivial in our models.

As a particular demonstration, let us consider the examples
from the previous subsections. Equation (103) reveals that the
action of local operators D in our basis of the excitation pair
Hilbert space L(A,B) does not involve any phase factors. It
is as if the chosen cocycle is always the trivial one, ω = 1.
To avoid repetition in writing explicitly the local operators in
the present case of a gauge charge pair, we refer the reader to
just look at the cases of ω(2) for the GG = Z2, SG = Z2

model; ω(2) for the GG = Z2, SG = Z2 × Z2 model; and
finally ω(3) for the GG = Z2 × Z2, SG = Z2 model. The lack
of nontrivial phase factors in the action of local operators leads
to a trivial algebra: Repeating the analysis from above, one
finds that in all three examples all the D operators commute,
and the only matrices commuting with them are the global
symmetry operations, which, of course, commute among each
other in these direct product groups. Therefore, there are no
symmetry protected degeneracies for the gauge charges in our
present examples, in sharp contrast to the case of fluxes.

G. Multiple vison pairs and dualization

Let us briefly consider a system with multiple vison
pairs. For simplicity, we focus on the case where all these
quasiparticles are of the same type. Since the calculation
even for this case becomes very complicated, we try to give
general arguments and speculate about the symmetry protected
degeneracy of a general state with N pairs of visons.

One way to analyze this situation is to consider the
dualization of SG. By this we mean the standard replacement
of lattice site degrees of freedom ui with edge degrees of
freedom uij ≡ ui · u−1

j , as we also mentioned in Sec. III B. The
total group becomes a pure gauge group, G = GG × S̃G ≡
G̃, where S̃G denotes the gauge group SG. The visons in the
G model are mapped to gauge flux particles in the G̃ model.
Let us denote the protected degeneracy of N -particle-pair state
by VDEGG(N ) and VDEGG̃(N ) for the models with SG and
the dualized S̃G, respectively.

One should note that this is a many-to-one mapping, in the
sense that |SG| states obtained by multiplying all ui by an
arbitrary element s ∈ SG (in the G theory) get mapped to a
single state (in the dualized G̃ theory). In general, therefore,
we expect that the state with visons can only have the same or
smaller degeneracy upon dualization to G̃:

VDEGG(N ) � VDEGG̃(N ). (122)

Particularly, the mentioned many-to-one nature of the mapping
indicates that the change in degeneracy (from G to G̃) might
involve the factor |SG|.

In fact, we can recall that the Hilbert space L(A,B) of
an excitation pair in the SG description (Sec. V A) had to
be specified by keeping track of value of the element uA, or
uB , which belong to SG. In the most general description of
the 2N visons, one connects all their ribbons to a common
point on the lattice x0, which contains no excitation (see
discussion in Sec. IV D). We then have to keep track of ux0 ,
which takes |SG| different values. Since this degree of freedom
becomes obsolete upon dualization to G̃, one is again led to
the assumption that the degeneracy of the 2N -vison state in
the dualized theory (G̃) is reduced by a factor of |SG|.

Let us test these assumptions on the results of Sec. V. In our
first example, SG = Z2, GG = Z2, a single vison pair had no
symmetry protected degeneracy. Upon dualization, this model
becomes the gauge theory G̃ = Z2 × Z2. This is an Abelian
theory, which implies that its excitations are anyons with
quantum dimension equal to 1. (The quantum dimension is
defined as the degeneracy per excitation in the limit of infinite
number of excitations.) In this case, there is no degeneracy.
Therefore, the inequality (122) is saturated, and there is no
factor |SG| = 2.

The Abelian case, having nondegenerate anyon states,
might be a too special case for our general considerations.
Let us instead focus on the examples with G = Z3

2, and
the especially interesting cocycle ω(123). In those cases we
found that a single vison pair has degeneracy 4 and 2, in
the SG = Z2 × Z2 and SG = Z2 examples, respectively. The
topological order described upon dualization of either of these
example groups becomes very interesting due to the presence
of the cocycle ω(123). Namely, the topological order realized in
that way can be described by the non-Abelian theory having
the gauge group G̃nA = D4 and no twist by a cocycle.62 It
is known that the D4 theory has no degeneracy for a single
excitation pair, i.e., VDEGD4 (1) = 1.

For a single excitation pair and the case where the
topological order in the dual theory is described by G̃nA = D4,
we therefore established the anticipated

VDEGG(N )

= |SG| · VDEGG̃nA
(N ) (for G̃nA = D4,N = 1). (123)

Let us proceed to the case of multiple pairs of particles, still
all being of the same type. The excitations of the D4 gauge
theory have quantum dimension 2; therefore, for large N one
has the scaling VDEGD4 (N � 1) ∼ 4N . Since for N = 1 we
already discussed that VDEGD4 (1) ∼ 40, we expect that an
interpolation formula VDEGD4 (N ) ∼ 4(N−1) should hold for
all N . Combining this expectation with the result in Eq. (123)
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leads us to conjecture

VDEGG(N )

= |SG| · VDEGG̃nA
(N ) (non-Abelian G̃nA,N � 1).

(124)

In this conjecture we also anticipate that the key property
which ensured Eq. (123) is that D4 is non-Abelian, since in
the previous paragraphs we established that Eq. (123) does
not hold (even though N = 1) when G̃ described an Abelian
topological order (i.e., Z2 × Z2).

We leave further study of these questions for future
research.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we present a classification of topologically
ordered phases in the presence of an on-site global symmetry,
equipped with local bosonic exactly solvable models. The
discussion in Sec. II C and the solutions of our models in
some examples allow us to reveal the physical meaning of this
classification, which is given in Eqs. (31) and (32). Basically,
the classification H 3(SG × GG,U (1)) is a direct product
of many finite Abelian groups, and each group has a clear
physical meaning. Among them H 3(SG,U (1)) is the index for
SPT phases, H 3(GG,U (1)) is the index for DW topological
orders, and SET (SG,GG) in Eq. (31) is the index labeling
the possible interplays between the global symmetry and the
topological order (SET phases).

SET (SG,GG) can be further understood. It is a di-
rect product of two Abelian groups, SFC (SG,GG) and
EXT RA (SG,GG). SFC (SG,GG) is labeling different pos-
sible ways to fractionalize the global symmetry by the
topological order, while EXT RA (SG,GG) is labeling the
phenomena that the global symmetry transformation could in-
terchange quasiparticle species, which is beyond the symmetry
fractionalization scheme.

Some measurable consequences of the SET phases are
discussed. In particular, we show that under certain conditions,
SET phases have nontrivial symmetry protected degeneracy
for excited states. For instance, in one striking example
beyond the symmetry fractionalization scheme, we show that
symmetry protects a twofold degeneracy for a single pair of
gauge flux quasiparticles, which cannot be locally associated
with either quasiparticle. This degeneracy of excited states can
be used to detect the SET phases in numerics/experiments.
However, we leave the most general diagnosis of SET phases
for future investigation. In any case, the exactly solvable
models constructed in the current work can be very useful
tools for this purpose.

The SPT phases are known to host gapless edge states,
topologically protected by the global symmetry. We have not
studied the possible gapless edge states due to SET topological
indices in this paper. We also leave this issue as a subject of
future investigations.

Below we discuss the generalization and limitations of our
classification.

A. Generalization to higher dimensions

Although we have been focusing on 2 + 1 dimensions,
where the classification is given by H 3(SG × GG,U (1)),

this can be easily generalized to Hd+1(SG × GG,U (1)) in
general d + 1 dimensions (d � 2). One way to understand
this generalization is to dualize GG to be part of global
symmetry, after which the system has an on-site global
symmetry S̃G = SG × GG. According to Ref. 20, the SPT
phases in d + 1 dimensions are classified by Hd+1(S̃G,U (1)),
and it is natural to expect that these phases may still be different
before the duality. (In fact, this point of view is not completely
correct, which we discuss shortly in Sec. VI C.)

The higher dimension classification is also equipped with
local bosonic exactly solvable models. For instance, in 3 + 1d,
one can also construct the exactly solvable models on a three-
dimensional lattice which triangulates the three-dimensional
space. The GG degrees of freedom live on the edges and the
SG degrees of freedom live on the vertices. Similar to the
2 + 1d case, the Hamiltonian of the model is a sum of local
projectors. Theorem 1 and Theorem 2 (see Sec. III A2) in 3 +
1d dictate that these local projectors mutually commute and
the model is exactly solvable. We leave the complete solution
of such 3 + 1d models (i.e., the excited states) as a subject of
future investigations.

However, at this moment it is still possible to explore the
physical meaning of the 3 + 1d classification using H 4(SG ×
GG,U (1)). A Künneth expansion immediately gives

H 4(SG × GG,U (1)) = H 4(SG,U (1)) × H 4(GG,U (1))

× SET 4(SG,GG). (125)

Here clearly, the index H 4(SG,U (1)) is labeling the SPT
phases, while H 4(GG,U (1)) is labeling the different 3 + 1d

topological orders described by the gauge group GG. Note
that H 4(GG,U (1)) is labeling the direct generalization of
the DW discrete gauge theories in 3 + 1 dimension. Further,
SET 4(SG,GG), as explicated below, is labeling the different
possible interplays between the global symmetry and the
topological order in 3 + 1d.

Let us use SET 3(SG,GG) to denote the symmetry enriched
indices SET (SG,GG) in Eq. (32), emphasizing that it is for
2 + 1 dimensions. SET 4(SG,GG) contains a rather different
mathematical structure than SET 3(SG,GG):

SET 4(SG,GG) = [H 3(SG,Z) ⊗ H 2(GG,Z)]

×[H 2(SG,Z) ⊗ H 3(GG,Z)]

× Tor[H 4(SG,Z),H 2(GG,Z)]

× Tor[H 2(SG,Z),H 4(GG,Z)]

× Tor[H 3(SG,Z),H 3(GG,Z)]. (126)

One can anticipate the possible nontrivial interplay
between the global symmetry and the topological order
in 3 + 1d. First, let us consider the generalization to
3 + 1d of EXT RA (SG,GG), a part of SET 3(SG,GG).
In 2 + 1d, EXT RA (SG,GG) is describing the interchange
of quasiparticle species by SG action. We expect that in
3 + 1d, part of SET 4(SG,GG) also describes the interchange
of excitation species. Note that in 3 + 1d, the topological
excitations can be either pointlike gauge charges or looplike
gauge fluxes. More precisely, this part of SET 4(SG,GG)
should describe the species interchange of gauge fluxes and
of gauge charges by the global symmetry (but not interchange
of gauge flux and gauge charge).
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Next, we consider the generalization to 3 + 1d of the
other part of SET 3(SG,GG): SFC (SG,GG). One may
wonder: Does part of SET 4(SG,GG) label the symme-
try fractionalization phenomena in 3 + 1d? Naively, if we
consider the symmetry fractionalization classes of pointlike
gauge charges, we should have a similar mathematical struc-
ture as in 2 + 1d [see Eq. (33)]. In particular, when GG

is Abelian, we should have H 2(SG,GG) = [H 2(SG,Z) ⊗
H 2(GG,Z)] × Tor(H 3(SG,Z),H 2(GG,Z)) indices labeling
the different projective representations of the symmetry
group. However, this mathematical structure is missing in
SET 4(SG,GG) above.

In fact, we know that symmetry fractionalization classes of
gauge charges are actually missing from SET 3(SG,GG) in
2 + 1d, as discussed in Sec. V F (see also Sec. II C). It is not
surprising that SET 4(SG,GG) is also missing those indices.
However, we know that the symmetry fractionalization classes
of gauge fluxes are completely contained in SET 3(SG,GG).
We expect that SET 4(SG,GG) also contains the generalized
“symmetry fractionalization classes” of gauge fluxes, the
topological loop excitations in 3 + 1d. Therefore, a part of
SET 4(SG,GG) should describe the nontrivial action of global
symmetry on gauge flux loops, without changing their species.
However, because gauge flux loops are extended objects, the
action of global symmetry on them can no longer be imple-
mented by local operators. So, to be precise, we should not call
this phenomenon symmetry fractionalization, as it is discussed
in Sec. II B. We call it the extended symmetry fractionalization.

Although the full understanding of the extended symmetry
fractionalization is beyond the scope of this paper, we can
intuitively guess the underlying mathematical structure. When
GG is Abelian, a direct generalization of H 2(SG,GG) to one
higher dimension is H 3(SG,GG). By the universal coefficients
theorem, we have

H 3(SG,GG) = [H 3(SG,Z) ⊗ H 2(GG,Z)]

× Tor[H 4(SG,Z),H 2(GG,Z)], (127)

where we used H 2(GG,Z) = GG for finite Abelian group
GG. These two terms indeed appear in Eq. (126) (the first and
the third term). We propose that H 3(SG,GG) is at least part of
the mathematical structure describing the extended symmetry
fractionalization classes when GG is Abelian.

B. Generalization to continuous groups, and/or antiunitary
symmetry groups

Our discussion has been limited to the case in which both
SG and GG are finite groups, and SG is assumed to be unitary
(i.e., does not contain time reversal). These constraints are
introduced here for simplicity rather than due to difficulty of
principle.

First, it is quite straightforward to consider an on-site
symmetry group SG containing the antiunitary time-reversal
transformation T . In the work by Xie et al. on SPT
phases,20 when SG contains T , the classification is given by
Md+1(SG,UT (1)). Here UT (1) means that T acts nontrivially
on the U (1) group; in particular, T sends the phase eiθ ∈ U (1)
to its complex conjugate e−iθ . [For the detailed definition
and discussion of Hd+1(SG,UT (1)), see Ref. 20]. We expect
that the classification of gapped bosonic quantum phases with

topological order described by a GG gauge group, and in the
presence of an on-site global symmetry group SG containing
T , is given by Hd+1(SG × GG,UT (1)), in which only the SG

part of the cross product acts nontrivially on UT (1).
Further, Ref. 20 considered the classification of SPT phases

with a continuous on-site symmetry group SG, in which case
the Borel group cohomology was used. It appears to us that
the inclusion of a continuous SG results in an appropriate (but
may be subtle) mathematical generalization of Hd+1(G,U (1))
for a finite group G. We, in principle, do not expect that this
generalization is hindered by difficulties.

C. About the completeness of the classification

Finally, we comment on the issue of completeness of the
classification by Hd+1(SG × GG,U (1)). Is the classification
complete, incomplete, or overcomplete?

First, we want to comment on the following question: Do
distinct elements in Hd+1(SG × GG,U (1)) necessarily corre-
spond to distinct quantum phases? We believe that the answer
is negative, and the classification is generally overcomplete
in this sense. One can understand this claim by considering
a simple example SG = Z1 and GG = Z2 × Z2 in 2 + 1
dimensions. According to H 3(GG,U (1)) = Z3

2 , it appears that
there are eight different topological orders. However, this is
overcomplete. Among these three Z2 indices, the first (second)
Z2 is labeling the toric-code/double-semion topological order
in the first (second) Z2 gauge group, and the third Z2 is labeling
a certain extra twist of the topological order involving both Z2

gauge groups. Let us consider two phases labeled by (1,0,0)
and (0,1,0), where we group the three Z2 indices into a vector.
Clearly, (1,0,0) and (0,1,0) physically correspond to the same
phase; they just differ by an ordering of the gauge group.
This is analogous to the K-matrix classification of Abelian
quantum Hall states. For instance, K = ( 1 0

0 2 ) and K = ( 2 0
0 1 )

are labeling the same physical phase.
The SET (SG,GG) classification of SET phases is also

overcomplete in this sense. For instance, the symmetry frac-
tionalization classes when SG = Z2 and GG = Z2 × Z2 are
given by SFC (SG,GG) = H 2(SG,GG) = H 2(SG,Z2) ×
H 2(SG,Z2) = Z2 × Z2, using the universal coefficients the-
orem. If we use (a,b), with a,b = 0,1 ∈ Z2, to represent this
index, then (1,0) [(0,1)] simply means that there is nontrivial
symmetry fractionalization in the first [second] Z2 gauge
sector, and these are physically the same situation.

Second, our classification is certainly not a full classifica-
tion of all possible gapped bosonic quantum phases with both
global symmetry and topological order. There are certainly
topological orders that cannot be described by discrete gauge
theories, for instance, the chiral fractional quantum Hall
states. Even for nonchiral topological orders, there are phases
realized by the string-net models69 in which quasiparticle
quantum dimensions are not integers, which again cannot
be described by discrete gauge theories, where quasiparticle
quantum dimensions must be integers.

So let us ask, under the constraint that the topological
order is indeed described by a discrete gauge theory, is
the classification complete? However, we must first specify
the condition: What exactly do we mean by “topological
order described by a discrete gauge theory”? We actually
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mean nothing but phases characterized by Hd+1(GG,U (1)).
Unfortunately, this sounds like a circular argument, but we do
not know how to translate it into a more physical statement.
For example, H 4(Z2,U (1)) = Z1, meaning that there is only
one Z2 gauge theory in 3 + 1d in our context. However,
the string-net models in 3 + 1d allow one to construct two
topological phases, both of which look like Z2 gauge theories.
The difference is that in one phase the Z2 gauge charge is
a boson, while in the other phase it is a fermion. In our
classification, the second phase is not included.

Even under this condition, namely the topological order
given by Hd+1(GG,U (1)), it seems that the classification may
still be incomplete. For instance, we already mentioned that the
gauge charges always have trivial symmetry fractionalization
in our classification. Maybe it is better to ask: Is the
classification complete under additional physical conditions?
And if yes, what are these additional physical conditions?
These are difficult questions and we currently do not know the
answers. Nevertheless, we can make some comments. Below
we address two aspects of these issues.

Is the classification of symmetry fractionalization classes
complete? We want to further comment on the missing
symmetry fractionalization classes for gauge charges. Let us
focus on 2 + 1d, where the gauge charges and gauge fluxes
are dual to each other, at least for Abelian GG. In this case,
we can reinterpret the symmetry fractionalization classes for
gauge fluxes as those for gauge charges, after performing the
duality. So the real missing part should be those phases with
nontrivial symmetry fractionalization for both gauge charges
and gauge fluxes.

Naively one may think that it is possible to construct such a
phase by coupling two phases together. For instance, consider
GG = Z2. Our models can be used to construct two phases:
phase a (phase b) in which gauge fluxes ma (charges eb) have
nontrivial symmetry fractionalization (i.e., transform under
SG as a nontrivial projective representation), while ea (mb)
transform trivially under SG. (Phase b can be constructed
by performing e → m duality from phase a.) We can couple
these two phases together. When the coupling is weak the
topological order is Z2 × Z2. After a phase transition of
condensing mamb bound states (or the eaeb), the topological
order will reduce from a Z2 × Z2 gauge theory to a Z2 gauge
theory. However, the condensed mamb (or eaeb) quasiparticles
actually transform nontrivially under SG. Consequently, the
new Z2 topologically ordered phase breaks SG.

However, it seems possible to construct an effective
lattice gauge theory for the phases with nontrivial symmetry
fractionalization (for on-site SG) for both gauge charges and
gauge fluxes. So it is feasible to expect that these phases
do exist. However, the above discussion signals that these
phases may not be adjacent to the phases classified by
Hd+1(SG × GG,U (1)) in some sense. The reason that we
miss those phases in Hd+1(SG × GG,U (1)) may be because
they cannot be described by exactly solvable models.

Is the classification of the interplay between SG and
GG beyond symmetry fractionalization complete? Let us
consider the classes indexed by nontrivial elements in
EXT RA (SG,GG) in 2 + 1d. We show that in the example
of GG = Z2 × Z2 and SG = Z2, the minimal model for a
nontrivial EXT RA (SG,GG), such a phase means that SG

can interchange the species of quasiparticles. However, we
know that in 2 + 1d, even for the usual toric code topological
order with GG = Z2, it is fine to imagine that SG = Z2 could
interchange e and m quasiparticles, leaving the fusion and
braiding algebra invariant. In fact, the translational symmetry
(not an on-site symmetry) along the 45◦ axis of a square-
lattice toric code model indeed interchanges e and m. Such
an e and m interchange induced by SG is also missing
from H 3(GG,U (1)). It is, however, actually reasonable that
such phenomena are missing in our classification. That is
because our classification can be generalized to arbitrary
higher dimensions, while the e-m interchange can only occur
in 2 + 1d. For instance, in 3 + 1d e is pointlike and m is
looplike, so they can never be interchanged.

Note added. Recently, we noticed the recent work by Hung
and Wen,73 which discusses the general duality between SPT
phases and the DW TQFTs. Another recent work, by Essin and
Hermele,74 classifies the general symmetry fractionalization of
gapped Z2 QSLs. Also, Hu, Wan, and Wu75 have very recently
analyzed in detail the topological phases described by models
similar to ours in absence of global symmetries.

ACKNOWLEDGMENTS

Y.R. thanks helpful discussions with Fa Wang and espe-
cially Michael Hermele. This work is supported by the Alfred
P. Sloan foundation and National Science Foundation under
Grant No. DMR-1151440.

APPENDIX A: PROJECTIVE SYMMETRY GROUP IN
PARTON CONSTRUCTION

Parton construction is a convenient way to obtain
quantum states with topological order. The basic idea is
to write a topologically ordered state directly using the
anyonic quasiparticle degrees of freedom. For example,
in the Schwinger-fermion representation of QSLs with
Z2 topological order, fermionic quasiparticles are used to
represent a physical spin- 1

2 : �Si = 1/2f
†
iα �σαβfiβ , where i labels

sites and α,β label spins. Note that this construction enlarges
the Hilbert space from 2 to 4 per site, and one eventually needs
to remove the unphysical states (empty and doubly-occupied
sites) to obtain a physical spin- 1

2 wave function. This
removal of unphysical states can be accomplished by the
so-called Gutzwiller projection: PG ≡ ∏

i ni(2 − ni), where
ni = f

†
iαfiα is the fermion number on site i.

In this approach, on the mean-field level, a Z2 QSL can
be represented as a free fermion state |ψMF〉 of fiα fermions,
which is the ground state of a spin-singlet mean-field
Hamiltonian:

HMF =
∑
ij

χij f
†
iαfjα + �ijεαβf

†
iαf

†
jβ + H.c. (A1)

HMF has both hopping and pairing terms on a lattice (εαβ term
is the spin singlet pairing). The physical spin- 1

2 wave function
of the Z2 QSL can be obtained by Gutzwiller projection:
|ψQSL〉 = PG|ψMF〉. Here the Z2 gauge fluctuations emerge
exactly because of this projection: two mean-field states differ-
ing by a gauge transformation χij → εiχij εj ,�ij → εi�ij εj

(εi = ±1) give exactly the same spin wave function. Therefore,
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such local Z2 fluctuations correspond to redundancies in the
formulation and are gauge fluctuations. The fiα fermions
are the quasiparticles carrying the Z2 gauge charge. The
low-energy effective theory of the state |ψQSL〉 is described by
Z2 gauge charges fiα coupled with a dynamical Z2 gauge field.

How can we make sure that the QSL wave function |ψQSL〉 is
symmetric under a symmetry group SG, such as lattice transla-
tions? Naively, one would require the mean-field Hamiltonian
HMF to be invariant under SG transformations. In fact, this
is not required. Because two mean-field states differing by a
Z2 gauge transformation label exactly the same physical state,
one only requires HMF to be “projectively symmetric.” Namely,
HMF before and after an SG transformation can differ by a Z2

gauge transformation. This is the key observation underlying
the PSG.

For any element g in SG, there will be a certain Z2

gauge transformation Gg associated with the g such that
the combination Gg · g leaves the mean-field Hamiltonian
HMF or the state |ψMF〉 invariant. The collection of all such
combinations form a group, which is defined to be PSG:
PSG ≡ {Gg · g : Gg · g leaves HMF invariant,∀ g ∈ SG}.

Let us look at the mean-field Hamiltonian Eq. (A1) again.
Clearly, one can do a global gauge transformation: εi = −1,∀ i

and HMF is invariant, which is also the only nontrivial gauge
transformation which leaves HMF invariant. This means that in
PSG, there will be two elements corresponding to the identity
element in SG: either εi = 1,∀ i, or εi = −1,∀ i. In general,
for any element g ∈ SG there will be two elements, Gg · g and
G̃g · g in PSG corresponding to it. The gauge transformations
Gg and G̃g differ by the global Z2 gauge transformation.
Mathematically, the algebraic relation between PSG and SG

is given by56:

PSG/IGG = SG. (A2)

Here IGG = Z2, the group of global gauge transformations.
Equation (A2) is the key mathematical structure underlying

PSG. It indicates that PSG is a group extension of the group
SG by IGG. When IGG is Abelian, which is true in the Z2

case, we know that IGG is in the center of PSG, because
global gauge transformations obviously commute with any
PSG element. In this case, a PSG is a central extension of
SG by IGG. Further, the classification of all different PSGs

becomes the classification of all possible central extensions.
There is a nice mathematical theorem on central extensions of
groups stating that all such central extensions are classified by
H 2(SG,IGG)(see, for example, Ref. 57).

At this moment, it appears that PSG is a feature of the
parton mean-field states only. Whether PSG is physical or
not beyond the mean-field formulation is not completely
clear. To see the physical meaning of PSG and H 2(SG,IGG)
beyond the mean-field formulation, we need to consider the
low-energy effective theory, which is discussed in the main
text.

APPENDIX B: THE OPERATOR REALIZATION OF
TWISTED EXTENDED RIBBON ALGEBRA AND THE

QUASI-QUANTUM DOUBLE

In this section we write the explicit forms of the ribbon
operators F (h,g)(�) and the operators acting on ends of ribbons

D(h,g)(A),D(h,g)(B) and demonstrate the algebra satisfied by
these operators. As in the main text, we also only consider an
Abelian group SG × GG. These operators are defined for h ∈
GG, g ∈ SG × GG. In addition, we study the braiding and
fusion properties of the quasiparticles created by these ribbon
operators and show that they are mathematically described by
the quasi-quantum double.61,70

1. The operator realization of the twisted extended
ribbon algebra

Let us start by noting that the definition and some properties
of ribbon operators were presented in Sec. IV B. Here we start
by recalling the form of the nonzero matrix element of the
ribbon operator F (h,g)(�):

〈fin| F (h,g)(�) |i〉 = fA · fB · fAB · w�
h (g), (B1)

where w�
h (g) is defined in Eq. (72), and the relation between

the initial and final states, |i〉 , |fin〉, is explained in Eq. (71);
the fA,fB,fAB are rather complicated phase factors depending
only on the degrees of freedom living on ends of �, which we
here explicitly define:

fA = ω(hAh−1,h,bN )ω(bN,h,hAh−1)ω
(
e−1
N+1,bNc−1

N+1,h
)

ω
(
cN+1,bNc−1

N+1,h
)
ω

(
hAh−1,h,h−1

A

)
ω

(
h−1

A ,h,hAh−1
) ,

fB = chB
(h,hB)chhB

(c1,h)

chhB
(hB,h)cc1 (h,hB)

× ω
(
h,h−1c−1

1 b0,e
−1
1

)
ω

(
c1,h,h−1c−1

1 b0
)

ω(hB,h,h−1
B h−1)

,

fAB =ω−1
(
h,h−1

A ,hAhB

)
. (B2)

Here the flux in tA is hA = b−1
N cN+1eN+1 and the flux in tB

is hB = b−1
0 c1e1 in the initial state |{ui},{g̃ij }〉 (see Fig. 15

for the definitions of b0,bN , . . . , degrees of freedom living of
the ends of �). Although here we use the specific geometric
configuration of the ribbon � in Fig. 15, the definitions
of F (h,g)(�) and D(h,g)(A) (D(h,g)(B)) below can be easily
generalized to any geometric configuration of �.

Next, we define the operator D(h,g)(A) (D(h,g)(B)) explicitly
on end A (end B) (also mentioned in the main text), where
h ∈ GG, g ∈ SG × GG. They are defined as an operator in
the whole Hilbert space H [in fact, they are also well-defined
in K(�), because D(h,g)(A),D(h,g)(B) do not change the flux
of a 2-simplex inside �], via the matrix elements,

〈f|D(h,g)(A)|i〉 = δhA,h · ch(g,bN )W6(i),
(B3)

〈f|D(h,g)(B)|i〉 = δhB,h · ch(g,c1)W6(i),

where the phase factor W6(i) is defined in the main text in
Eq. (80).

With these definitions, after straightforward but compli-
cated algebra, one can show that, in both the Hilbert space H
and its subspace K(�),

D(h2,g2)(A) · D(h1,g1)(A) = δh1,h2 · ch1 (g2,g1)D(h1,g2g1)(A),

D(h2,g2)(B) · D(h1,g1)(B) = δh1,h2 · ch1 (g2,g1)D(h1,g2g1)(B).

(B4)
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In the sub-Hilbert space K(�), we have more identities:

F (h1,g2g1)(�)D(h2h1,g2)(A)

= cg2 (h2,h1)ch1 (g2,g1)D(h2,g2)(A)F (h1,g1)(�), (B5)

D(h1h2,g2)(B)F (h1,g1g2)(�)

= cg2 (h1,h2)ch1 (g1,g2)F (h1,g1)(�)D(h2,g2)(B), (B6)

and

F (h2,g2)(�)F (h1,g1)(�) = δg1,g2 · cg1 (h2,h1)F (h2h1,g1)(�). (B7)

Equations (B4)–(B7) are summarized in Eqs. (81a), (81c),
(81d), and (81b) in the main text.

In addition, it can be easily shown that D(h,g)(A), D(h,g)(B)
and F (h,g)(�) operators all commute with the global symmetry
transformations in SG.

2. Braiding

a. Braiding between the quasiparticles at end A’s

Next, we describe the braiding and fusion properties of
the quasiparticles created by the Fh,g(�) operators when
applied on the ground state |gs〉. For these purposes,
we must consider multiple ribbons. Starting from multi-
ple ribbons �1,�2, . . . ,�N , we define a sub-Hilbert space
K(�1,�2, . . . ,�N ) ⊂ H to be the one spanned by those states
satisfying zero-flux rule everywhere inside �1,�2, . . . ,�N .
Now all the operators F (h,g)(�n), D(h,g)(An), D(h,g)(Bn), n =
1,2, . . . ,N are all well-defined in K(�1,�2, . . . ,�N ). (An and
Bn are the two ends of the ribbon �n.)

In order to make the braiding and fusion algebra of the
quasiparticles at both the An and Bn ends on the same footing, it
is convenient to introduce a slightly modified ribbon operator:

F̃ (h,g)(�) ≡ F (h,g)(�)f −1
AB , (B8)

where the phase factor fAB is given in Eq. (B2). F̃ (h,g)(�)
also commutes with the global symmetry and satisfies the
same operator algebra as F (h,g)(�) with D(A),D(B) operators
[see Eqs. (B5) and (B6)]. [However, the algebra in Eq. (B7)
is no longer satisified by F̃ (h,g)(�).] We can then construct
an excited state using multiple ribbons �1, . . . ,�N that all
share the same end B, but end An are all different from each
other. Here by “sharing the same end B”, we require that
the vertices iBn

, the triangles tBn
, and the edge Bn’s are all

the same: B1 = B2 = · · · = BN ≡ B, edge B1 = edge B2 =
· · · = edge BN ≡ edge B. Let us only consider the case that
�1, . . . ,�N do not overlap/intersect with each other except
over a finite length starting from end B, which is enough for
our purposes. We can choose an ordering of the ribbons: �n is
on the counterclockwise side of �n+1, ∀ n. [See Fig. 17(a) for
a geometric illustration.] An excited state is given by∣∣ψk1,...,kN

uB

〉 = P̂uB
(B)F̃ k1 (�1)F̃ k2 (�2), . . . ,F̃ kN (�N )|gs〉,

(B9)

where we have used k1 = (h1,k1), . . . ,kN = (hN,gN ) to save
notation. P̂uB

(B) is a projection operator that enforces uiB =
uB ∈ SG at end B, which commutes with all the F̃ operators.
|ψk1,...,kN

uB
〉 only contains quasiparticles at end An and end B

and will be very useful to understand the braiding and fusion

Γ1 Γ2 Γ3 Γ4 Γ5

B

Γn

An+1

B

Γn’
(a) (b)

Γn=Γn+1’
AnA1

AN... ...

FIG. 17. (Color online) Multiple ribbons sharing end B, describ-
ing quasiparticles at their end A’s. (a) Example of ordering multiple
(five) ribbons, with strings �1, . . . ,�5, in a “counterclockwise sense.”
The ribbons are allowed to have overlaps only over a finite length
starting from end B. The figure shows a realization possible on a
triangular lattice. (b) The counterclockwise 180◦ braiding of particles
An and An+1 in an N -particle state, a generalization of Fig. 16. The
(blue) strings �′ apply to the braided state.

algebra. We denote the sub-Hilbert space spanned by all the
states |ψk1,...,kN

uB
〉 with a fixed uB as LuB

(A1,A2, . . . ,AN,B),
because one can show that this sub-Hilbert space only depends
on the ribbons’ ends, but does not depend on the paths of the
ribbons.

We will soon study the braiding and fusion operations of
the quasiparticles at the end An’s in LuB

(A1,A2, . . . ,AN,B).
These operations only act within the sub-Hilbert space
LuB

(A1,A2, . . . ,AN,B) for a fixed uB , because uB is always
unchanged in them. In fact, we show that the braiding and
fusion algebra (or, the superselection sectors of end An

quasiparticles) only involve D(h1,h2)(B), with h1,h2 ∈ GG.
However, when a general D(h,g)(B) operator (g =

hg · g̃, hg ∈ GG and g̃ ∈ SG) acts on a state in
LuB

(A1,A2, . . . ,AN,B), it will send the state to a dif-
ferent sub-Hilbert space Lg̃·uB

(A1,A2, . . . ,AN,B). In addi-
tion, the global symmetry transformation of g̃ also sends
LuB

(A1,A2, . . . ,AN,B) to Lg̃−1·uB
(A1,A2, . . . ,AN,B). There-

fore, if one wants to study the general D(h,g)(B) opera-
tors and the global symmetry transformations, one should
consider a larger sub-Hilbert space: L(A1,A2, . . . ,AN,B) ≡
⊕uB∈SGLuB

(A1,A2, . . . ,AN,B). Although we do not have
a proof, we believe that L(A1,A2, . . . ,AN,B) contains all
possible excited states at end An’s and the end B. (For
single-ribbon states |ψk

uB
〉, we do have a proof in the main

text that they span all possible excited states at the end A and
the end B.)

Note that because hAn
= 1 in |gs〉, fAB = 1 due to the

canonical form of 3-cocycle. Therefore, |ψk1,...,kN 〉 can be
equally created by the original F (h,g)(�) ribbon operator:∣∣ψk1,...,kN

uB

〉 = P̂uB
(B)Fk1 (�1)Fk2 (�2) · · ·FkN (�N )|gs〉, (B10)

which is given in Eq. (89) in the main text. In fact, to study the
braiding and fusion operations of the end-An quasiparticles, it
does not matter whether F (h,g)(�) or F̃ (h,g)(�) is used, because
they give the same algebra. This is why we only use F (h,g)(�)
operators in the main text for simplicity.

The geometric illustration of the braiding process between
an end An and an end An+1 has been discussed in the main
text, but is also shown in Fig. 17(b). The following operator
identity is crucial to compute the braiding algebra: When �1

and �2 share the same end B but have different end A’s, and
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�1 is on the counterclockwise side of �2,

F̃ (h1,g1)(�2)F̃ (h2,g2)(�1)

= ch2

(
g2h

−1
1 ,h1

)
F̃ (h2,g2h

−1
1 )(�1)F̃ (h1,g1)(�2)

ω(h1,h2,hB)

ω(h2,h1,hB)
.

(B11)

Here hB should be understood as an operator that measures the
gauge flux in the 2-simplex tB . The order between the F term
and the ω term on the right-hand side is therefore important.
Equation (B11) already describes the physical counterclock-
wise braiding (180◦) operations R̂

n,n+1
CC between quasiparticles

at end An and end An+1 in L(A1, . . . ,AN,B) completely:

R̂
n,n+1
CC

∣∣ψk1,...,(hn,gn),(hn+1,gn+1),...,kN

uB

〉
= R̂

n,n+1
CC P̂uB

(B)F̃ k1 (�1) · · · F̃ (hn,gn)(�n)F̃ (hn+1,gn+1)(�n+1) · · · F̃ kN (�N )|gs〉
= P̂uB

(B)F̃ k1 (�1) · · · F̃ (hn,gn)(�n+1)F̃ (hn+1,gn+1)(�n) · · · F̃ kN (�N )|gs〉
= ω(hn,hn+1,hn+2hn+3, . . . ,hN )

ω(hn+1,hn,hn+2hn+3, . . . ,hN )
chn+1

(
gn+1h

−1
n ,hn

)
P̂uB

(B)F̃ k1 (�1) · · · F̃ (hn+1,gn+1h
−1
n )(�n)F̃ (hn,gn)(�n+1) · · · F̃ kN (�N )|gs〉

= ω(hn,hn+1,hn+2hn+3, . . . ,hN )

ω(hn+1,hn,hn+2hn+3, . . . ,hN )
chn+1

(
gn+1h

−1
n ,hn

)∣∣ψk1,...,(hn+1,gn+1h
−1
n ),(hn,gn),...,kN

uB

〉
. (B12)

Here the hB in Eq. (B11) picks up the accumulated flux in tB :
hn+2hn+3, . . . ,hN .

Although everything about braiding can be understood from
Eq. (B12), the ω factor in it is not convenient. Can we get rid
of this phase factor and find the underlying algebraic structure
satisfied by R̂

n,n+1
CC ?

When acting on the ground state, hB = 1, and the ω term in
Eq. (B11) is 1 due to the canonical form of a 3-cocycle. In this
particular case Eq. (B11) becomes Eq. (99). The braiding of an
excited state with only two ribbons �1,�2 is indeed described
by Eq. (97). Let us define a formal braiding operator R

1,2
CC

which implements the physical braiding R̂
1,2
CC in |ψk1,k2

uB
〉:

R
1,2
CC = RqrD(1)

r (B) ⊗ D(2)
q (B) · σ

= σ · RrqD(1)
r (B) ⊗ D(2)

q (B)

= σ ·
∑

h1,h2∈GG

D
(1)
(h1,1)(B) ⊗ D

(2)
(h2,h1)(B), (B13)

where σ is the permutation operator: σ |ψk1,k2
uB

〉 = |ψk2,k1
uB

〉, the
tensor R(h1,g1),(h2,g2) = δh1,g2δg1,1 is also defined in the main
text, and D

(n)
(hn,pn)(B) with hn,pn ∈ GG is defined to be a formal

operator that only transforms the �n operator F̃ (h,g)(�n) as if
we are in a single-ribbon state [see Eq. (B6)]. More precisely,
because

D(h1,p1)(B)
∣∣ψ (h̃1,g̃1)

uB

〉 = δh1,h̃1
· ch̃1

(
g̃1p

−1
1 ,p1

)∣∣ψ (h̃1,g̃1p
−1
1 )

uB
〉,

(B14)

we have

D
(1)
(h1,p1)(B) ⊗ D

(2)
(h2,p2)(B)

∣∣ψ (h̃1,g̃1),(h̃2,g̃2)
uB

〉
= δh1,h̃1

·δh2,h̃2
· ch̃1

(
g̃1p

−1
1 ,p1

)
ch̃2

(
g̃2p

−1
2 ,p2

)
× ∣∣ψ (h̃1,g̃1p

−1
1 ),(h̃2,g̃2p

−1
2 )

uB

〉
. (B15)

The key property of these formal tensor product operators is
that they commute with any local operator at end Ai , ∀ i. That
is why they are topological operators for the quasiparticles at
end Ai’s.

Because of Eq. (B4), the multiplication of the formal op-
erators D

(n)
(h,p)(B) (∀ h,p ∈ GG) satisfy the following algebra:

D
(n)
i (B)D(n)

j (B) = �k
ijD

(n)
k (B), (B16)

where we used the tensor �k
ij ≡ δhi ,hj

δhk,hi
δgk,gigj

chk
(gi,gj )

defined in Eqs. (86).
Equation (B16) tells us that the quasiparticles created by

ribbon �n at end An form representation of this algebra.
Mathematically, the algebra in Eq. (B16) is called the multipli-
cation in the quasi-quantum double Dω̃(GG),61,70 where ω̃ ∈
H 3(GG,U (1)) is the 3-cocycle induced on GG by the cocycle
ω ∈ H 3(SG × GG,U (1)) in our model by restricting the
elements x,y,z ∈ GG in ω(x,y,z). Multiplication in Dω̃(GG)
is associative. A representation of the multiplication algebra
Eq. (B16) is called a representation of the quasi-quantum
double Dω̃(GG).

Because we show that the braiding algebra is completely
determined by D

(n)
(h,p)(B) operators with h,p ∈ GG, one knows

the braiding properties of a quasiparticle at end An if we know
which representation of Dω̃(GG) this particle is in. In fact,
the quasiparticle species (or more precisely, its superselection
sector) is labeled by an irreducible representation of Dω̃(GG).
Different irreducible representations of Dω̃(GG) correspond
to different quasiparticle species.

The physical counterclockwise 360◦ braiding for the two
particle states is (R̂n,n+1

CC )2. Its action in the basis |ψk1,...,kN
uB

〉 is
actually very simple, because the ω terms in Eq. (B12) cancel
out for (R̂n,n+1

CC )2:(
R̂

n,n+1
CC

)2∣∣ψk1,...,knkn+1,...,kN

uB

〉
= D

(n)
(hn,hn+1)(B) ⊗ D

(n+1)
(hn+1,hn)(B)

∣∣ψk1,...,knkn+1,...,kN

uB

〉
. (B17)

It is also tempting to formally define the general operator

R
n,n+1
CC = RqrD(n)

r (B) ⊗ D(n+1)
q (B) · σ

= σ · RrqD(n)
r (B) ⊗ D(n+1)

q (B)

= σ ·
∑

hn,hn+1∈GG

D
(n)
(hn,1)(B) ⊗ D

(n+1)
(hn+1,hn)(B). (B18)

155115-37



ANDREJ MESAROS AND YING RAN PHYSICAL REVIEW B 87, 155115 (2013)

Note that the formal operator R
n,n+1
CC does not have a hat, which

distinguishes it from the physical braiding R̂
n,n+1
CC in Eq. (B12).

The ω factor in Eq. (B12) tells us that, for multiple-ribbon
states, the physical braiding R̂

n,n+1
CC is not implemented by

R
n,n+1
CC in the basis {|ψk1,...,kN

uB
〉}. However, we show that if we

change into certain different basis, R̂n,n+1
CC is still implemented

by R
n,n+1
CC .

Let us first consider three-ribbon states: |ψk1,k2,k3
uB

〉. The

physical R̂
2,3
CC between the end A2 and the end A3 are still

implemented by R
2,3
CC . However, in this basis, R

1,2
CC and the

physical braiding R̂
1,2
CC differ by a phase factor ω(h1,h2,h3)

ω(h2,h1,h3) , due
to the ω term in Eq. (B11). However, this braiding can still be
implemented by R

1,2
CC if we choose a different basis.

Let us define the state∣∣ψ ((k1,k2),k3)
uB

〉 ≡ ω−1(h1,h2,h3)
∣∣ψk1,k2,k3

uB

〉
. (B19)

For reasons that will become clear in a moment, we also define∣∣ψ (k1,(k2,k3))
uB

〉 ≡ ∣∣ψk1,k2,k3
uB

〉
. (B20)

All states {|ψ ((k1,k2),k3)
uB

〉} form another basis of
LuB

(A1,A2, . . . ,AN,B), which differ from the original
basis {|ψ (k1,(k2,k3))

uB
〉} only by phase factors.

It is then clear that the physical braiding R̂
2,3
CC is imple-

mented by R
2,3
CC in basis {|ψ (k1,(k2,k3))

uB
〉} (but not in the basis

{|ψ ((k1,k2),k3)
uB

〉}) and the physical braiding R̂
1,2
CC is implemented

by R
1,2
CC in the basis {|ψ ((k1,k2),k3)

uB
〉} (but not in the basis

{|ψ (k1,(k2,k3))
uB

〉}). Such a basis change is necessary to maintain

the same algebraic form of the formal braiding operator R
n,n+1
CC

in Eq. (B18).
The two different parentheses configurations: (k1,(k2,k3))

and ((k1,k2),k3) can be viewed as two different ways to
“multiply” quasiparticles. For reasons that will become clear
later, it is better to call these operations as “comultiplications.”
Different orders of comultiplications do not give the same
results, which differ by a basis change: Mathematically, the
comultiplications are not associative, but are quasiassociative.
It turns out that the comultiplications of quasiparticles here
have a clear physical meaning: the fusions, which we discuss
shortly.

One can generalize the above observation for three-ribbon
states to multiple-ribbon states, which turns out to be also very
useful to represent the fusion algebra. We define∣∣ψ (k1,(k2,...,(kN−2,(kN−1,kN ))),...)

uB

〉 ≡ ∣∣ψk1,k2,...,kN−2,kN−1,kN

uB

〉
. (B21)

We now consider an arbitrary parentheses configuration
between k1,k2, . . . ,kN . For convenience, we use a tree diagram
to represent it. For example, (k1,(k2,k3)) and ((k1,k2),k3) can
be represented as figure (a) and figure (b) below, while (k1,

(k2, . . . ,(kN−2,(kN−1,kN ))), . . .) is represented as figure (c).

Note that we define a tree diagram not only as a geometric
object: First, it contains k1 = (h1,g1), . . . ,kN = (hN,gN )
assigned to the top end points. Second, every edge (line
segment) in a tree diagram is also assigned a group element
∈GG, which is specified as follows. The top edges are
assigned as h1,h2, . . . ,hN , and every lower edge coming out
of merging two upper edges is assigned by the product of the
group elements in the upper two edges.

We can use a tree diagram to represent any parentheses
configuration.

We now define a basis for a fixed tree diagram Treeα , where α

labels the tree configuration,∣∣ψuB
(Treeα)

〉 ≡ w(Treeα)
∣∣ψk1,k2,...,kN−2,kN−1,kN

uB

〉
, (B22)

where w(Treeα) is a phase factor which we define below.
Any two tree diagrams with the same set of assigned

k1 = (h1,g1), . . . ,kN = (hN,gN ) on the top end points can be
deformed into each other by a finite number of so-called F
moves. An F move is a local deformation of a tree diagram;
namely, Treeα and Treeβ are only different locally as shown in
Fig. 18.

When a local F move occurs, we define the state
ω−1(ha,hb,hc)|ψuB

(Treeα)〉 = |ψuB
(Treeβ)〉. In this fashion,

starting from the tree diagram of the original basis
(k1,(k2, . . . ,(kN−2,(kN−1,kN ))), . . .), we can find the phase
factor w(Treeα) accumulated during a sequence of F moves
for any tree diagram α.

Apparently there are many different possible F-move
paths that can connect a given tree diagram with that
of (k1,(k2, . . . ,(kN−2,(kN−1,kN ))), . . .). One may wonder
whether the accumulated phase factor w(Treeα) is the same
or not for different F-move paths. It turns out that w(Treeα) is
independent of which path one chooses. This is a consequence
of the 3-cocycle condition. The 3-cocycle condition dictates
that the F moves satisfy a crucial self-consistent condition:
the pentagon equation, which in turn indicates that w(Treeα)
is well-defined, a consequence of the Mac Lane’s coherence
theorem.76 We refer interested readers to Ref. 77 by Kitaev for
detailed discussions.

FIG. 18. A general F move.
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Γ1
Γ2Γ3Γ4

Γ5

Γn

A

Γn+1’

(a) (b)

Γn+1=Γn’

Bn
B1

BN
... ...

A

Bn+1

FIG. 19. (Color online) Multiple ribbons sharing end A, describ-
ing quasiparticles at their end B’s. (a) Example of ordering multiple
(five) ribbons, with strings �̄1, . . . ,�̄5, in a “counterclockwise sense.”
The ribbons are allowed to have overlaps only over a finite length
starting from end A. The figure shows a realization possible on a
triangular lattice. (b) The counterclockwise 180◦ braiding of particles
Bn and Bn+1 in an N -particle state. The (blue) strings �̄′ apply to the
braided state.

With this definition of |ψuB
(Treeα)〉, one can show that the

physical braiding operation R̂
n,n+1
CC between end An and end

An+1 is implemented as R
n,n+1
CC in any basis in which kn and

kn+1 are parenthesized together: . . . (kn,kn + 1) . . ..
Mathematically, the formal operators R

n,n+1
CC do not satisfy

the Yang-Baxter equation, a self-consistent equation for
braiding algebra. This dictates that an appropriate changing of
basis is required, which is discussed in detail above. With this
changing of basis, the formal operators satisfy the so-called
quasi-Yang-Baxter equation. These mathematical structures
are exactly those in the quasi-quantum double Dω̃(GG).

b. Braiding between the quasiparticles at end B’s

Similarly, we can construct an excited state using
multiple ribbons �̄1, . . . ,�̄n that all share the same end
A: A1 = A2 = · · · = AN ≡ A, edge A1 = edge A2 = · · · =

edge AN ≡ edge A, and that do not overlap/intersect with each
other except for a finite length starting from end A, while end
Bn are all different from each other. We also choose an order-
ing: �̄i is on counterclockwise side of �̄i+1. [See Fig.19(a) for
a geometric illustration.] We can create an excited state:∣∣ψ̄k1,...,kn

uA

〉 = P̂uA
(A)F̃ k1 (�̄1)F̃ k2 (�̄2) · · · F̃ kn(�̄n)|gs〉, (B23)

which only hosts quasiparticles at end Bi and end A. Here P̂uA

is a projector which enforces uiA = uA for a fixed element
uA ∈ SG. [Note that it is important to use F̃ (h,g)(�̄) operators,
not the F (h,g)(�̄) operators to construct |ψ̄k1...kN

uA
〉.] We use

|ψ̄k1,...,kN
uA

〉 to study the braiding properties of the quasiparticles
at the end Bn’s. We denote the sub-Hilbert space spanned by
{|ψ̄k1,...,kN

uA
〉} as LuA

(B1,B2, . . . ,BN,A).
The geometric illustration of the counterclockwise 180◦

braiding of the end Bn and the end Bn+1 is shown in Fig. 19(b).
The following operator identity is crucial to understand its
underlying algebraic structure. When �̄1 and �̄2 share the
same end A but have different end B’s and �̄1 is on the
counterclockwise side of �̄2,

F̃ (h1,g1)(�̄2)F̃ (h2,g2)(�̄1)

= ch1

(
h2,g1h

−1
2

)
F̃ (h2,g2)(�̄1)F̃ (h1,g1h

−1
2 )(�̄2)

ω
(
h2,h1,h

−1
A

)
ω

(
h1,h2,h

−1
A

) .

(B24)

Here hA should be interpreted as an operator measuring the
gauge flux in tA. hA = 1 in |gs〉 and hA = h−1

1 h−1
2 · · ·h−1

N in
|ψ̄k1,...,kn

uA
〉.

Equation (B24) already describes the physical counter-
clockwise braiding (180◦) operations ˆ̄Rn,n+1

CC between quasi-
particles at end Bn and end Bn+1 in L(B1, . . . ,BN,A) com-
pletely:

ˆ̄Rn,n+1
CC

∣∣ψ̄k1,...,(hn,gn),(hn+1,gn+1),...,kN

uA

〉
= ˆ̄Rn,n+1

CC P̂uA
(A)F̃ k1 (�̄1) · · · F̃ (hn,gn)(�̄n)F̃ (hn+1,gn+1)(�̄n+1) · · · F̃ kN (�̄N )|gs〉

= P̂uA
(A)F̃ k1 (�̄1) · · · F̃ (hn,gn)(�̄n+1)F̃ (hn+1,gn+1)(�̄n) · · · F̃ kN (�̄N )|gs〉

= ω(hn+1,hn,hn+2hn+3, . . . ,hN )

ω(hn,hn+1,hn+2hn+3, . . . ,hN )
chn

(
hn+1,gnh

−1
n+1

)
P̂uA

(A)F̃ k1 (�̄1) · · · F̃ (hn+1,gn+1)(�̄n)F̃ (hn,gnh
−1
n+1)(�̄n+1) · · · F̃ kN (�̄N )|gs〉

= ω(hn+1,hn,hn+2hn+3, . . . ,hN )

ω(hn,hn+1,hn+2hn+3, . . . ,hN )
chn

(
hn+1,gnh

−1
n+1

)∣∣ψ̄k1,...,(hn+1,gn+1),(hn,gnh
−1
n+1),...,kN

uA

〉
. (B25)

Here the h−1
A in Eq. (B24) picks up the inverse of the accumulated flux in tA: hn+2hn+3, . . . ,hN .

We can also define the formal braiding operator:

R̄
n,n+1
CC = R̄rqD(n)

r (A) ⊗ D(n+1)
q (A) · σ

= σ · R̄qrD(n)
r (A) ⊗ D(n+1)

q (A) = σ
∑

hn,hn+1∈GG

[
ch−1

n

(
hn+1,h

−1
n+1

)
chn+1

(
hn,h

−1
n

)
D

(n)
(hn,hn+1)(A) ⊗ D

(n+1)
(hn+1,1)(A)

]
, (B26)

where σ is the permutation operator, and we define the tensor R̄(h1,g1),(h2,g2) as

R̄(h1,g1),(h2,g2) = δh1,g2 · δg1,1 · ch−1
2

(
h1,h

−1
1

)
ch1

(
h2,h

−1
2

)
. (B27)

In fact, one can show that for an Abelian group, ch1 (h2,h
−1
2 ) = ch1 (h−1

2 ,h2), ∀ h1,h2. D
(n)
(hn,pn)(A) with hn,pn ∈ GG is a formal

operator that transforms the �̄n operator F̃ (h,g)(�̄n) as if we are in a single-ribbon state [see Eq. (B5)]. More precisely, for instance,
because

D(h1,p1)

∣∣ψ̄ (h̃1,g̃1)
uA

〉 = δh−1
1 ,h̃1

· c−1
p1

(
h̃−1

1 ,h̃1
)
c−1
h̃1

(p1,g̃1)
∣∣ψ̄ (h̃1,p1g̃1)

uA

〉
, (B28)
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we have

D
(1)
(h1,p1) ⊗ D

(2)
(h2,p2)

∣∣ψ̄ (h̃1,g̃1),(h̃2,g̃2)
uA

〉
= δh−1

1 ,h̃1
· δh−1

2 ,h̃2
c−1
p1

(
h̃−1

1 ,h̃1
)
c−1
h̃1

(p1,g̃1)c−1
p2

(
h̃−1

2 ,h̃2
)

× c−1
h̃2

(p2,g̃2)
∣∣ψ̄ (h̃1,p1g̃1),(h̃2,p2g̃2)

uA

〉
. (B29)

D
(n)
(hn,pn)(A) also satisfy the multiplication algebra Eq. (B16) in

the quasi-quantum double Dω̃(GG).
One can show that for two-ribbon states, the ω factor in

Eq. (B25) is unimportant because it equals one due to the
canonical form of a 3-cocycle. In this case one can show that
the physical braiding ˆ̄R1,2

CC is indeed implemented by the formal
operator R̄

1,2
CC .

For multiple-ribbon states, the ω factor in Eq. (B25)
becomes important. Similar to the braiding of end A’s, one
way to get rid of the ω factor in Eq. (B25) in the braiding
algebra of end B’s is to introduce appropriate basis changes,
which we do not discuss here. After the appropriate basis
change, physical braiding ˆ̄Rn,n+1

CC can still be implemented by
the formal operators R̄

n,n+1
CC .

Finally, the physical counterclockwise 360◦ braiding
( ˆ̄Rn,n+1

CC )2 also has a simple algebraic form:( ˆ̄Rn,n+1
CC

)2∣∣ψ̄k1,...,kn,kn+1,...,kN

uA

〉
= D

(n)
(h−1

n ,h−1
n+1)

(A) ⊗ D
(n+1)
(h−1

n+1,h
−1
n )

(A)
∣∣ψ̄k1,...,kn,kn+1,...,kN

uA

〉
. (B30)

3. Fusion

We study the fusion of the quasiparticles at the end A’s
only. Let us consider multiple-ribbon states with ribbons all
sharing the same end B, but with different end A’s.

First let us consider two-ribbon states |ψk1,k2
uB

〉. According
to the twisted extended ribbon algebra Eq. (B6), the D(h,p)(B)
operators with both h,p ∈ GG transform two-ribbon states as

D(h,p)(B)
∣∣ψ (h̃1,g̃1),(h̃2,g̃2)

uB

〉
= δh,h̃1h̃2

· cp(h1,h2)ch̃1
(g̃1p

−1,p)ch̃2
(g2p

−1,p)

× ∣∣ψ (h̃1,g̃1p
−1),(h̃2,g̃2p

−1)
uB

〉
=

∑
h1·h2=h,h1,h2∈GG

[
cg(h1,h2)D(1)

(h1,p)(B) ⊗ D
(2)
(h2,p)(B)

]
× |ψ (h̃1,g̃1),(h̃2,g̃2)

uB
〉

= �
ij

(h,p)D
(1)
i (B) ⊗ D

(2)
j (B)

∣∣ψ (h̃1,g̃1),(h̃2,g̃2)
uB

〉
, (B31)

where we have used the formal operators D
(n)
i (B) introduced in

Eq. (B13), and the tensor �
ij

k = δgi ,gj
δgk,gi

δhk,hihj
cgk

(hi,hj )
defined in Eqs. (86).

This motivates us to generally define formal operators for
multiribbon states,

D(n)(n+1)
r (B) ≡ �ij

r D
(n)
i (B) ⊗ D

(n+1)
j (B). (B32)

Basically, when acting on a multiribbon state, D(n)(n+1)
r (B)

only transforms the �n and �n+1 ribbons as if we are in a
two-ribbon state. Mathematically, the operation in Eq. (B32) is
called comultiplication in the quasi-quantum double Dω̃(GG),

A1
A2 A3

B

A1
A2 A3

B

FIG. 20. (Color online) Braiding quasiparticle A1 with the fused
quasiparticle A2A3 can be calculated using the shown formula for
a two-step process. The resulting braiding operator is determined
by the action of two topological operators [Eq. (B35)], analogously
to the simple case of two-particle braiding; however, in this case
one topological operator relates to particle A1, but the other is a
“comultiple” [Eqs. (B32) and (B33)] of topological operators acting
on particles A2 and A3.

and is often denoted in mathematical literature by

�(Dr ) ≡ �ij
r Di ⊗ Dj . (B33)

D(n)(n+1)
r (B) turns out to be very useful; we will show soon

that braiding properties of the fused quasiparticle of �n and
�n+1 ribbons are completely determined by D(n)(n+1)

r (B).
Because D(n)(n+1)

r (B) has a physical interpretation of
acting Dr (B) on the two-ribbon states, D(n)(n+1)

r (B) clearly
also satisfy the multiplication algebra Eq. (B16) in the
quasi-quantum double Dω̃(GG). Therefore, if we know the
irreducible representations of Dω̃(GG) (i.e., superselection
sectors) for the quasiparticles at end An and end An+1, the
comultiplication Eq. (B32) induces another representation of
Dω̃(GG), which is generally reducible. One can decompose
this induced representation into its irreducible components.
Every irreducible component corresponds to one fusion chan-
nel. This procedure defines the fusion rule.

Now let us consider three-ribbon states |ψk1,k2,k3
uB

〉, which
allows us to study the braiding of a fused quasiparticle with
another quasiparticle. Let us imagine that we fuse the end-A2

and the end-A3 quasiparticles first and braid the fused particle
with the end-A1 quasiparticle. We should physically braid both
end A2 and end A3 with end A1, which we define as R̂

1,(2,3)
CC ≡

R̂
2,3
CC · R̂1,2

CC [see Fig. 20]. To understand the algebraic structure
of this procedure, the basis change that we introduced earlier
becomes useful now. One can straightforwardly show that

R̂
1,(2,3)
CC

∣∣ψ (k1,(k2,k3))
uB

〉
= (

R̂
2,3
CC · R̂1,2

CC

)∣∣ψ (k1,(k2,k3))
uB

〉
= ch1 (h2,h3)ch2

(
g2h

−1
1 ,h1

)
ch2 (g3h

−1
1 ,h1)

· ∣∣ψ (((h2,g2h
−1
1 ),(h3,g3h

−1
1 )),(h1,g1))

〉
= σ · ch1 (h2,h3)D(2)

(h2,h1)(B) ⊗ D
(3)
(h3,h1)(B)

∣∣ψ (k1,(k2,k3))
uB

〉
(B34)

= σ · RrqD(1)
r (B) ⊗ D(2)(3)

q (B)|ψ (k1,(k2,k3))
uB

〉, (B35)

where the permutation operator σ is defined as
σ |ψ (k1,(k2,k3))

uB
〉 = |ψ ((k2,k3),k1)

uB
〉. Therefore, the braiding algebra

of the fused particle satisfies the same algebra as in Eq. (B18)
after using D(2)(3)

q (B) operator.
Similarly, one can imagine to fuse the end-A1 and the end-

A2 quasiparticles first and braid the fused particle with the
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end-A3 quasiparticle. This physical process is R̂
(1,2),3
CC ≡ R̂

1,2
CC ·

R̂
2,3
CC . One can also show that

R̂
(1,2),3
CC

∣∣ψ ((k1,k2),k3)
uB

〉
= σ · RrqD(1)(2)

r (B) ⊗ D(3)
q (B)

∣∣ψ ((k1,k2),k3)
uB

〉
, (B36)

where the permutation operator σ is defined as
σ |ψ ((k1,k2),k3))

uB
〉 = |ψ (k3,(k1,k2))

uB
〉.

This discussion can be easily generalized to multiple-ribbon
states. One can show that the braiding algebra of the fused
particle is always represented using the D(n)(n+1)

r (B) in a basis
where (kn,kn+1) are parenthesized together.

Finally, the fusion algebra is formally represented by the
comultiplication in Dω̃(GG) in Eq. (B32) only in a basis
where (kn,kn+1) are parenthesized together. Comultiplication
is not associative but is quasiassociative; namely, it becomes
associative after the changing of basis: the F move introduced
earlier. Because F moves satisfy the pentagon equation, one
can show that the fusion algebra also satisfy the pentagon
equation,70,77 the self-consistent equation for fusion algebra.

4. Summary

In this section we find the operator realizations of the
twisted extended ribbon algebra and also study the braiding
and fusion properties of the topological quasiparticles created
by ribbon operators. We find that the topological order in our
model is described by the quasi-quantum double Dω̃(GG),
where the cocycle ω̃ ∈ H 3(GG,U (1)) is the one naturally
induced by the cocycle ω ∈ H 3(SG × GG,U (1)) in our
model.

The core mathematical structures of the quasi-quantum
double Dω̃(GG) include the multiplications in Eq. (B16),
the comultiplications in Eq. (B32) and the changing of basis
described by Fig. 18 (mathematically called associator). The
superselection sector of a quasiparticle is determined by
the irreducible representation of the multiplication algebra
Eq. (B16). The braiding algebra of quasiparticles is determined
by the formal braiding operator in Eq. (B18), together with
the changing of basis (associator), which satisfy the quasi-
Yang Baxter equation. The fusion algebra of quasiparticles is
determined by the comultiplication algebra Eq. (B32), together
with the changing of basis (associator), which satisfy the
pentagon equation. One can further show that the braiding
algebra and the fusion algebra are compatible: They satify the
hexagon equation.77

We have not studied the interplay between the global
symmetry SG and the topological order Dω̃(GG) here. For
instance, we have not used D(h,g)(A), D(h,g)(B) operators
when g /∈ GG except for stating their basic properties in the
twisted extended ribbon algebra Eqs. (B4)–(B7). However, in
Sec. V, we carefully study the interplay between the global
symmetries and the topological orders in some examples. We
believe that those studies can be generalized to any phase in
our classification.

APPENDIX C: PARTICLE STATISTICS DIRECTLY
FROM CROSSING STRINGS

Here we provide an alternative, direct approach to braiding
statistics, and compare it to that of Sec. IV D.

The braiding statistics of two quasiparticles is a topo-
logical property that therefore cannot depend on the details
of the ribbon operator at its ends. When the system is a
torus, the statistical phase of quasiparticles (meaningful for
Abelian quasiparticles only) follows from the commutation of
operators Ta which describe the following process: creating
a particle-antiparticle pair, tunneling the particle across the
system in direction a = x,y, and finally annihilating the pair,
as described by the formula78

TxTy = e−i2θTyTx, (C1)

with θ the (exchange) statistical angle of the quasiparticles; see
Fig. 21(a). The ribbon operator F̂ (h,g)(�) represents exactly the
operation T along its �. Since the string ends are not involved,
we can actually also use ŵ�

h (g) (see Fig. 13).
The angle in Eq. (C1) depends only on the commutation

relation at the intersection point of the two strings, so even if
the system is not a torus, we can consider a braiding operation
performed locally28 and realized by an open and closed string
that intersect at a single point, Fig. 21(a).

Figure 21 shows the ingredients for calculating the phases
Wmn = 〈f| ŵ�m

hm
(gm)ŵ�n

hn
(gn) |i〉, which reveal the statistical

angle:

e−i2θ = W12

W21
. (C2)

The phases Wmn differ due to the 3-simplices positioned on
top of two lattice triangles which are shared by the two ribbon
operators, as well as due to string phases �

hm

�m
on two edges,

Fig. 21(b).
Using the definition of the 2-cocycle ch, Eq. (63), we get

for the phase factor ratio due to the 3-simplices

�12

�21
= ch1 (h2,ai) ch2

(
h1,b

−1
i+1

)
, (C3)

with i the lattice site of intersection.
Since the definition of statistical angle only makes sense

for Abelian quasiparticles, we consider only trivial cocycles ch.
This means that we can rewrite the 2-cocycle using a 1-cochain,
as in Eq. (67).

In that case, the phase ratio �12/�21 is given by Eq. (74)
and can easily be simplified, giving

�12

�21
= εh1 (h2 · ai)

εh1 (ai)

εh2 (bi+1)

εh2

(
h−1

1 · bi+1
) ; (C4)

see labels in Fig. 21(a).
Using the property εh(g−1

1 )/εh(g−1
2 ) = ε−1

h (g1)/ε−1
h (g2),

which holds for any 1-cochain describing a trivial canonical
2-cocycle, the total phase ratio W12

W21
= �12�12

�21�21
finally becomes

e−i2θ = εh1 (h2) εh2 (h1)
εh1 (g1)εh2 (g′

2)

εh1 (g′
1)εh2 (g2)

. (C5)

The group elements appearing here are g1 = ∏
j aj , g2 =∏

k bk , i.e. the values for isolated strings, and g′
1 = h2

∏
j aj ,
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ai

ai+1

bi+1

bi h1

h2

i

i

h2

i

h1 h1

h2

h1

h1

i

W12

W21

(a) (b) (c)

h1

h2
h2

i

h1

h2h2

FIG. 21. (Color online) Quasiparticle statistics from ribbon commutation. (a) Commutation of two strings (ribbon operators, black and red)
at the intersection point (blue square) gives the braiding statistics. (Top) Strings representing tunneling of particle-antiparticle pairs across the
system (the surface of torus) can give the self-statistics. (Bottom) Braiding setup independent of system shape. (b) Near the intersection of
two ribbon operators ŵ

�1
h1

(g1), ŵ
�2
h2

(g2), the phase difference occurs due to 3-simplices on top of two blue shaded triangles, detailed in (c) with

phases Wmn = 〈f| ŵ�m

hm
(gm)ŵ�n

hn
(gn) |i〉 shown in top (W12) and bottom (W21) rows. Note that elements bi are defined to be oriented oppositely

to our lattice edge orientations, but consistent with definition of ribbon operator phase, Fig. 13, hence the appearance of b−1
i+1 in Eq. (C3).

g′
2 = h1

∏
k bk , i.e. the values after the other string is already

applied.
After using the 1-cochain, Eq. (67), on Eq. (100), the

result obtained by calculating the braiding matrix by using
the algebra of local operators at the string ends almost
exactly matches the one here (up to replacing g1 → h2 · g1

here). The difference involves a deeper subtle issue we
address now. The obtained angle 2θ [either following from
Eq. (100) or Eq. (C5)] should represent 2π braiding of Abelian
quasiparticles in systems with trivial cocycle ch. However,
for the statistical angle to be physical, one expects that it is
invariant under changes of the 3-cocycle by a 3-coboundary,
as introduced in Eq. (10), because this change does not alter
the physical content of the theory. Such transformations of ω

by a coboundary lead to the following transformation of the
1-cochain ε by an arbitrary function u(x,y):

εh(g) → εh(g)
u(h,g)

u(g,h)
. (C6)

One can see that the factor εh1 (h2) εh2 (h1) in the result Eq. (C5)
is invariant, but the rest of the expression is not. [The same is
true for the result following from Eq. (100).]

The resolution of this puzzle is instructive. Namely, the
ribbon operator F (h,g)(�) we used here and in Sec. IV D,
when acting on the ground state, does not necessarily create
a quasiparticle pair state with well-defined flux h and gauge
charge hg . As explicitly shown in the examples of Sec. V,
the gauge charge operator may act nontrivially within the
quasiparticle Hilbert space. [This Hilbert space is created
by the action of F (h,g)(�) on the ground state, but has to
be specified further by discriminating different values of SG

elements uC at the ends C = A,B of string �; see Sec. V A.]
This means that physical states, having well-defined gauge
charge, can actually be nontrivial linear combinations of states
spanned by F (h,g)(�).

Of course, the braiding matrix Eq. (100) contains all
information necessary to specify braiding properties of quasi-
particles; one only has to pose the right question, which
would involve explicit use of physical flux and charge states
constructed using the formalism in Sec. V.

In the present discussion of Abelian quasiparticles, it
becomes obvious that the physical quasiparticle states with
fixed flux and charge are simply obtained by absorbing the
noninvariant factors in Eq. (C5). This is achieved easily by
using F̄ (h,g)(�) ≡ F (h,g)(�)εh(g), which leads to the statistical
angle independent on the cocycle within a fixed cocycle
equivalence class:

e−i2θ = εh1 (h2)εh2 (h1). (C7)

[The same is obtained starting from expression given by
Eq. (100).]

Let us now use Eq. (C7) on two Abelian topological
theories with Z2 order, namely the toric code (TC) and double
semion (DS) models (see Appendix D). These two orders
are physically distinguished exactly by the statistics of their
quasiparticles.

As demonstrated explicitly in Appendix D, the TC is
recovered by choosing the trivial cocycle ω(g1,g2,g3) =
1,∀ g1,g2,g3 ∈ G. From these constraints we need to ob-
tain the values of the 1-cochain εh(g). The constraint
ω(g1,g2,g3) = 1 leads to

ch(g1,g2) = 1 (TC), (C8)

which implies that

εh(g1) εh(g2) = εh(g1 · g2) (TC); (C9)

i.e. the 1-cochain ε actually becomes a 1-cocycle. There are
two representations of the Z2 group, i.e., in total four solutions
for ε given by ε0(g) = 1 or ε0(g) = (−1)g , and ε1(g) = 1 or
ε1(g) = (−1)g .

In the present formalism, a particular ribbon is determined
by its flux hv and one of the particular solutions for the 1-
cochain ε.

The TC has four quasiparticles, {1,e,m,em}, the trivial,
charge, flux, and charge-flux bound state, respectively. Assign-
ing hv = 0 to 1,e, and hv = 1 to m,em, we make a choice (not
unique) of assigning each of the four solutions to one particular
quasiparticle: (1) to 1: εh(g) = 1; (2) to e: εh(g) = (−1)g; (3) to
m: ε1(g) = (−1)g; and (4) to em: ε0(g) = (−1)g .
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This solution recovers the well-known TC result that 1,e,m
are bosons and em a fermion, and nontrivial mutual statistics
is given by 2θ = π among the {e,m,em}.

According to the explicit demonstration in Appendix D, the
DS theory is obtained by choosing the second representative
3-cocycle for G = Z2 given by ω(g1,g2,g3) = −1 for g1 =
g2 = g3 = 1, and 1 otherwise. Repeating the analysis from
the TC case above, the difference lies in the constraint

c1(1,1) = −1 (DS), (C10)

which leads to solutions given by ε0(g) = 1 or ε0(g) = (−1)g ,
and ε1(1) = i or ε1(1) = −i, while ε1(0) = 1 always.

The nontrivial excitations in the Abelian topological phase
described by DS theory are two semions s1, s2, and their bound
state s12. Assigning hv = 0 to 1,s12, and hv = 1 to s1,s2, we
make a choice (not unique) of assigning each of the four
solutions to one particular quasiparticle: (1) to 1: ε1(1) = i;
(2) to s12: ε0(g) = (−1)g , ε1(1) = −i; (3) to s1: ε0(g) = (−1)g ,
ε1(1) = i; and (4) to s2: ε1(1) = −i.

This solution indeed recovers the well-known quasiparticle
properties: 1,s12 are bosons; s1, s2 are semions (2θ = π ); and
the nontrivial mutual statistics is 2θ = π between s12 and either
s1 or s2.

APPENDIX D: EXPLICIT FORM OF MODELS FOR Z2

TOPOLOGICALLY ORDERED PHASES

Here we consider the well-understood case of Z2 topolog-
ical order, to demonstrate that our general model explicitly
yields models for the two inequivalent phases having such
order. Two well-known models for the two distinct Z2

topological phases are Kitaev’s toric code, TC,65 and the
double semion, DS, theory.69 We make a direct comparison
to the TC and DS model variants presented in Ref. 28.

For that purpose, we set the symmetry group to be trivial,
SG = Z1, and the gauge group to GG = Z2. There are only
two group elements, which we can label by G = {1 ≡ +1,a ≡
−1}, with a = a−1. The group element gij = ±1 assigned
to the ij edge (of the triangular lattice) we call “spin”
(±1=“up/down”) positioned at the midpoint of the edge ij . We
now switch to the dual lattice, which is honeycomb, as shown
in Fig. 22. The spins are still on the edges of the honeycomb
lattice, and the honeycomb plaquette ph contains the same six
spins as our original plaquette p.

Let us start with the operator Qt , which is the same in
both topologically ordered theories. This operator forces the
product of three spins adjacent to a honeycomb lattice site to
+1; see Fig. 22. It therefore acts as the projector,

Qv = 1

2

(
1 +

∏
i∈v

σ (i)
z

)
, (D1)

on three spins i neighboring the vertex v. Comparing directly
to the variant of TC and DS models presented in Ref. 28, the
first term in H , Eq. (57), becomes up to an overall constant
just the standard vertex contribution

∑
v

∏
i∈v σ (i)

z to HT C or
HDS in Ref. 28. Further, the product

∏
t∈p Qt appearing in

the plaquette terms of H exactly becomes the
∏

v∈ph Qv term
in HT C or HDS which projects the flux in the honeycomb
plaquette ph to zero (this is the Pp factor in Ref. 28).

FIG. 22. (Color online) Recovering the two Z2 topological phases
from the exactly solvable models: toric code (TC) and double semion
theory (DS). The dual lattice is honeycomb (dashed). Red dots mark
the positions of group elements gij assigned to edges ij , becoming
“spin- 1

2 ” states in TC and DS. A honeycomb lattice plaquette ph is
shaded. The plaquette operator B̂p (Fig. 9) acts on the six “spins” of
ph. The DS model differs from TC by having an additional phase in
its plaquette operator. This phase depends on spins on the six outer
legs of ph, one of which is marked by a green line. These six “outer”
spins belong to the six tetrahedrons in our B̂p; see Fig. 9. The Qt

operator in both models just acts on the three spins nearest to a site
(spins on blue lines).

At this point, we can discuss the physical interpretation
of Qv and the outcome of this subsection more precisely.
In our model, Qv = 1,∀ v gives the zero-flux rule on the
lattice. One should recall that if we had been considering
the dual of the globally symmetric SG = Z2, GG = Z1, the
zero-flux rule would have been automatically satisfied [see
Eq. (46)]. This fact is equivalent to saying that in the undualized
theory the domain walls separating regions of up and down
spins have to form closed loops, i.e., “closed strings” in the
language of string-net models.69 No matter if we start from
the dualized SG = Z2 model or the GG = Z2 model, the
restriction to states satisfying Qv = 1 (which is automatic or
chosen, respectively) leads to Z2 gauge theory models, and this
is clearly shown below. In fact, Ref. 28 clarifies that there are
still two physically distinguishable Z2 gauge theories, which
represent two different topological orders; both of these were
obtained there by dualizing Z2 spin models, automatically
enforcing the closed-string rule. We explicitly show that our
G = GG = Z2 model indeed reduces to the two inequivalent
Z2 gauge theories when Qv = 1.

One can now ask: How do the Kitaev’s TC65 and the DS
theory69 fit in this? Simply, the two different Z2 topological
orders are also described by these two different models. (TC
and DS can be seen as Ising matter coupled to the two different
Z2 gauge fields.28) The TC and DS models are expected to
arise when the restriction to Qv = 1 is lifted; i.e., they are
open-string models. We explicitly show below that our G =
GG = Z2 model indeed gives rise to TC in the absence of that
restriction.

Let us move on to the plaquette operator and the Hamilto-
nian of our model. Under B̂a

p≡i , the six group elements g on
edges (of triangular lattice) which share the lattice site i are
multiplied by a. Therefore, the six spins on the honeycomb
ph plaquette are “flipped,” g = ±1 → ∓1, i.e., acted on by
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Pauli matrix σx . Obviously, B̂1
p≡i does not change the state (no

flipped spins).
Next we consider the phase factor of B̂. There are exactly

two inequivalent classes of 3-cocycles ω for the group G = Z2,
as dictated by H 3(Z2,U (1)) = Z2. They are represented by the
two distinct choices:60

ω(−1,−1,−1) = ±1. (D2)

In both cases, ω(g1,g2,g3) = 1 for any g1,g2,g3 ∈ G when
they are not all equal to −1.

To obtain a model for TC phase, we choose a trivial cocycle,
i.e., ω(g1,g2,g3) = 1, ∀ g1,g2,g3 ∈ G. The amplitude from
Eq. (52) then becomes trivial, BT C

p = 1. The action of the
plaquette operator is

B̂T C
p = 1

2

⎛⎝1 +
∏
l∈ph

σ (l)
x

⎞⎠ , (D3)

with six spins l in the honeycomb plaquette ph. This is
equivalent to the standard plaquette operator of TC model
in Ref. 28, although in the present case there is a constant term
added to the σx term. This constant shift can be removed by
smoothly deforming the B̂T C

p operator without ever closing the
gap in the Hamiltonian. (The constant shift is there to make
our B̂T C

p a projector, which is its general property.) Our model
with ω = 1 is consequently equivalent to the TC model. Under
the Qv = 1 constraint, obviously we obtain the standard Z2

gauge theory on the honeycomb lattice.
We now turn to the DS model.69 Compared to the TC model,

the only difference is that the honeycomb plaquette operator
now has an additional phase factor determined by the value of
six spins on “outer legs” of the plaquette;28 one of six such
legs of the plaquette ph is marked by green line in Fig. 22.
This phase in the DS model is assigned by the following rule.
If exactly two, or exactly six, of the outer leg spins are in state
−1, there is a phase factor −1 in the plaquette operator. If we
again restrict to a closed-string theory, i.e., Qv = 1, the lines
of −1 spins on the honeycomb lattice physically represent the
closed domain walls of the dual Z2 spin theory, and therefore
there is always an even number of −1 legs entering a plaquette
ph. As mentioned, this closed-string restriction of DS model
is the second type of Z2 lattice gauge theory.

Let us show that under Qv = 1 our model indeed reduces
to the Qv = 1 restricted DS model from Ref. 28. The six outer
leg spins of the honeycomb lattice are actually lying on the six
outer edges of the plaquette p in our model on the triangular
lattice (compare Figs. 22 and 9). Although our B̂p does not
change them, they are on the edges of the six tetrahedrons
which determine the phase of the operator.

Given the restriction Qv = 1, i.e., the zero-flux rule on
the triangular lattice, and using ω(−1,−1,−1) = −1, it is
straightforward to show that the phase coming from six
tetrahedrons [see Bs=1

p in Eq. (51)] is equal to −1 only in
two cases: (1) when the only outer leg spins in state −1 are on
two legs separated by 120◦; (2) when beside the two legs as
in case (1), there are two more legs with spin −1 separated by
60◦.

These rules seem strange; however, this is remedied by a
simple change of basis. As explained, for an arbitrary basis

state there is an even number of −1 outer legs, i.e., segments
of dual domain walls, entering the honeycomb plaquette ph.
These segments of domain walls have to be connected (they do
not have ends) in some way along the six edges of the hexago-
nal plaquette ph. Given the configuration of −1 legs entering
the ph, no matter how we choose to connect them, the number
of ph edges we use for that will have fixed parity. It is therefore
well defined to use this number, #int.legs(ph), for any basis
state. After redefining the basis by |state of plaquettep〉 →
(−1)#int.legs(ph) |state of plaquettep〉, our “strange” phase fac-
tors become exactly the DS model’s phase factors described
above. Therefore, within the zero-flux manifold of states,
our model with G = Z2 and ω(−1,−1,−1) = −1 explicitly
reduces to the closed-string version of the DS model, which
was firstly understood in that form in Ref. 28.

APPENDIX E: ALL TWO-PARTICLE STATES ARE GIVEN
BY ACTION OF RIBBON OPERATOR, AND LOCAL

OPERATORS ACT PROJECTIVELY ON THESE STATES

Let us first show that the local operators form a projective
representation of the group G in the Hilbert space L(A,B)
of two excitations at the ends A,B of the ribbon �. Let us
for concreteness focus on the projected subspace LuA

(A,B)
defined in Eq. (84), and the exact same results follow for
LuB

(A,B). For brevity, let us also use the double index
notation, i.e., i ≡ (hi,gi),j ≡ (hj ,gj ), . . ., with hi,hj , . . . , ∈
GG and gi,gj , . . . , ∈ G. Directly combining the definition of
excited states Eq. (84) and the operator algebra from Eqs. (81),
we get

Dj (A)
∣∣ψk

uA

〉 = δhj ,h
−1
k

c−1
gj

(
hk,h

−1
k

)
c−1
hk

(gj ,gk)
∣∣ψ (hk,gkgj )

g̃j ·uA

〉
,

(E1)

Dj (B)
∣∣ψk

uA

〉 = δhj ,hk
chk

(
g−1

j gk,gj

)∣∣ψ (hk,g
−1
j gk )

uA

〉
, (E2)

where we used the usual factorization gj = h′
j · g̃j with g̃j ∈

SG, h′
j ∈ GG. Applying the operators twice and using the

2-cocycle identities Eqs. (87b) and (87a), we get

Di(A)Dj (A)
∣∣ψk

uA

〉 = ch−1
k

(gi,gj ) Dij (A)
∣∣ψk

uA

〉
, (E3a)

Di(B)Dj (B)
∣∣ψk

uA

〉 = chk
(gi,gj ) Dij (B)

∣∣ψk
uA

〉
, (E3b)

where we used the obvious shorthand notation ij =
(hihj ,gigj ). The 2-cocycle ch, with h ∈ GG, therefore de-
termines the projective representation of G.

The projective representation of local operators is actually
unitary, as we next show. In the basis |ψk

uA
〉 labeled by k

(uA is fixed), the matrix elements of operator D(h,g)(A) from
Eq. (E1) are

M(h,g)k′,k = c−1
g (h−1,h)c−1

h−1 (g,gk)δgk′ ,ggk
δh,h−1

k
δhk,hk′ . (E4)

Using the multiplication law, Eq. (E3a), it further follows
that M(h,g)M(h−1,g−1) = ch(g,g−1)M(1,1), where the iden-
tity operator M(1,1) in the basis |ψk

uA
〉 is represented by the

unit matrix. This determines the inverse of the matrix M(h,g).
On the other hand, in the orthonormal basis the matrix of

adjoint operator is given by the conjugated transpose M
†
k′,k =

M(h,g)∗k,k′ .
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The matrices M† and M−1 differ only by a phase factor
containing five 2-cocycle factors. Using the cocycle rules
Eqs. (87b), (87a), and (87c) it is easy to show that the
phase factor is equal to one, and the representation M

is unitary. The same can be shown for the representation
of D(B).

We note that the projective representation of G formed
by local operators D(A) or D(B), as discussed here, is not
the algebra defining the quasi-quantum double. The operator
algebra within the quasi-quantum double is formed by the
“topological operators” and depends on cocycle of elements
in GG only. This is discussed in detail in Appendix B.

Let us next consider the problem of determining the
two-quasiparticle Hilbert space L̃(A,B), where we fix
the two excitations at positions A and B. We prove that the
Hilbert space L(A,B) = ⊕uC

LuC
(A,B) (C is either A or B),

as introduced after Eq. (84), indeed contains all the states
of the two excitations; i.e., it contains L̃(A,B). Our proof
follows the one given in Ref. 65 for the model generalizing
the Z2 toric code to arbitrary finite groups (the “generalized
toric code”); however, our proof has significant changes,
rooted in the fact that our model differs significantly from
the generalized toric code. (For the present proof, the presence
of global symmetries in our model makes the most important
difference.)

We note that since clearly the two-quasiparticle Hilbert
space L̃(A,B) is a subspace of K(�), the action of F (�) and
D operators appearing below is always well defined.

To establish our result, we need to define additional useful
tensors related to the ones in Sec. IV C. We recall the double in-
dex notation using Latin indices: i ≡ (hi,gi),j ≡ (hj ,gj ), . . .,
with hi,hj , . . . , ∈ GG and gi,gj , . . . , ∈ G, while the Kro-
necker δ function δi

j ≡ δhi ,hj
δgi ,gj

. The antipode tensor S is
defined such that the element Sk

l F
l ⊗ Dk is the inverse of the

element F i ⊗ Di in the algebra F ⊗ D. This definition results
in the following identity and solution for S:

Sk
l �

lm
p �

q

knδ
n
m = εpeq, (E5)

S
(h1,g1)
(h2,g2) = δh1,h

−1
2

δg1,g
−1
2

c−1
g2

(h2,h1) c−1
h1

(g1,g2). (E6)

One can check that the defining identity Eq. (E5) holds for the
given form of S by using the 2-cocycle identities Eqs. (87b)
and (87d).

Recall from Sec. IV C the functions εi ≡ δhi ,1 and ei ≡
δgi ,1, which define the unit and counit of the algebras F ,D.
Using these functions we now define τs ≡ N−1

G es and

Ĉ(A) ≡ 1

NGG

εiDi(A), (E7)

where NGG = |GG| is the order of the gauge group and NG =
|G| is the order of the group G. It is important to notice that by
its definition, the εi constrains only the gauge group element
hi ≡ 1 of the double index i = (hi,gi). This means that the
operator Ĉ(A) in Eq. (E7) projects out any nonzero flux in
triangle tA; i.e., it ensures there are no flux excitations at that
lattice plaquette. However, the action of operator D(A) in Ĉ(A)
is still nontrivial, e.g., since the element gi ∈ G, in principle,
modifies the lattice site element uiA .

We now arrive at the central identity,

τs�
s
mpSp

q Fm(�)Ĉ(A)Fq(�) (E8)

= 1

NGGNG

δhr ,1δgj ,1Dj (A)F r (�)

= 1

NGGNG

1DA⊗F⊗DB
, (E9)

where we again used the double summation convention, i.e.,∑
p = ∑

hp∈GG,gp∈G, etc. The first equality can be proved
by using the explicit definitions of all tensors, the operator
algebra, and the 2-cocycle properties. The last line of Eq. (E8)
is slightly more subtle. Consider an arbitrary matrix element
of the operator in Eq. (E9). The δ functions ensure that
the ribbon and local operators do not change any edge or site
elements between the initial and final state. Further, their phase
factors containing cocycles are also trivial due to our choice
of standard cocycle; see Eq. (87c). Consider then the matrix
element contribution from the ribbon operator: δ(uiAu−1

iB
,g̃r ),

with the obvious factorization r ≡ (hr,gr ) = (hr,h
′
r · g̃r ),

hr,h
′
r ∈ GG, g̃r ∈ SG. However, there is a summation over

r , and therefore over g̃r ∈ SG, so the δ function is harmless.
The same is true for the δ function coming from the local
operator. We therefore see that the quantum amplitude is 1,
and indeed the action equals the identity operator 1 in the
algebra DA ⊗ F ⊗ DB .

Let us now consider an arbitrary state |ψ〉 in the Hilbert
space L̃(A,B). We can define

|ηq〉 ≡ Ĉ(A)Fq(�)|ψ〉,
(E10)

Gq ≡ NGGNGτs�
s
mpSp

q Fm(�),

so that

|ψ〉 = Gq |ηq〉 (E11)

holds due to the identity Eq. (E8). The states |ηq〉 actually
have no flux excitations at A due to the action of Ĉ(A).
Elementary gauge and charge excitations must be in pairs and
by construction are symmetric, so |ηq〉 can only describe the
ground state |gs〉 or a one-particle state that breaks the global
symmetry. Since the site elements uiA,uiB are the local (at
A,B) degrees of freedom acted on by the global symmetry,
we conclude that the |ηq〉 states can be written as linear
combinations of the form

|ηq〉 =
∑

u1,u2∈SG

kq
u1,u2

P̂u1 (A)P̂u2 (B) |gs〉 , (E12)

with some coefficients k
q
u1,u2 . (These states include the ground

state itself.)
Equations (E11) and (E10) show that an arbitrary two-

particle state is a combination of the form

|ψ〉 =
∑

u1,u2 ∈ SG

m

Km,u1,u2F
m(�)P̂u1 (A)P̂u2 (B)|gs〉. (E13)

By the definition of the ribbon and projector operators, the |ψ〉
is the zero vector unless u1 · u−1

2 = g̃m, where m ≡ (hm,gm) =
(hm,h′

m · g̃m), hm,h′
m ∈ GG, g̃m ∈ SG. One of the three sums

over SG in Eq. (E13) is therefore superfluous for physical
states in L̃(A,B).
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We can use u1 · u−1
2 = g̃m to eliminate either of the u1,2 in

Eq. (E13), which immediately shows that the arbitrary state
|ψ〉 ∈ L̃(A,B) is indeed a linear combination of projected
ribbon states from Eq. (84).

APPENDIX F: SYMMETRY FRACTIONALIZATION
FOR MULTIPLE QUASIPARTICLES

In the examples of Sec. V B, we describe the scheme to
find the fractionalized symmetry transformations Uσ (C) (C =
A,B) for a quasiparticle at location C in the single-ribbon
states; see Eq. (108), where we assumed Eq. (110). In this
section, we show that at least when the nontrivial symmetry
fractionalization only occurs in a Z2 gauge sector (namely
for visons in a gauge sector Z2 ∈ GG), the definition of local
operators Uσ (C) in Eq. (108) implements the fractionalized
symmetry transformations for multiparticle states created by
ribbon operators defined for ribbons �1,�2, . . . ,�N that all

share the same end B:

Uσ (A1)Uσ (A2) · · · Uσ (AN )Uσ (B)
∣∣ψk1,k2,...,kN

uB

〉
= U (σ )

∣∣ψk1,k2,...,kN

uB

〉
, ∀ σ ∈ SG. (F1)

In our simple examples in the main text, it is always
true that when nontrivial symmetry fractionalization occurs,
it always only occurs in one Z2 gauge sector. In addition, we
believe that all states {|ψk1,k2,...,kN

uB
〉}, ∀ uB,k1,k2, . . . ,kN span

a Hilbert space L(A1,A2, . . . ,AN,B) that contains all possible
excitations at those locations. Therefore, Eq. (F1), which we
prove below, indicates that the Uσ (C) operators are the general
fractionalized symmetry transformations in our examples.

It is straightforward to show that (both GG and SG are
Abelian)

U (σ )
∣∣ψk1,k2,...,kN

uB

〉 = ∣∣ψk1,k2,...,kN

σ−1uB

〉
, (F2)

while

D(h−1
1 ,σ−1)(A1)D(h−1

2 ,σ−1)(A2) · · · D(h−1
N ,σ−1)(AN )D(h1,h2,...,hN ,σ−1)(B)

∣∣ψk1,k2,...,kN

uB

〉
= εh1,σ−1,uA1 u−1

B
εh2,σ−1,uA2 u−1

B
· · · εhN ,σ−1,uAN

u−1
B

· ξ (g,h1,h2, . . . ,hN ) · ∣∣ψk1,k2,...,kN

σ−1uB

〉
= εh1,σ−1,uA1

εh2,σ−1,uA2
· · · εhN ,σ−1,uAN

εh1,h2,...,hN ,σ−1,u−1
B

· ξ (g,h1,h2, . . . ,hN ) · ∣∣ψk1,k2,...,kN

σ−1uB

〉
= ε−1

h−1
1 ,σ−1,uA1

ε−1
h−1

2 ,σ−1,uA2

· · · ε−1
h−1

N ,σ−1,uAN

ε−1
h1,h2,...,hN ,σ−1,uB

· ξ (g,h1,h2, . . . ,hN ) · ∣∣ψk1,k2,...,kN

σ−1uB

〉
, (F3)

where we used the assumption: εh,σ−1,h′ = 1, ∀ h,h′ ∈ GG and σ ∈ SG, and the basic properties of the tensor εx,y,z. The extra
phase ξ (g,h1,h2, . . . ,hN ) is defined as

ξ (g,h1,h2, . . . ,hN )

= c−1
σ−1

(
h−1

1 ,h1
)
c−1
σ−1

(
h−1

2 ,h2
) · · · c−1

σ−1

(
h−1

N ,hN

) · cσ−1 (h1,h2,h3, . . . ,hN )cσ−1 (h2,h3, . . . ,hN )....cσ−1 (hN−1,hN ) (F4)

In our examples, nontrivial symmetry fractionalization occurs
for a single Z2 subgroup ZSF

2 ∈ GG and GG = ZSF
2 × GG′.

Let us denote a group element h ∈ GG as h = (hSF,h
′), with

hSF ∈ ZSF
2 and h′ ∈ GG′. This indicates that cσ−1 (ha,hb) �= 1

can occur only when both ha,SF and hb,SF have nontrivial
components in ZSF

2 , i.e., ha,SF = hb,SF = 1, and generally
cσ−1 (ha,hb) = cσ−1 (ha,SF ,hb,SF). Let us us denote cσ−1 (ha,SF =
1,hb,SF = 1) = η (we use the {0,1} notation for ZSF

2 ). Under

these conditions, it is easy to show that ξ (g,h1,h2, . . . ,hN ) =
η−NSF/2, where NSF is the total number of visons (at the end
Ai and end B) in the ZSF

2 sector for the state |ψk1,k2,...,kN
uB

〉.
Therefore, using Uσ (C) defined in Eq. (108) for an excitation
with a gauge flux h,

Uσ (C) =
√

cσ−1 (h,h−1) · εh,σ−1,uC
· D(h,σ−1)(C), (F5)

it follows that Eq. (F1) is indeed satisfied.
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