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Magnetism of CuX2 frustrated chains (X = F, Cl, Br): Role of covalency
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Periodic and cluster density functional theory (DFT) calculations, including DFT + U and hybrid functionals,
are applied to study magnetostructural correlations in spin- 1

2 frustrated chain compounds CuX2: CuCl2, CuBr2,
and a fictitious chain structure of CuF2. The nearest-neighbor and second-neighbor exchange integrals J1 and
J2 are evaluated as a function of the Cu–X–Cu bridging angle θ in the physically relevant range 80◦–110◦.
In the ionic CuF2, J1 is ferromagnetic for θ � 100◦. For larger angles, the antiferromagnetic superexchange
contribution becomes dominant, in accord with the Goodenough-Kanamori-Anderson rules. However, both
CuCl2 and CuBr2 feature ferromagnetic J1 in the whole angular range studied. This surprising behavior is
ascribed to the increased covalency in the Cl and Br compounds, which amplifies the contribution from Hund’s
exchange on the ligand atoms and renders J1 ferromagnetic. At the same time, the larger spatial extent of X

orbitals enhances the antiferromagnetic J2, which is realized via the long-range Cu–X–X–Cu paths. Both periodic
and cluster approaches supply a consistent description of the magnetic behavior which is in good agreement
with the experimental data for CuCl2 and CuBr2. Thus, owing to their simplicity, cluster calculations have
excellent potential to study magnetic correlations in more involved spin lattices, and facilitate application of
quantum-chemical methods.
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I. INTRODUCTION

Copper compounds have been extensively studied as
spin- 1

2 quantum magnets, material prototypes of quantum
spin models. While local properties of these compounds
are usually similar and involve nearly isotropic Heisenberg
spins, the variability of the magnetic behavior stems from
the unique structural diversity. Depending on the particular
arrangement of the magnetic Cu2+ atoms and their ligands
in the crystal structure, different spin lattices can be formed.
Presently, experimental examples for many of simple lattice
geometries, including the uniform chain,1,2 square lattice,3,4

Shastry-Sutherland lattice of orthogonal spin dimers,5,6 and
kagome lattice,7 are available and actively studied. Some of
the copper compounds feature more complex spin lattices8–10

that have not been anticipated in theoretical studies, yet trigger
the theoretical research11,12 once relevant material prototypes
are available.

Owing to the competition between ferromagnetic (FM)
and antiferromagnetic (AFM) contributions to the exchange
couplings, compounds of particular interest are those with
M–X–M bridging angles close to 90◦, with M being a transi-
tion metal and X being a ligand. Such geometries are realized
in the quasi-one-dimensional (1D) cuprates featuring chains
of edge-sharing CuO4 plaquettes, which represent a simple
example of low-dimensional spin- 1

2 magnetic materials. Inde-
pendent of the sign of the nearest-neighbor (NN) coupling J1,
its competition with the sizable AFM next-nearest-neighbor
(NNN) coupling J2 leads to magnetic frustration. Depending
on the ratio J2/J1, such compounds exhibit exotic magnetic
behavior such as helical order,13 spin-Peierls transition,14 or
quantum critical behavior.15 The difficulties in the microscopic
description of such compounds originate from ambiguities16

in the experimental estimates of the ratio J2/J1, leading to
controversial modeling of the magnetic structure.17 Thus,
the combination of different sets of experimental data with

a careful theoretical analysis of the individual exchange
pathways is of crucial importance for obtaining a precise
microscopic magnetic model.

However, the search for new quantum magnets, as well as
the work on existing materials, require not only the ability
to estimate the couplings but also a solid understanding of
the nexus between crystallographic features of the material
and ensuing magnetic exchange. The Goodenough-Kanamori-
Anderson18 (GKA) rules are a generic and well-established
paradigm that prescribes FM couplings for bridging angles
close to 90◦ and AFM couplings else, where the bridging angle
refers to the M–X–M pathway. In Cu2+ oxides, generally the
GKA rules successfully explain the crossover between the FM
and AFM interactions for Cu–O–Cu angles close to 90◦. The
boundary between the FM and AFM regimes is usually within
the range of 95◦–98◦,19 but may considerably be altered by
side groups and distortions.20,21

In addition to Cu2+ oxides, the systems of interest include
copper halides,22,23 carbodiimides,24 and other compound
families. Although microscopic arguments behind the GKA
rules should be also applicable to these nonoxide materials,
the critical angles separating the FM and AFM regimes,
as well as the role of the ligand in general, are still little
explored. Moreover, the low number of experimentally studied
compounds impedes a comprehensive experimental analysis
available for oxides.

More and more, density functional theory (DFT) electronic-
structure calculations complement experimental studies and
deliver accurate estimates of magnetic couplings.25–30 They
are especially well suited for the study of magnetostructural
correlations, as both real and fictitious crystal structures
can be considered in a calculation. However, in a periodic
structure, the effect of a single geometrical parameter is often
difficult to elucidate because different geometrical features are
intertwined and evolve simultaneously upon the variation of
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an atomic position. Geometrical effects on the local magnetic
coupling are better discerned in cluster models that represent a
small group of magnetic atoms and, ideally, a single exchange
pathway. Additional advantages of cluster models, owing to
their low number of correlated atoms, are lower computational
costs and, most important, their potential for the application of
parameter-free wave-function-based computational methods,
i.e., in a strict sense ab initio calculations. By contrast,
presently available band-structure methods for strongly corre-
lated compounds rely on empirical parameters and corrections
where their choice is in general not unambiguous.31,32

There have been several attempts to describe the local
properties of solids with clusters, especially in combination
with ab initio quantum-chemical methods.33–37 However, the
construction of clusters is far from being trivial. On one side,
to make the calculations computationally feasible, the number
of quantum mechanically treated atoms has to be kept as small
as possible. On the other side, accurate results require that
these atoms experience the “true” crystal potential. Usually,
this is achieved by embedding the cluster into a cloud of point
charges36,38 and so-called total ion potentials.39,40 But, even
for involved embeddings, it was demonstrated that the choice
of the cluster may have significant effects on the results of
the calculations and, thus, size convergence has to be checked
thoroughly.40

Here, we study the effect of geometrical parameters on the
magnetic exchange in Cu2+ halides. The family of halogen
atoms spans a wide range of electronegativities, from the
ultimately electronegative fluorine, forming strongly ionic
Cu–F bonds, to chlorine and bromine that produce largely
covalent compounds with Cu2+.41 Presently, we do not
consider iodine because no Cu2+ iodides have been reported.
In our modeling, we use the simplest possible periodic crystal
structure of a CuX2 chain that enables the variation of the
Cu–X–Cu bridging angle in a broad range. We further perform
a comparative analysis for clusters and additionally consider
the problem of long-range couplings. The evaluation of such
couplings requires larger clusters, thus posing a difficulty for
the cluster approach. The observed trends for the magnetic
exchange as a function of the bridging angle are analyzed
from the microscopic viewpoint, and reveal the crucial role of
covalency that underlies salient differences between the ionic
Cu2+ fluorides and largely covalent chlorides and bromides.

On the experimental side, the compounds and crystal
structures under consideration are relevant to the CuCl2
and CuBr2 materials that show interesting examples of
frustrated Heisenberg chains.42,43 At low temperatures, these
halides form helical magnetic structures and demonstrate im-

proper ferroelectricity along with the strong magnetoelectric
coupling.44,45

The paper is organized as follows. In Sec. II, the applied
theoretical methods are presented. In the third section, the
crystal structures of the CuX2 compounds are described and
compared. In Sec. IV, the results of periodic and cluster cal-
culations are discussed and compared. Finally, the discussion,
summary, and a short outlook are given in Sec. V.

II. METHODS

The electronic structures of clusters and periodic systems
were calculated with the full-potential local-orbital code
FPLO9.00-34.46 For the scalar-relativistic calculations within
the local density approximation (LDA), the Perdew-Wang
parametrization47 of the exchange-correlation potential was
used together with a well-converged mesh of up to 12 × 12 ×
12 k points for the periodic models.

The effects of strong electronic correlations were con-
sidered via mapping the LDA bands onto an effective
tight-binding (TB) model. The transfer integrals ti of the
TB model are evaluated as nondiagonal elements between
Wannier functions (WFs). For the clusters, the transfer integral
corresponds to half of the energy difference of the magnetic
orbitals.48 These transfer integrals ti are further introduced
into the half-filled single-band Hubbard model Ĥ = ĤTB +
Ueff

∑
i n̂i↑n̂i↓ that is eventually reduced to the Heisenberg

model for low-energy excitations

Ĥ =
∑

〈ij〉
Jij Ŝi · Ŝj . (1)

The reduction is well justified in the strongly correlated
limit ti � Ueff, where Ueff is the effective onsite Coulomb
repulsion, which exceeds ti by at least an order of magnitude
(see Table I). This procedure yields AFM contributions to the
exchange evaluated as J AFM

i = 4t2
i /Ueff .

Alternatively, the full exchange couplings Ji , comprising
FM and AFM contributions, can be derived from total
energies of collinear magnetic arrangements evaluated in
spin-polarized supercell calculations49 within the mean-field
density functional theory (DFT) + U formalism. We use a
local spin-density approximation (LSDA) + U scheme in
combination with a unit cell quadrupled along the b axis and a
k mesh of 64 points. The onsite repulsion and exchange amount
to Ud = 7 ± 0.5 eV and Jd = 1 eV, respectively. The same Ud

value is chosen for all CuX2 (X = F, Cl, Br) compounds to
facilitate a comparison of the magnetic behavior. In Sec. IV E,
however, it will be shown that Ud has in fact no qualitative
effect on the magnetic couplings of the CuX2 (X = F, Cl, Br)

TABLE I. Results for the experimental (X = Cl, Br) and hypothetical (X = F) structures of CuX2: the bridging angle θ , the ligand
contribution to the magnetic orbital β, transfer integrals ti , AFM contributions to the exchange J AFM

i = 4t2
i /Ueff, total exchange integrals Ji

from LSDA + U calculations with Ud = 7 ± 0.5 eV, and the effective onsite Coulomb repulsion Ueff obtained by equilibration of 4t2
2 /Ueff and

J2 (see text for details).

θ t1 t2 J AFM
1 J AFM

2 J1 J2 Ueff

(deg) β (meV) (meV) (meV) (meV) (meV) (meV) (eV)

CuBr2 92 0.28 47 136 2.5 21.0 −8.8 ± 0.4 22.2 ± 3.4 3.0
CuCl2 93.6 0.26 34 117 1.1 13.7 −12.9 ± 0.9 13.4 ± 2.2 4.0
CuF2 102 0.15 132 50 11.6 1.6 5.4 ± 0.9 1.2 ± 0.2 6.0
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compounds. We applied the around-mean-field (AMF) as well
as the fully localized limit (FLL) double-counting corrections
where both types where found to supply similar results. Thus,
following the earlier studies of Cu2+ compounds,25,26,43 the
presented results are obtained within the AMF scheme.

For the clusters we used, in addition to the LSDA + U

method, the B3LYP hybrid functional50 with a 6-311G basis
set. The B3LYP calculations were performed within the
GAUSSIAN09 code.51 The free parameter α, indicating the
admixture of exact exchange, was varied in the range between
0.15 and 0.25 to investigate its influence on the calculated
exchange couplings.

III. CRYSTAL STRUCTURES

The copper CuX2 dihalides feature isolated chains of edge-
sharing CuX4 plaquettes.52 The chains of this type are the
central building block of many well-studied cuprates such as
CuGeO3 (Ref. 14), Li2ZrCuO4 (Ref. 15), and Li2CuO2. CuX2

halides are charge neutral, which makes them especially well
suited for the modeling within the cluster approach.

CuBr2 crystallizes in the monoclinic space group C2/m

with a = 14.728 Å, b = 5.698 Å, and c = 8.067 Å, and
β = 115.15◦ at room temperature.53 The planar chains of
edge-sharing CuBr4 plaquettes run along the b axis (Fig. 1).
The Cu–Br–Cu bridging angle θ amounts to 92.0◦, the
Cu–Br distance is 2.41 Å, while the distances between the
neighboring chains amount to d‖ = 3.82 Å and d⊥ = 3.15 Å in
the direction parallel to c and perpendicular to the plaquette
plane, respectively.

CuCl2 is isostructural to CuBr2 with the Cu–Cl distance
of 2.26 Å and 
 (Cu–Cl–Cu) = 93.6◦.54 The interchain separa-
tions amount to d‖ = 3.73 Å and d⊥ = 2.96 Å along the c and
a directions, respectively.

CuF2 features a two-dimensional distorted version of the
rutile structure, with corner-sharing CuF4 plaquettes forming
a buckled square lattice.55 This atomic arrangement is very
different from the chain structures of CuCl2 and CuBr2.
For the sake of comparison with other Cu2+ halides, we
constructed a fictitious one-dimensional structure of CuF2.
The Cu–F distance of 1.91 Å was chosen to match the
respective average bond length in the real CuF2 compound.
The corresponding bridging angle, yielding a minimum in
total energy, was determined to be 102◦.56 Although this
crystal structure remains hypothetical, it is likely metastable

FIG. 1. (Color online) Edge-sharing CuX4 plaquettes forming the
magnetic chains in the CuX2 compounds. The chains, running along
[010], are flat and lie in the ab plane. The stacking of the planes
is accompanied by a shift to match the monoclinic angle (Ref. 52).
The arrows indicate the nearest-neighbor and next-nearest-neighbor
interaction pathways, and θ denotes the Cu–X–Cu bridging angle.

and could be formed in CuF2 under a strong tensile strain on
an appropriate substrate.

IV. RESULTS

A. Band-structure calculations

First, we consider magnetic couplings in the experimental
crystal structures of CuCl2 and CuBr2, as well as in the
relaxed structure of chainlike CuF2. The DFT calculations
of the band structure and the density of states (DOS) of CuX2

(X= F, Cl, Br) compounds within the LDA yield a valence
band width of 6–8 eV,52 in agreement with the experimental
photoelectron spectra.41 The valence band complex becomes
slightly narrower upon an increase in the ligand size because
the lower electronegativity of Cl and Br brings the respective
p states closer to the Cu 3d states, thus enhancing the
hybridization and reducing the energy separation between
the Cu and ligand orbitals. All the band structures feature
a separated band crossing the Fermi level (Fig. 2). In the local-
orbital representation visualized by WFs (Fig. 4), this band
is formed by the antibonding σ* combination of Cu 3dx2−y2

and X p orbitals.57 The isolated half-filled band suffices for
describing the magnetic properties and the low-lying magnetic
excitations via the transfer integrals ti which are subsequently
introduced into a Hubbard model. Ligand valence p-orbital
contributions to the magnetic orbital, denoted as β in Table
I, illustrate the increase in the metal-ligand hybridization
from F to Br.

The dispersion calculated with the WF-based one-band TB
model for CuBr2 is also shown in Fig. 2, and the leading
transfer integrals together with the AFM contributions J AFM

i

are given in Table I. The evaluation of J AFM
i requires the

value of Ueff, which is not known precisely. Here, we estimate
Ueff by comparing the transfer integral t2 obtained from
the TB analysis with the exchange coupling J2 from the
LSDA + U calculations. While short-range couplings may
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involve large FM contributions, the long-range coupling J2

should be primarily AFM. Therefore, J AFM
2 = J2 in a good

approximation, and Ueff = 4t2
2 /J2. This way, we find Ueff =

6 eV for X = F, 4 eV for Cl, and 3 eV for Br. The reduction
in Ueff reflects the general trend of the enhanced Cu–X

hybridization and covalency because the Ueff value pertains to
the screened Coulomb repulsion in the mixed Cu–X band. The
enhanced hybridization leads to a stronger screening, larger
spatial extension, and, thus, to the lower Ueff values.

The estimates in Table I reveal two major differences
between the ionic CuF2 and more covalent CuCl2 and CuBr2

compounds. First, the nearest-neighbor (NN) coupling J1 is
AFM in the fluoride, while FM in the chloride and bromide.
Second, the AFM next-nearest-neighbor (NNN) coupling J2 is
enhanced upon increasing the covalency of the Cu–X bonds. In
CuF2, this coupling is weak (J2 � J1), whereas in the chloride
and bromide J2 � |J1|. The NNN coupling is amplified by the
larger ligand size and the increased covalency. This coupling
involves the long-range Cu–X–X–Cu pathway and requires a
strong overlap between the ligand orbitals, which is possible
for X = Cl and especially Br, while remaining weak for the
smaller fluoride anion. The changes in the NN coupling seem
to be well described by the GKA rules. Considering the trends
for copper oxides,19 one expects FM J1 for θ close to 90◦,
as in CuCl2 and CuBr2, and AFM J1 for θ > 98◦, as in
the chainlike structure of CuF2. Nevertheless, the covalency
is also paramount for the sign of J1, as shown by the
magnetostructural correlations presented below (Sec. IV B).

Finally, we briefly compare our DFT-based estimates of
Ji with the experiment. Because the chainlike polymorph of
CuF2 has not been prepared experimentally, no comparison can
be performed. The microscopic analysis of CuCl2 presented
in Ref. 43 shows reasonable agreement between the exper-
imental (J1 = −7.8 meV, J2 = 11.6 meV) and calculated
(J1 = −12.9 ± 0.9 meV, J2 = 13.4 ± 2.2 meV) values. The
same is true for CuBr2, where we evaluated the intrachain
couplings as J1 = −8.8 ± 0.4 meV, J2 = 22.2 ± 3.4 meV
which compare well with recently published experimental
data J1 = −11.0 ± 1.6 meV, J2 = 31.0 meV.58 Moreover,
our calculations reveal significantly lower deviations from
experiment than those supplied in Ref. 58.

Puzzled by the origin of the discrepancy between our
values for J1 and J2 and the published calculational results
for CuBr2,58 we repeated the DFT + U calculations for CuBr2

as well as CuCl2 with the code VASP (Ref. 59) and the
same computational parameters as used in Ref. 58. For the
parameters Ud and Jd , we adopted 8 and 1 eV, respectively,
which corresponds to the effective U = Ud − Jd = 7 eV in
Ref. 58. For the GGA + U calculations, we used again a
unit cell quadrupled along the b axis and the k mesh of
64 points. The resulting J1 and J2 values generally agree
with the published values,42,58 except for J1 in CuBr2, for
which we obtain only half of the value provided in Ref. 58.
The agreement with the experimental data can be improved
by increasing the Ud value. In particular, Ud = 12 eV yields
J1 = −95 K and J2 = 113 K for CuCl2 and J1 = −124 K
and J2 = 357 K for CuBr2, very close to the experimental
estimates.43,58 This Ud value is significantly higher than
the Ud = 7 eV we used in our FPLO9.00-34 calculations.60

There are basically two reasons for the large difference: The

first reason is the different basis sets of FPLO9.00-34 and
VASP, implementing local orbitals and projected augmented
waves,61 respectively, which crucially affect the local quantity
Ud . Second, we used an around-mean-field double-counting
correction (DCC), while a fully localized limit DCC, which is
always used in VASP, requires larger Ud values.62

B. Variation of the bridging angle

To establish magnetostructural correlations in CuX2

halides, we systematically vary the bridging angle θ and
evaluate the NN coupling J1. Since the Cu–Cu distance and
two Cu–X distances form a triangle with θ being one of its
angles, the change in θ alters either the Cu–Cu distance, or
the Cu–X distance, or both. We compared different flavors of
varying θ (Ref. 63): (i) the Cu–Cu distance is varied, while the
X position is subsequently optimized to yield the equilibrium
Cu–X distance and θ ; (ii) the Cu–Cu distance is fixed, while
the Cu–X distance is varied; and (iii) the Cu–X distance is
fixed, while the Cu–Cu distance is varied. For all three cases,
we evaluated J1 as a function of the Cu–X–Cu angle. Figure 3
shows on the example of CuCl2 that despite minor numerical
differences, all three methods conform well to each other.
Additionally, we studied the influence of Ud by varying it in
the wide range of 4–9 eV. This causes a shift of the curves along
the vertical axis, but the qualitative behavior of J1 versus the
Cu–X–Cu angle is retained.52

Remarkably, J1 reaches its minimum absolute value at
around θ = 100◦ and becomes strongly FM at large bridging
angles (Fig. 3). This result is robust with respect to the
particular procedure of varying θ . To better understand the
microscopic origin of this peculiar behavior, we performed
similar calculations for CuF2 and CuBr2. As different proce-
dures of varying θ arrive at similar results, we fixed the Cu–X

distance for each ligand and achieved different θ values by
adjusting the Cu–Cu distance, only.
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FIG. 3. (Color online) J1 of CuCl2 as function of the bridging
angles where different structural parameters are fixed: (i) the Cu–Cu
distance is varied, while the X position is subsequently optimized to
yield the equilibrium Cu–X distance and θ ; (ii) the Cu–Cu distance is
fixed, while the Cu–X distance is varied; and (iii) the Cu–X distance
is fixed, while the Cu–Cu distance is varied. The dashed vertical line
indicates the experimental bridging angle.
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FIG. 4. (Color online) Magnetostructural correlations for the CuX2 halides (the Cu–X distance is fixed, the Cu–Cu distance is variable).
The upper panels show the total exchange J1 (LSDA + U , Ud = 7 eV) along with J AFM

1 = 4t2
1 /Ueff and J FM

1 = J1 − J AFM
1 . The bottom panels

show β4, where β is the ligand’s contribution to the Cu-based magnetic orbital. The WFs for the experimental (relaxed) geometries are shown
as insets.

Similar to our results for the fixed geometries (Table I),
magnetostructural correlations for J1 (Fig. 4) reveal a large
difference between the ionic CuF2 and covalent CuCl2 and
CuBr2. In CuF2, J1 follows the anticipated behavior with the
FM-to-AFM crossover at θ � 100◦. However, the covalent
compounds always show FM J1, with a maximum (i.e., the
minimum in the absolute value) at θ = 100◦–105◦ and the
enhanced FM character at even larger bridging angles. This
trend persists up to at least θ = 120◦ (Fig. 3).

The effect of strongly FM J1 in CuCl2 and CuBr2 can
be explained by considering individual contributions to the
exchange. The AFM contribution J AFM

1 arises from the elec-
tron hopping between the Cu sites. The hopping probability
measured by the transfer integral t1 critically depends on the
Cu–X–Cu bridging angle. In a simple ionic picture, the transfer
is maximal at θ = 180◦ (singly bridged) and approaches zero
at θ = 90◦, thus providing the microscopic reasoning behind
the GKA rules. This anticipated trend is indeed shown by
CuF2, where J AFM

1 = 4t2
1 /Ueff increases above θ = 90◦ and

underlies the increase in J1. However, the covalent CuX2

halides show qualitatively different behavior with the very
low (and decreasing) t1 and J AFM

1 up to at least θ = 110◦. This
result implies that the large contribution of the ligand states
in a covalent compound has also a strong influence on the
Cu–X–Cu hopping process and alters the anticipated trend for
the AFM exchange.

The FM contribution J FM
1 can be evaluated as J1 − J AFM

1 ,
where we use J1 from the LSDA + U calculation and
J AFM

1 = 4t2
1 /Ueff from the TB analysis. Microscopically, J FM

1
originates from the Hund’s coupling on the ligand site64 and/or
from the FM coupling between the Cu 3d and ligand p states.65

Regarding the former mechanism,64 a simple model expression
reads as J FM

1 = −β4JH , where β is the ligand’s contribution
to the Cu-centered magnetic orbital, and JH is the (effective)
Hund’s coupling on the ligand. Even though this expression is
derived for θ = 90◦, our data obtained for different θ values
are well understood in terms of the variable β (see bottom

panels of Fig. 4). The increase in the bridging angle leads to
larger β, thus enhancing J FM

1 . Since β enters J FM
1 as β4, its

effect should be dominant over any other contributions, such
as slight variations of JH . The increase in β also explains the
increasing FM contribution at low θ (Fig. 4).

In contrast to the covalent chloride and bromide, the ionic
CuF2 shows only a minor FM contribution owing to the very
low β. We also tried to artificially enhance β by reducing the
Cu–F bonding distance down to 1.60 Å. For bridging angles
larger than 100◦, the AFM coupling becomes twice as large as
for the Cu–F distance of 1.91 Å and for angles smaller than 80◦
the model compound becomes also AFM. The FM coupling
strength about 90◦ is almost unaffected. This indicates the
robust ionic nature of Cu–F bonds. The reduction in the Cu–F
distance increases the electron transfer without changing the
hybridization, hence J AFM

1 is increased, while J FM
1 remains

weak.

C. Cluster models

In a periodic calculation, the variation of structural parame-
ters, such as bond lengths and angles, is generally challenging:
the high symmetry couples the structural parameters to each
other. As a result, changing a single parameter is often
impossible without affecting the other parameters. The cluster
models are more flexible and may allow for an independent
variation of individual bond lengths and angles. This property
renders the clusters as an excellent playground to study the
magnetostructural correlations.

Before discussing the intrachain couplings using a com-
bination of periodic and cluster models, we first want to
demonstrate how cluster models for the three Cu dihalide
compounds are constructed. Since the chains are spatially well
separated from each other, we can consider segments of a
chain, with the terminal Li atoms keeping the electroneutrality
(Fig. 5). No additional point charges are required, so that the
clusters are kept as simple as possible.
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FIG. 5. Three examples of model clusters: Cu3 trimer cluster as
the minimal cluster for the evaluation of J1 and J2 (A); the pentamer
cluster for calculating J2, with only two Cu2+ and three substituted
nonmagnetic ions (B); and the tetramer cluster for calculating J1 with
two magnetic Cu and two nonmagnetic MS centers (C).

First, the effect of the chain length on J1, J2 and the ratio
−J2/J1 is investigated (Fig. 6). For all three compounds,
small clusters, such as dimers or trimers, are insufficient
for describing the magnetic properties. The convergence
with respect to the cluster size is different for different
compounds (e.g., the ionic CuF2 demonstrates the slowest
size convergence). To ensure a meaningful comparison with
the periodic model or the experimental data, the convergence
with respect to the cluster size has to be carefully checked.

0.8

0.9

1

1.1

1.2

1.3

J 1(N
) 

/ J
(8

)

F
Cl
Br

2 3 4 5 6 7 8
chain length N

0.7

0.8

0.9

1

1.1

α(
N

) 
/ α

(8
)

0.85

0.9

0.95

1

1.05

J 2(N
) 

/ J
(8

)

J1

-J2/J1

J2

FIG. 6. (Color online) J1(N )/J1(N = 8), J2(N )/J2(N = 8) and
α(N )/α(N = 8) as a function of the chain length N . The bridging
angle is fixed to the experimental (CuCl2 and CuBr2) and optimized
(CuF2) values, respectively. For J2 and −J2/J1, the minimal number
of Cu-centers amounts to three. The exchange couplings are calcu-
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FIG. 7. (Color online) J1 and J2 of the Cu–Br clusters calculated
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or Zn2+ centers. The bridging angle is fixed to the experimental
value. The resulting exchange integrals are normalized to that for the
Cu8-octamer cluster. For the calculations, the LSDA + U method is
used with Ud = 7 eV.

On the other hand, a large number of correlated centers
requires a large number of spin configurations to estimate
exchange couplings. While larger clusters are still feasible for
DFT, they may pose a problem for advanced ab initio quantum-
chemical methods. Therefore, we attempted to reduce the
number of correlated Cu2+ ions by substituting them by
formally nonmagnetic Mg2+ and Zn2+ ions (Fig. 5). Even with
this minimum number of correlated centers, deviations below
10% to the size-converged Cu8 octamer cluster are obtained
for the Cu–Br (Fig. 7) and also for the Cu–Cl clusters. In
case of Cu–F, where convergence is reached at larger cluster
size, at least four correlated centers are required to reduce the
deviations down to that level.

Similar results, as for the J ’s, concerning size convergence
and substitutions are obtained for the NN and NNN transfers t1
and t2, calculated in LDA. These results show that the simple
clusters suffice for describing the intrachain physics of these
compounds and that the problem of appropriate embedding for
the clusters may be at least partially bypassed by increasing
the cluster size and substituting part of the correlated centers
with weakly correlated ions.

D. Cluster versus periodic models

In the following, both cluster and periodic models will be
used for calculating J2 and the −J2/J1 ratio, as well as the
transfer integrals ti of the Cu dihalides. The comparison of
periodic and cluster models for a broad range of bridging
angles allows us to exclude an accidental agreement between
both models, which can be realized in a specific geometry
by appropriately choosing the chain length, substitutions, and
the termination of the cluster. However, when the cluster is
prepared in such a way, the good agreement with the periodic
model would be lost by varying the geometrical parameters.

The exchange integrals as well as the −J2/J1 ratio versus
the bridging angles are depicted in Figs. 8 and 9 for CuBr2 and
CuCl2, respectively. A comparison of the nearest-neighbor
transfer integral t1 of CuBr2, calculated with cluster and
periodic models, is shown in Fig. 10. The clusters can
reproduce the results of band structure calculations over the
whole range of bridging angles, thus justifying the construction
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cluster models (Cu4 and Cu8) were used. The inset shows the ratio
−J2/J1. The dashed vertical line indicates the experimental bridging
angle of 92◦. For the calculations, the LSDA + U method is used with
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of the clusters. In the −J2/J1 ratio, which governs the magnetic
ground state, the deviations between the cluster and periodic
models are compensated to a large degree.

-30

-20

-10

J 1 (
m

eV
)

Cu4

Cu8

periodic

80 90 100 110
bridging angle (deg)

0

1

2

-J
2/J

1

CuCl2

FIG. 9. (Color online) Exchange integrals J1 and the ratio −J2/J1

of CuCl2 as a function of the bridging angle calculated with a
periodic and two cluster models. The dashed vertical line indicates
the experimental bridging angle of 93.6◦. For the CuF2 data, see
Supplemental Material (Ref. 52). For the calculations, the LSDA + U
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FIG. 10. (Color online) CuBr2: the nearest-neighbor transfer
integral t1 as a function of the bridging angle calculated with a periodic
as well as two cluster models (Cu4 and Cu8).

In CuF2, the deviations between J1 and J2 obtained
in the cluster and periodic models, respectively, are also
compensated in the ratio −J2/J1, except for the smallest
bridging angles.52 The singularity in −J2/J1 at about 100◦
arises from the crossover between the FM and the AFM J1.
These results show that well-controlled cluster models are
capable of describing local properties of ionic as well as
strongly covalent solids, whereas the good agreement with
band-structure calculations is not accidental or artificial. Fi-
nally, the results demonstrate that superexchange and magnetic
coupling in insulators are relatively short-range effects even
for strongly covalent compounds.

E. LSDA + U versus hybrid functionals

A common problem of DFT-based approaches applied
to strongly correlated electrons is the ambiguous choice of
empirical parameters and corrections that are required to
mimic many-body effects, e.g., in the mean-field DFT + U

approach. Hybrid functionals represent an alternative, al-
though still empirical, way of simulating the effect of strong
electron correlations within DFT. In this way, the nonlocal
exact exchange is mixed with the local LDA or GGA
exchange, while the mixing parameter α is typically the only
free parameter. In contrast to DFT + U , hybrid functionals
are more robust with respect to the adjustable parameters,
and the constant values of α = 0.20 or α = 0.25 can be
used in a rather general fashion. Additionally, the exact
exchange correction is generally applied to all orbitals, while
in DFT + U the corrections are applied to a certain set of
orbitals which are assumed to be the strongly correlated
ones.

In this study, we apply the B3LYP functional to dimer
models and vary α between 0.15 and 0.25 (α = 0.20 corre-
sponds to the standard B3LYP functional as implemented in
GAUSSIAN). Although we pointed out that dimer models are
too small for calculating J1 in quantitative agreement with the
periodic model, they are well suited for comparing the different
DFT methods and parameter sets.66 Despite substantially
different treatment of many-body effects in DFT + U and
hybrid functionals, the resulting exchange integrals of all three
CuX2 compounds are quite similar (Fig. 11). Thus, the B3LYP
calculations confirm the LSDA + U results, justify the choice

155111-7



LEBERNEGG, SCHMITT, TSIRLIN, JANSON, AND ROSNER PHYSICAL REVIEW B 87, 155111 (2013)

FIG. 11. (Color online) The exchange integral J1 of the CuX2 (X= F, Cl, Br) compounds as a function of the bridging angle. The calculations
are done for a dimer model with LSDA + U and Ud = 7 ± 1 eV (gray area), and with the B3LYP functional (α = 0.15 − 0.25).

of the free parameters in the latter approach, and demonstrate
that the unusual FM J1 coupling of CuCl2 and CuBr2 is not an
artifact of a certain method. Despite the fact that B3LYP was
originally constructed to reproduce the thermodynamical data
for small organic molecules, it provides meaningful results
for strongly correlated systems such as CuX2, in line with
the earlier studies.33,67,68 Moreover, the calculated exchange
integrals are robust with respect to α: the exchange integrals
are rather insensitive to the choice of this parameter.

V. DISCUSSION AND SUMMARY

Our study of magnetostructural correlations in the CuX2

halides reveals the crucial role of the ligand in magnetic
exchange. Its effect is twofold: First, the larger size of Cl
and Br is responsible for the enhanced NNN coupling J2

that is assisted by the sizable overlap of ligand p orbitals
along the Cu–X–X–Cu pathway. Second, the covalent nature
of the Cu–Cl and Cu–Br bonds underlies the large ligand
contribution to the magnetic orbitals and, consequently, the
strong FM nearest-neighbor (NN) coupling J1 in the broad
range of bridging angles which could be ascribed to Hund’s
exchange on the ligand site. The tendency of covalent Cu2+
halides to exhibit FM exchange along the Cu–X–Cu pathways
can be illustrated but also challenged by several experimental
observations. It should be emphasized that ferromagnetic NN
coupling requires not only sizable ferromagnetic contributions,
but also small transfer integrals as were found for CuCl2 and
CuBr2. Otherwise, the AFM contributions will outweigh the
FM terms even for covalent compounds.

Experimental data for Cu2+ chlorides and bromides indeed
show the robust FM NN coupling for the bridging angles below
90◦. While the θ < 90◦ regime is not typical for the ionic
oxides and fluorides, it is abundant in covalent systems and
observed, e.g., in Cu-based FM spin chains.69 The FM nature
of the NN coupling at θ = 90◦–95◦ is evidenced by CuCl2 and
CuBr2 themselves.42,43,45,58 However, larger θ values are less
common and require geometries other than the edge-sharing
CuX2 chains considered in this study.

The angles of θ > 95◦ are only found in edge-sharing
dimers and corner-sharing chains. Moreover, the respective
experimental situation is rather incoherent. In (CuBr)LaNb2O7

and (CuCl)LaTa2O7, the corner-sharing geometry with θ >

100◦ indeed leads to the FM exchange, although with a
tendency towards AFM exchange at θ � 108◦–109◦ (Refs. 70,
71). By contrast, the Cu2Cl6 dimers may reveal the AFM

exchange even at θ � 95.5◦, as in LiCuCl3 · 2H2O (Ref. 72)
or TlCuCl3 and KCuCl3 (Ref. 73), where the latter exhibit
transfer integrals that are 3.5 times larger as that in CuCl2. On
the other hand, similar Cu2Cl6 dimers with the same bridging
angle of θ � 95.5◦ in the spin-ladder compound IPA-CuCl3
feature the sizable FM intradimer coupling.74

These experimental examples show that the bridging angle
θ may not be the single geometrical parameter determin-
ing the Cu–X–Cu superexchange. Details of the atomic
arrangement are important even for Cu2+ oxides,67 whereas
in more covalent systems this effect is likely exaggerated
because interactions involve specific orbitals, so that each
bond determines the orientation of other bonds around the
same atom. We have pointed out that such magnetostructural
correlations, essential for understanding the magnetic behavior
and for the search of new interesting materials, can nicely
be investigated with cluster models. In particular in the
case of intricate crystal structures, clusters enable studying
effects of each structural parameter separately, while for
periodic models only a set of parameters can be modified at
once.

On a more general side, our results identify the Cu–X–
Cu pathways as the leading mechanism of the short-range
exchange in Cu2+ halides. The fact that the magnetostructural
correlations weakly depend on the procedure of varying θ

(Fig. 3) entails the minor role of direct Cu–Cu interactions
because the coupling always evolves in a similar fashion,
no matter whether the Cu–Cu distance is fixed or varied.
Therefore, the nature of the ligand is of crucial importance, and
affects the Cu–X–Cu hopping along with the FM contribution,
presumably related to the Hund’s coupling on the ligand
site.64 In ionic systems, the nearest-neighbor hopping increases
with the bridging angle and dominates over the small FM
contributions, thus leading to the conventional GKA behavior.
However, the GKA behavior may be strongly altered in
covalent compounds, as shown by our study and previously
argued in model studies on the effect of side groups and
distortions.20,21,67

From the computational perspective, magnetic modeling
of chlorides and bromides is generally challenging. Although
these compounds are still deep in the insulating regime, far
from the Mott transition (ti � Ueff, see Table I), the sizable
hybridization of ligand states with correlated Cu 3d orbitals
challenges the DFT + U approach, with correlation effects re-
stricted to the d states. The microscopic evaluation of magnetic
couplings in Cu2+ chlorides and bromides indeed leads to large
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uncertainties.71,75 Hybrid functionals, on the other hand, tend
to overestimate magnetic exchange couplings33 and provide a
working, but empirical solution to the problem of strongly cor-
related electronic systems. This calls for the development and
application of alternative techniques as, for instance, ab initio
quantum-chemical calculations, appropriately accounting for
strong electron correlations. Since the wave-function-based
quantum-chemical calculations are presently restricted to finite
systems, they require the construction of appropriate clusters.
This task has been successfully accomplished in our work.
We have demonstrated that relatively small clusters with a low
number of correlated centers are capable of reproducing the
results obtained for periodic systems, and provide adequate
estimates of the magnetic exchange even for the long-range
Cu–X–X–Cu interactions.

In summary, we have studied magnetostructural correla-
tions in the family of CuX2 halides with X = F, Cl, and
Br. Our results show substantial differences between the ionic
CuF2 and largely covalent CuCl2 and CuBr2. The fluoride
compound behaves similar to Cu2+ oxides, and shows weak
FM exchange at the bridging angles close to θ = 90◦ along
with the AFM exchange at θ � 100◦. Going from F to Cl

and Br leads to two major changes: (i) the larger size of
the ligand amplifies the AFM next-nearest-neighbor coupling
J2; (ii) the increased covalency of the Cu–X bonds results
in the strong mixing between the Cu 3d and ligand p

states, and enhances the FM contribution to the short-range
nearest-neighbor coupling J1. We have constructed cluster
models which, first, supplied an excellent description of local
properties of the solids. Second, they turned out as highly
valuable tools for investigating magnetostructural correlations,
e.g., they could be instrumental in the microscopic analysis of
the covalent Cu2+ chlorides and bromides with interesting
but still barely explored magnetism. Finally, they seem to
be a viable approach to parameter-free quantum-chemical
calculations of strongly correlated solids.
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8C. Rüegg, D. F. McMorrow, B. Normand, H. M. Rønnow,
S. E. Sebastian, I. R. Fisher, C. D. Batista, S. N. Gvasaliya,
C. Niedermayer, and J. Stahn, Phys. Rev. Lett. 98, 017202 (2007).
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33D. Muñoz, I. de P. R. Moreira, and F. Illas, Phys. Rev. B 65, 224521

(2002).
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