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We report a theoretical study of spin-wave excitations and electron spin resonance (ESR) in a perpendicular
magnetic field in n-type narrow-gap quantum well (QW) heterostructures. Using the Hartree-Fock approximation,
based on the 8 × 8 k·p Hamiltonian, the many-body corrections to the ESR energy are found to be nonzero in
symmetric and asymmetric QWs. We demonstrate a significant enhancement of the ESR energy in the asymmetric
QWs, induced by the Bychkov-Rashba spin splitting and exchange interaction in weak and moderate magnetic
fields, as well as the exchange-induced divergence of the ESR g factor in the symmetric QWs in weak magnetic
fields. We calculate the spin-wave dispersions at odd-valued filling factors of the Landau levels for different values
of 2D electron concentration in the symmetric and asymmetric InAs/AlSb QW heterostructures. We predict a gap
for the long wavelength spin-wave excitations in symmetric and asymmetric narrow-gap QWs induced by the
spin-orbit interaction and subband nonparabolicity. The many-body renormalization of electron spin resonance
energies in HgTe/CdHgTe QWs is also qualitatively discussed.
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I. INTRODUCTION

A simplest neutral excitation in a 2D electron gas (2DEG)
placed in a perpendicular magnetic field is a spin wave (or spin
exciton) arising at the electron transition between the Landau
levels (LLs) spin-split through Zeeman interaction. This type
of excitation was first studied theoretically by Kallin and
Halperin.1 They employed a diagrammatic approach for the
Coulomb interaction between the electrons at integer-valued
filling factors of LLs. Later, the theory of Kallin and Halperin
was elaborated by taking into account the disorder broadening
of the LLs within the self-consistent Born approximation.2

Longo and Kallin3 studied spin-wave (SW) excitations in
the fractional quantum Hall effect (FQHE) regime. By using
the single-mode approximation (SMA), they have calculated
the SW dispersions for the small wavelengths up to the
magnetic length. Subsequently, Nakajima and Aoki4 have
performed the calculations of SW excitations of FQHE system
at ν = 1/3 and 1/5 for to wavelength exceeding the magnetic
length. They started from the results of Kallin and Halperin
for the 2DEG at ν = 1 turned to the spherical geometry
approach, introduced the composite-fermion picture,5 and
then performed mean-field calculations. The results of Naka-
jima and Aoki for ν = 1/3 have been also reproduced by
Murthy, who developed the dynamical theory of composite
fermions.6 Finally, Mandal7 studied the SW excitations for
arbitrarily polarized FQHE states by employing a fermionic
Chern-Simons gauge theory in the low Zeeman energy
limit.

We note that the theoretical results obtained have already
been confirmed by numerous experiments on inelastic light
scattering8 used to study SW excitations in GaAs quantum
wells (QWs). The common feature reported in the above
papers1–4,6,7 is that the single-particle LLs in magnetic field
were described by a 2 × 2 Hamiltonian that contains only the

effective mass m∗ and the g factor g∗ as phenomenological
parameters:

En,σz
= h̄ωc (n + 1/2) + μBg∗Bσz, (1)

where ωc = eB/m∗c, m∗ is the electron effective mass, c is the
light velocity, and μB is the Bohr magneton. We would like to
note that this approximation is valid for QW heterostructures
with the parabolic energy-momentum law in the electronic
subbands only.

The long-wavelength limit of SW excitations is observed
in the electron spin resonance (ESR). In 2DEG with rotational
invariance, in the spin space, the Larmor theorem dictates that
Coulomb interactions do not contribute in the ESR energy. In
systems with the LLs described by Eq. (1), the Larmor theorem
is valid.9–12 Spin-orbit interaction (SOI) perturbs the spin
invariance in 2DEG, which results in violation of the Larmor
theorem. To date, only one paper13 has reported theoretical
evidence of an SOI-induced breaking of the Larmor theorem
in 2DEG. They investigated the effect of the SOI induced
Bychkov-Rashba (BR) term14 on the zero-momentum SWs in
2DEG in the FQHE regime.

Typical narrow-gap QW heterostructures based on
InSb15–18 and InAs19–23 are characterized by pronounced
nonparabolicity of the electronic subbands, experimentally
observed in the cyclotron resonance (CR) studies.15–23 Besides,
these structures feature strong SOI related effects.24–29 Pfeffer
and Zawadzki30–32 were the first to have studied in details the
changes induced in the Bychkov-Rashba14 and Dresselhaus33

contributions in spin splitting by the nonparabolicity, in
particular. A nonlinear dependence of the spin splitting on
quasimomentum in a zero-magnetic field was demonstrated.
Therefore, to correctly account for the SW excitations in
narrow-gap QWs, both the nonparabolicity and SOI should
be taken into consideration.
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One typical representative of the narrow-gap 2D sys-
tems is the InAs/AlSb QW heterostructures.19–23,34–37 They
are characterized by small values of the effective electron
mass in the InAs QW,21 high values of the g factor,34

and high mobility of 2D electrons.35 Investigations of CR
in the InAs/AlSb heterostructures revealed a strong depen-
dence of the cyclotron mass on 2DEG concentration due
to subband nonparabolicity.19–23 It is a well-known fact
that even nominally undoped InAs/AlSb structures contain
a 2DEG in the concentration of the order of 1012 cm−2

(see Refs. 21 and 34–37). These electrons are more likely
supplied from the deep donors related to defects in AlSb,
and the surface donors in the GaSb cap layer that is typically
grown over the AlSb barrier to protect it from air oxidation.36,37

The electric field of spatially separated donors in the GaSb
cap layer and of 2D electrons causes distortion of the QW
potential, which, in turn, leads via SOI to the BR splitting of
2DEG spectrum in InAs/AlSb QW in zero magnetic field.27–29

A notable feature of InAs/AlSb QW heterostructures is the
effect of bipolar persistent photoconductivity (PPC) that is
observable at low temperatures.37–40 It offers the possibility
to change an asymmetry of the “built-in” electric field and
the BR splitting values via sample illumination with LEDs of
appropriate wavelengths.38,40

To describe the single-electron states in the conduction
band �6 in such n-type narrow-gap QWs, we first start from
the 8 × 8 k·p Hamiltonian41 with the kinetic part for the
conduction band in the form proposed by Foreman42 and then
neglect the terms resulting from remote band contributions.
Note that in this case, the interband momentum matrix element
P should also be normalized to fit conduction band mass
mc.41 This procedure is described in details in Ref. 42. Below
we advance the arguments confirming the validity of such
approximation for the n-type QWs based on InAs and InSb.
A similar approach was also used by Winkler43,44 to explain
the experiments on CR in InAs/AlSb QWs performed by
Yang et al.19 and Scriba et al.45 There was a good agreement
between Winkler’s calculation and the experimental data. We
have also employed this approximation for a quantitative
interpretation of our previous experimental results on CR22,23

and magnetotransport29 in InAs/AlSb QWs. Moreover, it
can be shown that our approximation for the single-particle
states can be reduced to the model proposed by Pfeffer and
Zawadzki46 for the spin splitting in the conduction band in
n-type QWs based on narrow-gap materials.

Our earlier studies29,47–50 have shown the nonparabolicity of
electronic subbands resulted from the mixing of �6 band with
the bands �7 and �8 to largely influence the electron-electron
(e-e) interaction effects in 2DEG. In Refs. 29, 47, 48, and
50, a detailed theory of the exchange enhancement of the
quasiparticle g factor in narrow-gap QWs was proposed. It
was demonstrated that the nonparabolicity leads to exchange
enhancement of the quasiparticle g factor for any filling
factors of the LLs in the InAs/AlSb QWs in contrast to the
QWs with parabolic electronic subbands, which were the first
studied by Ando and Uemura.51 Recently, we have provided
a first theoretical evidence of the Larmor theorem violation in
symmetric narrow-gap QWs.49 We have shown that the ESR
and quasiparticle g factors, measured in magnetotransport, co-
incide at even-valued filling factors of the LLs in moderate and

quantizing magnetic fields. The latter paper52 demonstrates a
Larmor theorem violation for fractional quantum Hall states
in symmetric n-type QWs based on narrow-gap materials.

In this paper, we extend the limits of our previous works49,52

to a theoretical study of the SW excitations and ESR in the
InAs/AlSb QWs with symmetric and asymmetric potential
profiles. Using the Hartree-Fock approximation based on
the 8 × 8 k·p Hamiltonian41 included the mixing of the
conduction and valence bands, we directly take into account
the influence of nonparabolicity, lattice deformation and SOI
on the electronic subbands. Since the SOI is inherent in
the 8 × 8 k·p Hamiltonian, narrow-gap QWs it describes
do not feature rotation invariance in the spin space. The
latter circumstance is supposed to cause the Larmor theorem
violation in narrow-gap QWs. In the paper, we consider the
dominant Bychkov-Rashba contribution in the spin splitting
induced by the structure inversion asymmetry (SIA), since the
Dresselhaus terms in narrow-gap QWs are small.53,54

The paper is organized as follows. The general theory
in terms of excitonic representation for SW excitations in
narrow-gap QWs is described in Sec. II. Calculations of the
ESR energies, g factors, and the SW dispersions for different
values of the 2DEG concentration and magnetic fields in the
InAs/AlSb QW heterostructures are performed in Sec. III. The
main results of this work are summarized in Sec. IV.

II. THE FORMALISM

The total Hamiltonian of 2DEG in the second quantized
representation has the form:

Ĥ = Ĥ0 + Ĥint,

Ĥ0 =
∫ +∞

−∞
dz

∫
d2�r�̂+(�r,z)Ĥ(1e)�̂(�r,z),

(2)

Ĥint = 1

2

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2

∫
d2�r1

∫
d2�r2�̂

+(�r1,z1)

× �̂+(�r2,z2)V (|�r1 − �r2|,z1,z2)�̂(�r2,z2)�̂(�r1,z1),

where Ĥ0 is the Hamiltonian of single-electron states in
a quantum well, V (| �r1 − �r2| ,z1,z2) is the Coulomb Green
function in a three-layer medium,47 describing the interaction
of two charges at points ( �r1,z1) and ( �r2,z2), and �r is the vector
lying in the QW plane, axis z is perpendicular to the QW plane.

In Eq. (2), we have introduced the field operators �̂(�r,z)
and �̂+(�r,z) defined by the fermion creation and annihilation
operators an,k,i and a+

n,k,i , respectively, and by the single-

electron wave functions �
(i)
n,k(�r,z) of Hamiltonian Ĥ(1e):

�̂(�r,z) =
∑
n,k,i

�
(i)
n,k(�r,z)an,k,i ,

(3)
�̂+(�r,z) =

∑
n,k,i

(
�

(i)
n,k(�r,z)

)+
a+

n,k,i ,

where the upper sign “ + ” denotes the Hermitian conjugation.

A. Single-electron problem: Summary

As mentioned in Introduction, all calculations in this
work are performed for the narrow-gap InAs/AlSb QW
heterostructures with the GaSb cap layer. To correctly account
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for the influence of nonparabolicity caused by mixing of the
conduction band (�6) with the valence bands (�7 and �8),
and of SOI on the single-electron states in narrow-gap QWs,
we use the eight-band k·p Hamiltonian41 as a single-particle
operator for the kinetic energy. Note that the Hamiltonian can
be simplified to describe the conduction band states in n-type
narrow-gap QWs based on InAs and InSb by neglecting the
terms resulting from the remote band contribution.47

By taking into account the arguments from Ref. 47, in a
given basis of the Bloch functions at � point of the Brillouin
zone,41 with the terms associated with the absence of the
inversion center in an elementary cell of bulk materials31,32

and with low-symmetry interfaces55 being neglected, the
eight-band k·p Hamiltonian takes the form

H
�k· �p
8×8 = Hb,b+ + HZ + Hε, (4)

where Hb,b+ has the following form:

Hb,b+ =
(

HCC HCH

H+
CH HHH

)

HHH =

⎛
⎜⎜⎜⎜⎜⎝

Ev 0 0 0 0 0
0 Ev 0 0 0 0
0 0 Ev 0 0 0
0 0 0 Ev 0 0
0 0 0 0 Ev − � 0
0 0 0 0 0 Ev − �

⎞
⎟⎟⎟⎟⎟⎠ , (5)

HCC =
(

Ec 0
0 Ec

)
, H+

CH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Pb
aB

0
{Pkz}√

6
− Pb√

3aB

Pb+√
3aB

{Pkz}√
6

0 Pb+
aB

−{Pkz}
2
√

3
−

√
2
3

Pb
aB

−
√

2
3

Pb+
aB

{Pkz}
2
√

3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Here, {A,B} = AB + BA is the anticommutator for the
operators A and B, P is the Kane momentum matrix element,
Ec(z) and Ev(z) are the conduction- and valence-band edges,
respectively, �(z) is the SOI energy, b+ and b are the ladder
operators,47 and kz = −i ∂

∂z
. Further, we assume that the

magnetic field is oriented along z axis, and the z axis coincides
with the crystallographic direction (001); the x and y axes
correspond to directions (100) and (010), respectively. In the
8 × 8 k·p Hamiltonian (4), HZ contains the terms describing
the Zeeman splitting in a magnetic field and Hε defines the
influence of the lattice-mismatch strain on single-electron
energies.

The misalignment of energy band gaps in adjacent layers
of the heterostructure is taken into account by defining a band
offset function relative to the InAs QW layer. This potential
energy given by �(VBO) = VBOAlSb − VBOInAs defines the
band edge profile Ev(z) for the top of the valence band.
Valence-band offsets VBOInAs and VBOAlSb are determined
experimentally.56 Counting the energy from conduction-band
bottom in unstrained bulk InAs, the valence band edge Ev(z)
in InAs/AlSb QW is defined as follows:

Ev(z) =
{−Eg,InAs, 0 � z � d,

−Eg,InAs + �(VBO), z < 0 or z > d,

where d is a QW width and Eg,InAs corresponds to the band-
gap energy in InAs. The conduction-band edge is defined by
Ec(z) = Ev(z) + Eg(z). The values for VBOInAs and VBOAlSb

are given in Ref. 56.
In this paper, the InAs/AlSb QW heterostructures are

considered to be grown on the [001] plane,19–23 which means
that the strain tensor can have only three nonzero components:
εxx = εyy , εzz. From the condition of zero external stress along
the (001) direction, we can get the relation between εxx and
εzz:

εxx = εyy = a0 − a

a
, εzz = −2C12

C11
εxx,

where Cij are the elastic constants in each layer, a and a0 are
the lattice constants of the given layer and the unstrained AlSb
barriers, respectively. The explicit form of Hε, can be easily
obtained from Eq. (C3) in Ref. 41.

The Zeeman term HZ in Eq. (4) in the Bloch function basis
of this paper is the following matrix:

HZ = h̄
eB

m0c

(
H

(Z)
CC 0

0 H
(Z)
HH

)
, (6)

with

H
(Z)
CC =

(
g∗
4 0

0 − g∗
4

)
,

H
(Z)
HH =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 3
2κ 0 0 0 0 0

0 − 1
2κ 0 0 − κ+1√

2
0

0 0 1
2κ 0 0 − κ+1√

2
0 0 0 3

2κ 0 0

0 − κ+1√
2

0 0 −(κ + 1
2 ) 0

0 0 − κ+1√
2

0 0 κ + 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where m0 is the free-electron mass, c is the light velocity, and B

is a magnetic-field straight. As we have ignored the coupling
with the remote bands, not included in the eight-band k·p
Hamiltonian, we have set the modified Luttinger parameters
γ1, γ2, γ2 equal to zero, as a result P , g∗, and κ are expressed
as follows:47

P 2 = 3h̄2

2mc

Eg(Eg + �)

3Eg + 2�
,

g∗ = gc + m0

mc

2�

3Eg + 2�
,

κ = −2

3
,

where mc and gc are the conduction band effective mass and
g factor, respectively.

In order to find a “built-in” electric field, distorting the
QW profile and leading to the Bychkov-Rashba effect,28 it is
necessary to include in the Hamiltonian Ĥ(1e) for the single-
particle states, not only the electric field of ionized donors in
the AlSb barriers and in the GaSb cap layer Vdonors(z), but the
local part of the Coulomb energy (Hartree potential)48 −eϕe-e
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as well:

Ĥ(1e) = H
�k· �p
8×8 + Vdonors(z) − eϕe-e, (7)

where e > 0 is the elementary charge. The term Vdonors(z) can
be easily obtained from the following equation:

ε(z)
∂Vdonors(z)

∂z
= 2πe2(nL − nR), (8)

with conditions

Vdonors(z − 0) = Vdonors(z + 0) = 0,
(9)

Vdonors(d − 0) = Vdonors(d + 0),

where ε(z) is the permittivity in each layer of the heterostruc-
ture, nL is the ionized donor concentration in the GaSb cap
layer and the top barrier, and nR corresponds to the donor
concentration in the bottom AlSb barrier far from the QW. We
note that according to the neutrality principle nL + nR = nS ,
where nS is a 2DEG concentration.

To calculate the Hartree potential −eϕe-e, one should solve
the set of Poisson and Schrödinger equations:

∂

∂z

(
ε

∂

∂z
ϕe-e

)
= 4πe

∑
n′,i ′

ν
(i ′)
n′

2πa2
B

8∑
p=1

∣∣c(i ′)
p (z,n′)

∣∣2
,

Ĥ(1e)�
(i)
n,k(�r,z) = E(i)

n �
(i)
n,k(�r,z). (10)

By taking the Landau gauge for the vector potential,41,47,48

the eight-component wave function �
(i)
n,k(�r,z) of Ĥ(1e), being

defined by the normalized harmonic oscillator functions |n,k〉,
can be written as follows:47

�
(i)
n,k(�r,z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(i)
1 (z,n)|n,k〉

c
(i)
2 (z,n)|n + 1,k〉

c
(i)
3 (z,n)|n − 1,k〉
c

(i)
4 (z,n)|n,k〉

c
(i)
5 (z,n)|n + 1,k〉

c
(i)
6 (z,n)|n + 2,k〉
c

(i)
7 (z,n)|n,k〉

c
(i)
8 (z,n)|n + 1,k〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (11)

where n is the LL index, i is the “spin” index, and k is the
parameter for the degenerate states within the same LL in the
Landau gauge. In this paper, we focus on QWs with a single
occupied subband, therefore, the index labeling the electronic
subbands is omitted.

For n = −1, there is only one four-component eigenfunc-
tion of Hamiltonian Ĥ(1e):

�
(b)
−1,k(�r,z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
c

(b)
2 (z,−1)|0,k〉

0
0

c
(b)
5 (z,−1)|0,k〉

c
(b)
6 (z,−1)|1,k〉

0
c

(b)
8 (z,−1)|0,k〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

FIG. 1. (Color online) Landau levels (n, i) in the first electronic
subband in a 15-nm-wide rectangular InAs/AlSb QW without a “built-
in” electric field. The energy is counted from the conduction band
bottom in unstrained bulk InAs.

At n = 0 (as in the case n > 0), the solutions of a single-
particle Schrödinger equation are two wave functions:

�
(a,b)
0,k (�r,z) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c
(a,b)
1 (z,0)|0,k〉

c
(a,b)
2 (z,0)|1,k〉

0

c
(a,b)
4 (z,0)|0,k〉

c
(a,b)
5 (z,0)|1,k〉

c
(a,b)
6 (z,0)|2,k〉

c
(a,b)
7 (z,0)|0,k〉

c
(a,b)
8 (z,0)|1,k〉

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

; (13)

the one that corresponds to the lower single-electron energy
is labeled by index a, that for the higher energy is marked
by b (see Fig. 1). Note that by using eight-component wave
functions for single-electron states, we directly take into
account the influence of the mixing between the conduction
and valence bands on the matrix elements of e-e interaction,
which plays a principle role in many-body effects in narrow-
gap QWs.47–50,52

B. Excitonic representation

The spectra of various collective excitations can be readily
calculated using the means of exciton representation.57–63 The
simplest kinds of excitation in the system, such as a cyclotron
magnetoplasmon1,59,62 (Refs. 1,41,44) and a spin wave1,60,63

can be regarded as excitation of magnetic excitons formed by
an electron that excited onto an unfilled or partially filled LL
(n, i), and an effective hole appearing simultaneously at the
electron’s former level (n′, i ′). Let us introduce the exciton
creation operator59,62

A+
n,n′,i,i ′(�k) =

∑
p

eikx (p+ky/2)a2
B a+

n,p,ian′,p+ky ,i ′ (14)
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that satisfies the following commutation relation:[
A+

n1,n2,i1,i2
(�k1),A+

n3,n4,i3,i4
(�k2)

]
= e− i

2 a2
B [�k1×�k2]zA+

n1,n4,i1,i4
(�k1 + �k2)δn2,n3δi2,i3

− δn1,n4δi1,i4e
i
2 a2

B [�k1×�k2]zA+
n3,n2,i3,i2

(�k1 + �k2), (15)

where aB is the magnetic length (a2
B = ch̄/eB).

The excitation energy Eex(�k) with respect to the energy of
the ground state |0〉 is found from equation

Eex(�k)A+
n,n′,i,i ′ (�k)|0〉 = [Ĥ ,A+

n,n′,i,i ′ (�k)]|0〉. (16)

It can be shown that

Eex(�k) = E(i)
n − E

(i ′)
n′ + �(e-e)

ex (�k), (17)

where E(i)
n is the corresponding LL energy characterized by

the spin i and LL n indices, and the contribution by the e-e
interaction is determined from the following equation:

�(e-e)
ex (�k)A+

n,n′,i,i ′ (�k)|0〉 = [Ĥint,A
+
n,n′,i,i ′(�k)]|0〉. (18)

Using the Fourier transform for the Coulomb Green
function:

V (|�r1 − �r2|,z1,z2) =
∫

d2 �q
(2π )2

D̃(q,z1,z2)ei �q(�r1−�r2), (19)

allows one to reduce the calculations of the Coulomb potential
matrix elements via the wave functions of Hamiltonian Ĥ(1e)

in the estimation of matrix elements 〈n1,k1|ei �q�r |n2,k2〉.47–49

By way of simple calculations, we then arrive at the following
expression for Ĥint:

Ĥint

= 1

2

∑
n1 · · · n4
i1 · · · i4

∫
d2 �q

(2π )2
Ṽ (i1,i2,i3,i4)

n1,n2,n3,n4
(�q)A+

n1,n4,i1,i4
(�q)A+

n2,n3,i2,i3
(−�q)

− 1

2

∑
n1,n2,n3
i1,i2,i3

∫
d2 �q

(2π )2
Ṽ (i1,i2,i2,i3)

n1,n2,n2,n3
(�q)A+

n1,n3,i1,i3
(0), (20)

where the matrix element Ṽ (i1,i2,i3,i4)
n1,n2,n2,n3

(�q) is defined as

Ṽ (i1,i2,i3,i4)
n1,n2,n3,n4

(�q) =
∫ +∞

−∞
dz1

∫ +∞

−∞
dz2D̃(q,z1,z2)e−q2a2

B/2

× G̃(i1,i4)
n1,n4

(�q,z1,z1)G̃(i2,i3)
n2,n3

(−�q,z2,z2), (21)

with G̃(i1,i2)
n1,n2

(�q,z,z) in the form

G̃(i1,i2)
n1,n2

(�q,z,z) = L̃(i1,i2)
n1,n2

(
q2a2

B

2
,z,z

)

×
⎧⎨
⎩

[ (iqx+qy )aB√
2

]n1−n2
, n1 � n2,[ (iqx−qy )aB√

2

]n2−n1
, n1 < n2.

(22)

In Eq. (22), L̃
(i,i ′)
n,n′ (x,z,z) is determined by the wave

functions �
(i)
n,k(�r,z) and has the form

L̃
(i,i ′)
n,n′ (x,z,z′) =

∑
m=1,4,7

c(i)
m (z,n)∗c(i ′)

m (z′,n′)

√
ñ1!

ñ2!
L

ñ2−ñ1
ñ1

(x) +
∑

m=2,5,8

c(i)
m (z,n)∗c(i ′)

m (z′,n′)

√
(ñ1 + 1)!

(ñ2 + 1)!
L

ñ2−ñ1
ñ1+1 (x)

+ c
(i)
3 (z,n)∗c(i ′)

3 (z′,n′)

√
(ñ1 − 1)!

(ñ2 − 1)!
L

ñ2−ñ1
ñ1−1 (x) + c

(i)
6 (z,n)∗c(i ′)

6 (z′,n′)

√
(ñ1 + 2)!

(ñ2 + 2)!
L

ñ2−ñ1
ñ1+2 (x) , (23)

where Ln
m(x) are the associated Laguerre polynomials, q = √

q2
x + q2

y , the exponent “∗” denotes the complex conjugation and
ñ1 = min(n,n′), ñ2 = max(n,n′).

Now using the commutation relations (15) for the exciton creation operators, we derive the following expression for the
commutator in the right-hand part of Eq. (18):

[Ĥint,A
+
n,n′,i,i ′ (�k)] =

∑
n1,n2,n4

i1,i2,i4

∫
d2 �q

(2π )2
Ṽ (i1,i2,i,i4)

n1,n2,n,n4
(�q)e

i
2 a2

B [�q×�k]zA+
n2,n′,i2,i ′ (

�k − �q)A+
n1,n4,i1,i4

(�q) −
∑

n1,n2,n4

i1,i2,i4

∫
d2 �q

(2π )2
Ṽ

(i1,i
′,i2,i4)

n1,n′,n2,n4
(�q)

× e− i
2 a2

B [�q×�k]zA+
n1,n4,i1,i4

(�q)A+
n,n2,i,i2

(�k − �q). (24)

If we consider the Coulomb interaction only in the first-order approximation, of all the terms in Eq. (24) we should take into
account just those containing one creation and one annihilation operator, multiplied by the operator for the number of particles.
This method is fully equivalent to the approach developed by Kallin and Halperin1 that is based on a diagrammatic representation.
Following the standard rule

〈0|an1,k1,i1a
+
n2,k2,i2

|0〉 = ν(i1)
n1

δn1,n2δp1,p2δi1,i2 , (25)
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where ν(i)
n is the filling factor for LL (n, i), after rather tedious mathematical transformations, we obtain the following expression

for commutator [Ĥint,A
+
n,n′,i,i ′ (�k)]:

[Ĥint,A
+
n,n′,i,i ′ (�k)]|0〉 =

∑
n2,i2

ν(i2)
n2

(
Ṽ (i,i2,i2,i)

n,n2,n2,n
(0)

2π
− Ṽ

(i ′,i2,i2,i
′)

n′,n2,n2,n′ (0)

2π

)
A+

n,n′,i,i ′(�k)|0〉−
∑
n2,i2

ν(i2)
n2

(
Ẽ(i,i2,i,i2)

n,n2,n,n2
(0) − Ẽ

(i ′,i2,i
′,i2)

n′,n2,n′,n2
(0)

)
A+

n,n′,i,i ′ (�k)|0〉

− (
ν(i)

n − ν
(i ′)
n′

) ∑
n1,n4
i1,i4

Ṽ
(i1,i

′,i,i4)
n1,n′,n,n4

(�k)

2π
A+

n1,n4,i1,i4
(�k)|0〉+ (

ν(i)
n − ν

(i ′)
n′

) ∑
n1,n2
i1,i2

Ẽ
(i ′,i1,i,i2)
n′,n1,n,n2

(�k)A+
n1,n2,i1,i2

(�k)|0〉, (26)

where

Ẽ(i1,i2,i3,i4)
n1,n2,n3,n4

(�k) =
∫

d2 �q
(2π )2

Ṽ (i1,i2,i3,i4)
n1,n2,n3,n4

(�q)eia2
B [�q×�k]z . (27)

The first and the second terms in Eq. (26) describe the
difference between the corrections to the LL energies of
the excited electron and hole, as calculated in the Hartree-
Fock approximation. They define the “direct” and exchange
interaction of the excited quasiparticle pair with the 2DEG.
The third term describes a direct Coulomb interaction between
the electron and the hole. The fourth term in this equation is
for the nonlocal exchange interaction of the excited electron
and hole. As seen from Eq. (26), the e-e interaction causes
mixing of possible single-exciton states in a 2D system.

Let us now consider the details of spin-wave excitation
due to the electron transition from LL (nF , a) to the level
(nF − 1, b) (see Fig. 1 and Figs. 1–3 in Ref. 48), where
(nF − 1, b) and (nF , a) are the adjacent spin-split LLs crossed
with the Fermi level. It is obvious that such a transition will
be possible for the filling factor ν

(b)
nF −1 < 1 only. Assuming

the energies of LLs (nF , a) and (nF − 1,b) calculated in the
Hartree approximation,47,48 we omit the first term in Eq. (26)
because it has already been included via −eϕe-e in the definition
for E(a)

nF
and E

(b)
nF −1.

Since the cyclotron energy is much higher than the Zeeman
splitting of LLs (see Fig. 1), all excitations other than SW lie
considerably above the energy region of the spin-wave, hence,
they can be neglected. Using the polar coordinate system, we
can simplify Eq. (26) to have the spin exciton energy ESW(�k)
in the form:

ESW(�k) = E
(b)
nF −1 − E(a)

nF
+ �

(e−e)
SW (k),

�
(e−e)
SW (k) = [

ν
(b)
nF −1 − ν(a)

nF

]
Ẽ

(a,b,b,a)
nF ,nF −1,nF −1,nF

(k)

− [
ν

(b)
nF −1 − ν(a)

nF

] Ṽ
(a,b,a,b)
nF ,nF −1,nF ,nF −1(k)

2π
−

−
∑
n2,i2

ν(i2)
n2

[
Ẽ

(b,i2,b,i2)
nF −1,n2,nF −1,n2

(0) − Ẽ(a,i2,a,i2)
nF ,n2,nF ,n2

(0)
]
,

(28)

where

Ẽ
(a,b,b,a)
nF ,nF −1,nF −1,nF

(k)

=
∫ ∞

0

qdq

2π

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2e

−q2a2
B/2L̃(a,a)

nF ,nF

×
(

q2a2
B

2
,z1,z1

)
D̃(q,z1,z2)L̃(b,b)

nF −1,nF −1

×
(

q2a2
B

2
,z2,z2

)
J0

(
kqa2

B

)
(29)

and

Ṽ
(a,b,a,b)
nF ,nF −1,nF ,nF −1(k)

= −e−k2a2
B/2

∫ +∞

−∞
dz1

∫ +∞

−∞
dz2L̃

(a,b)
nF ,nF −1

(
k2a2

B

2
,z1,z1

)

× D̃(k,z1,z2)
k2

2
L̃

(b,a)
nF −1,nF

(
k2a2

B

2
,z2,z2

)
. (30)

In Eqs. (29) and (30), J0(x) is the modified zero-order Bessel
function. The absorption energy and the g factor measured
in ESR are determined by the long-wave energy limit of the
excited spin waves:

EESR = E
(b)
nF −1 − E(a)

nF
+ �

(e−e)
SW (0),

gESR = g(1e) + �
(e−e)
SW (0)

μBB
, (31)

where g(1e) is the single-electron g factor calculated within
the Hartree approximation.47,48 Further, we will regard the g

factor in its absolute value.

C. The parabolic subband case

Consider the limiting case of the parabolic dispersion law in
the absence of SOI for the energy of a spin wave. By changing
the eight-component wave function (11) for the wave function
in the parabolic subband:

�
(i)
n,k(�r,z) → c̃(z)σz|n,k〉,

we have the transformation

L̃
(i,i ′)
n,n′

(
q2a2

B

2
,z,z

)

→ δi,i ′ |c̃(z)|2
⎧⎪⎨
⎪⎩

√
n′!
n! L

n−n′
n′

( q2a2
B

2

)
, n � n,√

n!
n′!L

n′−n
n

( q2a2
B

2

)
, n < n′

(32)
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in Eqs. (29) and (30). As a result, the difference in the exchange
energies of fully filled spin-split LLs is zero, and the expression
for �

(e-e)
SW (k) in the parabolic subband takes the form:

�
(e-e)
SW (k) = (

ν(↑)
nF

− ν(↓)
nF

) ∫ ∞

0

qdq

2π
Ṽparabolic(q)e−q2a2

B/2

×L0
nF

(
q2a2

B

2

)
L0

nF

(
q2a2

B

2

)[
1 − J0

(
kqa2

B

)]
,

Ṽparabolic(q) =
∫ +∞

−∞
dz1

∫ +∞

−∞
dz2D̃(k,z1,z2)|c̃(z1)|2|c̃(z2)|2.

(33)

When changing notations (nF − 1, b) for (nF , ↑) and
(nF , a) for (nF , ↓) in Eq. (33), we took into account the
g factor being negative in the InAs/AlSb QW. By neglecting
effects of the electrostatic imaging forces and using relation

D̃(q,z1,z2) = 2πe2

qε
(34)

for the Coulomb Green function, where ε is a permittivity of
InAs, we arrive at an expression for the energy of a spin exciton
at zero LL in the form

�
(e-e)
SW (k) = [

ν(↑)
nF

− ν(↓)
nF

]
×

√
π

2

e2

εaB

[
1 − J0

(
k2a2

B

4

)
e−k2a2

B/4

]
. (35)

Equation (35) coincides with that for the energy of a
spin wave at a zero LL, obtained within the Hartree-Fock
approximation.1–3,7 It should be noted that, according to the
Larmor theorem, the e-e interaction produces no effect on the
energy of spin resonance in the absence of SOI.

III. RESULTS AND DISCUSSIONS

To obtain the LL energies and single-electron wave
functions �

(i)
n,k(�r,z), we solve the set of Eqs. (7)–(10) self-

consistently by using an iterative procedure. To diagonalize the
Hamiltonian Ĥ(1e) at the (m + 1)th interaction, the scattering
matrix method with the wave functions found at the mth
iteration is used.28,47 For the envelope wave function zeroth-
order approximation, we picked the states in a rectangular
QW. At the final iteration, we calculate the single-electron
spin splitting at the Fermi level E

(b)
nF −1 − E(a)

nF
and the matrix

elements Ṽ (i1,i2,i3,i4)
n1,n2,n3,n4

(�k) and Ẽ(i1,i2,i3,i4)
n1,n2,n3,n4

(�k).
The results of the calculations of single-electron LLs (n, i)

in a 15-nm-wide InAs/AlSb QW in the absence of a “built-in”
electric field are shown in Fig. 1. The QW material parameters
used in the calculations are provided in Refs. 47 and 56.

In the calculations of spin-wave dispersion and spin
resonance energies in InAs/AlSb QW heterostructures, we
consider two cases: the symmetric (nL = nR) and asymmetric
(nR = 0) QW profiles. When the InAs/AlSb QW profile
is asymmetric, the only possible “suppliers” of electrons
in the QW to be taken into account are ionized surface
donors in the GaSb cap layer.38,40 The calculations pre-
sented in this section were performed for three typical
values of 2DEG concentration nS in InAs/AlSb heterostruc-
tures with a 15-nm-wide QW having one filled electronic

subband:19–21,34,38,39,64,65 2 × 1011, 5 × 1011, and 9 × 1011

cm−2. At such 2DEG concentrations, the values of the BR spin
splitting with the Fermi wave vector in asymmetric InAs/AlSb
QW are 0.29, 1.10, and 2.04 meV, respectively.28

A. Electron spin resonace

Figure 2 illustrates the ESR absorption energy calculations
versus magnetic field in InAs/AlSb heterostructures with a 15
nm wide QW for different values of the 2DEG concentration.
Black and brown curves correspond to the “single-electron”
Hartree approximation in a symmetric and asymmetric QW.
Red and blue curves are for the ESR absorption energies
calculated with allowance for the e-e interaction in QW
with a symmetric and asymmetric profiles, respectively. The
arrows indicate the magnetic field values corresponding to the
even-valued filling factors of LLs.

First, we analyze the single-electron energies of the spin
resonance, calculated within the Hartree approximation. The
features observed at even-valued filling factors of the LLs
appear due to the electronic subband nonparabolicity in
InAs/AlSb QW. As the magnetic field increases, the Fermi
level “jumps” from one pair of spin-split LLs to the lower-
lying pair with a greater spin splitting (see, e.g., Fig. 1 and
Figs. 1–3 in Ref. 48). This causes a sharp rise of the spin-
splitting energy at the Fermi level, followed by an abrupt
change in the ESR energy. It is seen that the single-electron
ESR energy in a symmetric quantum well is determined by the
Zeeman splitting of LLs, demonstrating a linear dependence
on magnetic field in the region of weak magnetic fields.

The BR spin splitting in an asymmetric QW leads to
distortion of the monotonic dependence of single-electron ESR
energy on magnetic field and appearance of a pronounced
minimum in the low magnetic fields region (see Fig. 2). In
this case, the spin splitting at the Fermi level is determined
by two contributors: the BR- and the Zeeman splitting.30–32

As the magnetic field increases from zero, the ESR energy
quickly drops, going smoothly over to the Zeeman splitting.
Note that for high LL indices n (in weak magnetic fields), the
single-electron ESR energies can be obtained analytically:14,66

EESR ≈ [
(h̄ωc + |g(1e)|μBB)2 + �2

R

]1/2 − h̄ωc, (36)

where �R is the BR splitting at the Fermi wave vector in a zero
magnetic field. Thus the single-electron ESR energy decreases
linearly with B in weak magnetic fields.

Strong SOI in the InAs/AlSb QWs and the nonparabolicity
of electronic subbands lead to violation of the Larmor theorem
applicability conditions in both symmetric (red curves) and
asymmetric (blue curves) QW. The e-e interaction in narrow-
gap QW causes considerable enhancement of the ESR energy,
which at low magnetic fields is more than twice its single-
electron value. The BR spin splitting related to the QW profile
asymmetry produces a noticeable effect on the “many-particle”
ESR energy in weak magnetic fields only. For strong fields, the
blue and red curves in Fig. 2 have a slight difference. Note that
the observed exchange enhancement of the ESR energy occurs
due to the difference in the spatial structures of wave functions
�

(b)
nF −1,k(�r,z) and �

(a)
nF ,k(�r,z) for the electrons at spin-split LLs
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FIG. 2. (Color online) ESR energy in a 15-nm-wide InAs/AlSb QW with symmetric and asymmetric profile vs magnetic field, calculated
for different 2DEG concentrations: (a) 2 × 1011, (b) 5 × 1011, and (c) 9 × 1011 cm−2. Red and blue dotted curves correspond to the low-field
values interpolated using Eqs. (36) and (37). The insets show the results of calculations in weak magnetic fields.

(nF − 1, b) and (nF , a)49 resulted from the mixing between
the �6, �7, and �8 bands.

At low magnetic fields, estimation of the “many-electron”
ESR energies involves certain technical problems, as the large
number of filled LLs makes numerical calculations a par-
ticularly time-consuming procedure. Therefore all numerical
calculations are done for the case ν < 60, and for weaker
magnetic fields, we reduce our consideration to qualitative
analysis of the dependence of many-particle ESR energy on
magnetic field.

The magnetic field dependence of corrections �
(e-e)
SW to the

ESR energy at a fixed number of LL n and spin index i can be
estimated based on relations (29). For simplicity, we neglect
the effects of electrostatic imaging forces and use expression
D̃(q,z,z′) ∼ 1/q for the Coulomb Green function, then we
have Ẽ(i1,i2,i3,i4)

n1,n2,n3,n4
∼ 1/aB ∼ √

B. The resulting dependence of
the exchange corrections to the ESR energy at integer filling
factors of the LLs has the form:

�
(e-e)
SW (0) = C̃

√
B, (37)

where constant C̃ is independent of magnetic field and is
defined by the number n and spin index i of the upper
fully filled LL. So, the ESR absorption energy in narrow-gap

symmetric QW in a decreasing magnetic field tends to zero,
whereas in asymmetric QW to the value of the BR spin splitting
at the Fermi wave vector.

In Fig. 2, the dotted curves are the results of interpolation
of the many-electron ESR energy to its zero-magnetic-field
values for a symmetric (red curve) and asymmetric (blue curve)
InAs/AlSb QW, that was performed using Eqs. (36) and (37).
One can see that the behavior of many-electron ESR energy
in asymmetric quantum wells at low magnetic fields strongly
depends on a magnitude of the BR spin splitting. When the
latter is weak in a zero magnetic field, the field dependence
of the ESR energy is monotonically increasing [see Fig. 2(a)]
with increasing of the magnetic field, whereas at high values
of BR splitting [see Fig. 2(c)], we observe a monotonically
decreasing curve in the region of low magnetic fields.

The spin resonance energy is conventionally described in
terms of effective g factor (31). In Fig. 3, we present the
calculations of g factor gESR measured at a spin resonance
in narrow-gap InAs/AlSb QW versus magnetic field. Black
and brown curves correspond to the “single-electron” Hartree
approximation in the symmetric and asymmetric QW. Red
and blue curves are based on the g-factor data obtained with
account for the e-e interaction in QW with a symmetric and
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(b)(a)

(c)

. . . .

FIG. 3. (Color online) Calculated ESR g factor in a 15-nm wide InAs/AlSb QW with a symmetric and asymmetric profile as a function of
magnetic field for different 2DEG concentrations: (a) 2 × 1011 cm−2, (b) 5 × 1011 cm−2, (c) 9 × 1011 cm−2. The arrows indicate the magnetic
field values corresponding to even-valued filling factors of the Landau levels. The insert offers the data calculated for low magnetic fields.

asymmetric profiles, respectively. The magnetic field values
corresponding to the even-valued filling factors of LLs are
indicated by arrows.

It is seen that the single-electron g factor in symmetric
QW (black curves in Fig. 3) under low magnetic fields is a
constant depending on the 2DEG concentration; for the values
2 × 1011, 5 × 1011, and 9 × 1011 cm−2 it was found to be
9.2, 8.3, and 7.3 (in absolute value), respectively. At higher
2DEG concentrations, the Fermi level crosses the higher-lying
pairs of LLs, being less spin-split than the pairs below, which
reduce the single-electron g factor in symmetric QWs in weak
magnetic fields. The effect of BR spin splitting in asymmetric
QWs causes a natural divergence of g(1e) in a zero magnetic
field (brown curves in Fig. 3).

Taking the e-e interaction in narrow-gap QWs into ac-
count, yields a considerable enhancement of gESR in both
symmetric (red curves) and asymmetric (blue curves) QWs.
At low magnetic fields, the square root dependence (37) for
�

(e-e)
SW (0) leads to divergence of the many-electron ESR g

factor in symmetric QWs. In asymmetric QWs, the inclusion
of �

(e-e)
SW (0) increases the BR splitting induced divergence

of the g factor under low magnetic fields. In high mag-
netic fields, in accordance with Eq. (37), the magnitude of
the exchange enhancement of many-electron g factor gESR

decreases with a growing magnetic field, which is illustrated
in Fig. 3.

The many-body ESR energy renormalization, predicted
for narrow-gap n-type QWs in this paper, should also take
place in each 2D system, where the single-electron energy
spectrum is described by the 8 × 8 k·p Hamiltonian, since it
is caused by both mixing of the �6, �7, and �8 bands resulted
in nondiagonal terms appearing in HZ (6) and by SOI defined
by parameter � in Eq. (5). However, such renormalization
is absent in the model system with HZ = 0 and � = 0.49

In 2D systems, other than n-type InAs19–23 and InSb15–18

QWs, the renormalized values of ESR energy depend not only
on � but also on Luttinger parameters41 γ1, γ2, and γ3 as
well. Moreover, we assume that in p-type as well as in HgTe
QWs,67–69 e-e interaction could lead not to the enhancement
but to the reduction of ESR energy.

It is well known that in HgTe/CdHgTe QWs wider than a
critical thickness dc (d > dc, dc ≈ 6 nm), the electronic struc-
ture is inverted.67,68 However, for the narrow wells (d < dc),
the electronic states have a normal band structure of QW states,
which takes place in narrow-gap QWs69 such as InAs or InSb
QWs. Therefore we expect an exchange enhancement of ESR
energy in HgTe/CdHgTe QWs with d < dc. In the QWs with
a critical width dc, the electronic structure is described by
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(a) (b)

(c)

(e)

(d)

FIG. 4. (Color online) The energy of SW excitations �
(e-e)
SW (k) in a 15-nm InAs/AlSb QW in units of e2/εaB , counted from g(1e)μBB at

different values of 2DEG concentration for ν = 1 (a), 3 (b), 5 (c), 7 (d), and 15 (e). Red curves are for the SW excitations in asymmetric QWs
and black curves correspond to �

(e-e)
SW (k) in symmetric QWs.

a massless Dirac fermion dispersion67,68 as in graphene. As
the Larmor theorem is valid for graphene,70,71 we also do
not expect the many-particle renormalization of ESR energy
in the HgTe/CdHgTe QWs with the critical width. Further, we
explain why the reduction of ESR energy in the HgTe/CdHgTe

QWs with inverted band structure (d > dc), induced by e-e
interaction, is suspected.

Previously, we have demonstrated that ESR and quasi-
particle g factors (measured in magnetotransport) coincide
at even-valued filling factors of the LLs,49 therefore the
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enhancement/reduction of quasiparticle spin-gap at even LL
filling factors is equivalent to the enhancement/reduction
of ESR energy. The reduction of quasiparticle spin-gap in
HgTe/CdHgTe QWs was observed by Zhang et al.,72 who
extracted the values from magnetotransport measurements
in tilted magnetic fields. The experimental values of
quasiparticle spin gap at even LL filling factors in the QW
with inverted band structure (d > dc) were significantly lower
than single-electron ones, while the experimental values in the
HgTe/CdHgTe QWs with d < dc exceeded the single-particle
spin-gap values.

We note that Zhang et al. completely ignored the exchange
interaction effects51 in the interpretations of their experimental
results, assuming these effects to be unimportant at 20 > ν > 4.
However, according to the theory of Ando and Uemura,51

developed for 2D systems with parabolic subbands, and in
accordance with our theoretical studies,29,47,48 in addition to
the effect of parallel magnetic field component on single-
electron LLs, e-e interaction should also be taken into account
at all filling factors.

We stress that the above mentioned arguments are just
qualitative, since our model proposed for n-type QWs based
on narrow-gap semiconductors (InAs, InSb, and their alloys)
are not applied for p-type QWs and HgTe QWs. The effect of
e-e interaction on the ESR energy in HgTe/CdHgTe QWs will
be the subject of our future research.

B. Spin-wave excitations

As mentioned in Introduction, in a 2DEG with rotational
invariance in the spin space the e-e interactions do not change
the spin-wave excitation energy at k = 0, and the SW energy
reaches the unshifted Zeeman energy in the long-wavelength
limit, as required by the Larmor theorem. In the previous
section, we have demonstrated the Larmor theorem violation
in narrow-gap QWs with a symmetric and asymmetric energy
profile. Here, we address the dispersion of spin waves in
narrow-gap InAs/AlSb QWs.

Figure 4 presents the results of calculations of spin wave en-
ergy �

(e-e)
SW (k) (in units of e2/εaB) at odd-valued filling factors

of the LLs (ν = 1, 3, 5, 7, 15) in the 15-nm-wide InAs/AlSb
QWs for different values of 2DEG concentration. The energy
was counted from the single-electron values of the ESR energy
g(1e)μBB. Black curves correspond to the symmetric QW data,
red curves are for the asymmetric QW data obtained with
allowance for the BR spin splitting. The numbers under the
curves are the values of 2DEG concentration.

For ν = 1, the red and blue curves coincide at fixed
concentration values, i.e., the BR spin splitting in quantizing
magnetic fields has practically no effect on the spin waves
dispersion law. It is seen that the nonparabolicity of electronic
subbands in narrow-gap QWs makes the energy of spin waves
dependent on a 2DEG concentration. Note that, in accordance
with Eq. (35), in QW with the parabolic subbands given
fixed filling factors the value of does not depend on 2DEG
concentration. The shape of the curves in Fig. 4(a) is in a
“qualitative agreement” with the spin waves dispersion law
at ν = 1 in the parabolic subbands QWs [see Eq. (35)].
With a growing value of the LL filling factors, the BR spin
splitting influence on the energy of SW excitations increases
[see Figs. 4(b)–4(e)]. The biggest difference in the dispersion

laws for the spin waves in symmetric and asymmetric QWs is
observed in the range of small values kaB .

Another remarkable feature of the SW dispersion law in
narrow-gap QW, besides the �

(e-e)
SW (k) dependence on nS , is

that the spin waves have a gap at k = 0. The gap appears in
the SW-excitations spectrum through violation of the Larmor
theorem in narrow-gap QWs because of both SOI and subband
nonparabolicity induced by the mixing between the conduction
and valence bands. It also leads to exchange enhancement of
the ESR g factor (see Sec. III A). One can see that the gap
increases with a lowering concentration of 2DEG and/or at
higher values of the LL filling factor. In vicinity of k = 0, the
spin wave dispersions are determined by two terms: Eq. (29),
quadratic in k, and by Eq. (30), which is linear in the wave
vector, in contrast to the QW with the parabolic subbands,
where the spin waves have a quadratic dispersion law in
the long wave-length limit. In the limit of infinitely large
wave vectors, a spin wave splits into two noninteracting
quasiparticles whose energy does not depend on k, being
determined by the “unscreened” exchange interaction of the
excited electron and hole with the 2DEG [see Eq. (28)].

IV. CONCLUSIONS

We have studied the spin-wave excitations and the elec-
tron spin resonance in a perpendicular magnetic field in
narrow-gap QWs with symmetric and asymmetric energy
profiles. In the calculations, we have taken into account
the subband nonparabolicity, lattice-mismatch deformation,
spin-orbit interaction, and e-e interaction in the Hartree-Fock
approximation by using the eight-band k·p Hamiltonian. A
significant enhancement of the ESR energy through exchange
interaction in symmetric and asymmetric QWs, and the
exchange-induced divergence of the ESR g factor in symmetric
QWs in weak magnetic field have been demonstrated. It
was also shown that the nonmonotonic dependence of ESR
energy in narrow-gap asymmetric QWs in weak magnetic
fields is determined by both the BR spin splitting and the e-e
interaction. The calculations performed for InAs/AlSb QW
heterostructures have exposed a gap in the long-wavelengh
part of the SW-excitation energy spectrum, whose value
depends on a 2DEG concentration in narrow-gap QWs. The
obtained results indicate a significant influence of both e-e
interaction and Bychkov-Rashba spin splitting on ESR in
narrow-gap QW heterostructures and in any case should be
taken into consideration in interpreting the experimental data.
Unfortunately, there are currently no data available in literature
on the experimental studies of ESR in narrow-gap QWs in
perpendicular (not tilted, cf. Refs. 15 and 16) magnetic fields.
We hope that our results will stimulate further research on
the ESR and inelastic light scattering in narrow-gap QW
heterostructures in perpendicular magnetic fields.
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