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We present a method to build magnetic models of insulators based on high-temperature expansions by fitting
both the magnetic susceptibility and the low-temperature specific heat data. It is applied to the frustrated magnet
kapellasite [Cu3Zn(OH)6Cl2] with the J1-J2-Jd -Heisenberg model on the kagome lattice. Experimental data
are reproduced with a set of competing exchange energies centered at J1 = −12, J2 = −4, and Jd = 15.6 K,
where Jd is the third-neighbor exchange energy across the hexagon. Strong constraints between these exchange
energies are established. These values confirm the results of Fåk et al. [Phys. Rev. Lett. 109, 037208 (2012)]
regarding the location of kapellasite in the cuboc2 phase of the Heisenberg model. The quality and limits of this
modeling are discussed.
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I. INTRODUCTION

There are different routes for building magnetic models of
insulators. The simplest and most reliable one is the modeling
of inelastic modes (spin waves) as measured by neutron
scattering, if any are present. In the case of a spin liquid,
the inelastic spectrum is a continuum and may have very few
distinct features when it is gapless. On the other hand, ab
initio calculations are notoriously difficult and strongly depend
on the nature of the approximations. The only tool left is a
modeling through fits of thermodynamic quantities to high-
temperature (HT) series. It is well known that the extraction
of the Curie-Weiss temperature from susceptibility data is
quite delicate and requires a large range of high-temperature
experimental data. In the case of frustrated magnets, this is
insufficient to provide clear insight in the low-temperature
physics.1,2 In fact, as we will show in this paper, the fit of the
susceptibility alone, even in a large range of temperatures,
does not settle the model and should be complemented
by a fit of the magnetic specific heat. This paper aims at
unveiling the different difficulties that can be encountered in
this process and can provide, with a given complex example,
the case of kapellasite, a general method to tackle this
problem.

Kapellasite3,4 is a polymorph of herbertsmithite and shares
its chemical formula Cu3Zn(OH)6Cl2. As herbertsmithite,
kapellasite fails to develop any order down to 20 mK, instead
displaying a continuum of excitations. It is, thus, an interesting
spin-liquid candidate.5 But contrary to herbertsmithite,6–9 the
high-temperature susceptibility of this recently discovered
metastable compound points to a ferromagnetic Curie-Weiss
field of about 10 K, whereas, the low-temperature behavior
does not show dominant ferromagnetic correlations down to
the lowest temperature: This information is the landmark of
competing interactions. This compound is, thus, a delicate
benchmark for any modeling, but it is also a very precious one
as we know, from neutron-scattering data, it has very well
defined and specific low-temperature short-range spin-spin
correlations. Therefore, the results of the high-temperature

modeling can be immediately questioned through the low-
temperature neutron data.5

While kapellasite has the same chemical formula as
herbertsmithite, the two are not isostructural. In kapellasite,
the coupling between the kagome planes occurs only via
very weak O-H-Cl hydrogen bonds.4 Kapellasite is, therefore,
remarkably two dimensional. A first theoretical description of
kapellasite, which is deep in the Mott phase, is the Heisenberg
Hamiltonian on the perfect kagome lattice,

H =
∑
〈i,j〉α

JαSi · Sj , (1)

where the exchange integrals Jα are defined in Fig. 1. Due to
the geometry of the exchange paths, J3 and Jd are different, and
Jd is expected to be larger than J3 by an order of magnitude.10

We will, thus, limit our analysis to the pure J1-J2-Jd model. We
further neglect both the effects of disorder and of an eventual
Dzyaloshinskii-Moriya (DM) interaction.

The spin-1/2 HT series of magnetic susceptibility X and
specific heat CV with the J1-J2-Jd parameters have been
computed up to order 9 and are given in the Supplemental
Material.11

The paper is organized as follows. In Sec. II, the magnetic
susceptibility X is fitted to experimental data providing strong
constraints on the coupling constants. In Sec. III, we show
how to use the low-temperature CV data to further refine
these constraints. Sections II and III are organized similarly.
A quality factor is defined to measure the quality of the
fits, whereas, technicalities are reported in the appendices,
and we finish with the physical conclusions to be kept in
mind when considering the properties of the model. In the
Conclusion, we discuss the consequences of neglecting, at
this stage, the chemical disorder in the kagome plane and
Dzyaloshinskii-Moriya interactions.

II. DESCRIBING X (T )

The dc susceptibility was measured in a commercial Quan-
tum Design MPMS-5S superconducting quantum-interference
device (SQUID) magnetometer. It does not diverge at low
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FIG. 1. (Color online) Kagome plane of kapellasite with
Cu2+ S = 1/2 spins (blue), a nonmagnetic Zn2+ ion (green), and
exchange interactions (red).

temperatures and coincides with the NMR local probe data
indicating that the measured macroscopic susceptibility is
intrinsic. The experimental data are given as a list of points
{Tk,X exp

k }. Fitting the data to a Curie-Weiss law X (T ) �
C/(T − T0) leads to C = 0.429(2) cm−3 K−1 mol and T0 =
9.5 ± 1 K, where T0 is interpreted as the Curie-Weiss temper-
ature. In the range of temperatures of interest, X T/C is on the
order of unity and is, thus, a good quantity to fit.

We define the HT-series expansion of the magnetic suscep-
tibility XHT,

XHT(T )T

C
= 1 +

n∑
i=1

Pi(J1,J2,Jd )βi, (2)

where β = 1/T and Pi is a homogeneous polynomial of order
i and n is the highest order at which the series is known.
The Curie-Weiss temperature is defined as θ = P1(J1,J2,Jd )
and, for the kagome lattice, θ = −J1 − J2 − Jd/2. These
polynomials are given in the Supplemental Material11 up to
order n = 17,12 10, 11, and 9 for the J1 (M100), J1-J2 (M120),
J1-Jd (M10d), and J1-J2-Jd (M12d) models, respectively.

In order to account for the uncertainties in the number
of spins and the temperature-independent Van Vleck and
diamagnetic susceptibilities, we introduce two parameters
A (close to 1) and B and define a least-mean-square
error as

ZX = 1

ε2NT

NT∑
k=1

[
A
XHT(Tk)Tk

C
+ BTk − X exp

k Tk

C

]2

, (3)

where NT is the number of experimental measurements,
Tk � Tmin, and ε = 0.0015 is on the order of the experimental
uncertainties on XT/C. One could then minimize ZX with
respect to the parameters {J1,J2,Jd,A,B}.

Using Padé approximants of the truncated series allows
extension of the fits to significantly lower temperatures, and
the definition of Eq. (3) is extended to ZX ,PPA by replacing the
HT polynomial by the various physical Padé approximants
(PPAs) (see the definition in Appendix A).

In the present approach, the best set of parameters is
searched among that having the largest number of Padé

approximants providing a “good fit” of the experimental data.
We, thus, define a measure QX of the fit quality as

QX =
∑
{PPA}

M(ZX ,PPA), (4)

where the sum runs over the PPAs and M(x) is a measure
function chosen to be close to 1 for x < 1 and to vanish rapidly
for x > 1 to discard bad PPAs. We use

M(x) = 1

1 + x8
. (5)

A “good” (respectively, “bad”) PPA contributes 1 (respec-
tively, 0) to QX , thus, higher is the QX , better is the fit.

The choice of Tmin: If Tmin is too high (Tmin > 25 K),
almost all PPAs coincide with the HT polynomial, and the
experimental data do not strongly constrain the parameters
of the model. As Tmin decreases, the constraint becomes
stronger, but the PPAs start to deviate from each other,
and the quality of the approximation becomes questionable.
This is seen in the function QX (Tmin), which decreases
sharply around some Ts : In the following, Tmin is chosen just
above Ts .

We look for the set {J1,J2,Jd,A,B} maximizing QX . The
evaluation of the linear parameters A and B at fixed {J1,J2,Jd}
is explained in Appendix B. Unfortunately, the remaining
parameters cannot be obtained from a minimization algorithm
because QX is not continuous (the number of PPAs depends
on the J ’s). On the other hand, as the number of parameters
is reduced, the quality function QX can be evaluated on grids,
and after some trials, the main minima are eventually found.

The pure kagome model M100 is compatible with the
experimental data with ferromagnetic J1 ∼ −12 K, A =
1.037, B = −1.2 × 10−4 K−1 but only for T > 70 K.

Then, we study models M120 and M10d. Figures 2(a)
and 2(b) show QX for models M120 and M10d, respectively,
whereas, Figs. 2(c) and 2(d) show all PPAs at the best points of
(a) and (b), respectively. Note that, in the present method, QX
goes rapidly from 0 to some plateau. The size of the plateau
determines the uncertainties of the fits and depends directly on
ε. The fits are of better quality for model M10d with a lower
Tmin. This is not because the series is known at a higher order
but because M10d leads to a better fit of the experimental data
around the maximum of XT . Note that, for these two models,
J1 is ferromagnetic, whereas, J2 and Jd are antiferromagnetic.
In both cases, the precision on J2/J1 and Jd/J1 is an order of
magnitude better than that on J1.

With the full model (M12d), we have looked for the
solutions at fixed J1 between −30 and 30 K. We often find
two domains of high QX . In a three-dimensional plot of QX
versus J1, J2, and Jd , the domains of high-quality fits (say,
QX > 6) fall into a strongly squeezed torus with J1 between
−24 and 12 K (QX ∼ 0 for J1 outside this interval). Cuts of
these domains at fixed J1 are shown in Fig. 3(a). Note that,
despite the lower order of the M12d-HT series, these results
agree very well with those of models M120 and M10d (Fig. 2).
The sets of optimal parameters are plotted on the classical
phase diagram of the J1-J2-Jd model13 for ferromagnetic and
antiferromagnetic J1 in Figs. 3(b) and 3(c), respectively. The
best fits appear in various phases of the classical phase
diagram nearby the ferromagnetic phase but never in the
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FIG. 2. (Color online) (a) and (b) Fit quality QX as defined by
Eq. (4) with ε = 0.0015 for the two models (a) J1-J2 and (b) J1-Jd

with Tmin = 18.5 and Tmin = 17.5 K, respectively. Contour levels
are at integer values. The color scale allows the direct comparison
between different models: It is proportional to QX /n, where n is the
HT-series order. The best fits are for the highest value of QX (thus, in
red). The parameters at the best points of (a) and (b) are given in the
Supplemental Material.11 (c) and (d) Comparison with experiment
for these best points of (a) and (b), respectively. All PPAs at order
(c) n = 10 and (d) n = 11 are shown, and d indicates the degree of the
denominator for each PPA (see Appendix A for the PPA’s definition).
Only good PPAs, thick lines in (c) and (d), are used to compute QX
in (a) and (b), respectively. The thick vertical line indicates Tmin.

fer-romagnetic phase itself. As quantum fluctuations stabilize
antiferromagnetic phases and do not change the energy of the
ferromagnet, the ferromagnetic phase of the quantum model
is expected to have a smaller extent than the classical one,
and we are confident that all solutions found here fall in an
antiferromagnetic quantum phase. But X alone is insufficient
to determine in which antiferromagnetic phase kapellasite is.

We finish this section with comments on the two parameters
A and B. The quantity A − 1 in Eq. (3), which measures the
uncertainty on C takes values on the order of a few percent
in agreement with experimental uncertainties. The sum of the
Van Vleck and diamagnetic contributions to susceptibility is
measured by B and is about −10−4 K−1, which is on the order
of expected values.

III. DESCRIBING CV (T )

Throughout this paper, the specific heat stands for the
dimensionless specific heat per spin [CV ≡ CV /(NkB)]. It
has a spin and a phonon contribution, C

spin
V and C

phonon
V ,

respectively. At high temperatures, the leading term of C
spin
V

decreases as J 2
CV

/T 2, where J 2
CV

is a positive quadratic form
of the coupling constants {Ja}, here, JCV

= [3/8(J 2
1 + J 2

2 +
J 2

d /2)]1/2, i.e., at least, �10 K according to the results found in
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FIG. 3. (Color online) Regions of highest-quality fits of the
susceptibility (same color code as in Fig. 2, Tmin = 17.5 K and
ε = 0.002). Various cuts of these regions are displayed at fixed J1

(see text). Numbers near each cut indicate the J1 value. Symbols
[only indicative in (a)] describe the nature of the order parameter
of the classical phase in the corresponding range of parameters.13

(a) gives a global view of the results of QX . (b) precisely locates
these regions of high-quality fits in the classical phase diagrams for
ferromagnetic J1 and (c) for antiferromagnetic J1. The parameters
at the best points of each cut of (a) are given in the Supplemental
Material.11 In (a), the black parallelogram on the cut J1 = −12 K,
visible by zooming it, summarizes the uncertainties on the final best
point found at the end of Sec. III.

the previous section. On the other hand, at low temperatures,
the C

phonon
V starts as (T/TD)3, where TD is a Debye

temperature. When JCV
is much smaller than TD , say as for

helium-3,14 both terms can be handled independently. A quick
analysis of C

phonon
V reveals that TD ∼ 170 K. Thus, between 10

and 100 K, both contributions are mixed together, and we will
focus on the fit of CV on the low-temperature data below 10 K.

In Fig. 4, we show that fits of CV /T 2, at the lowest available
temperature, approach a constant 0.075(3) K−2, compatible
with a 2D-anti-ferromagnetic ground state and the solutions
found in the previous section. Assuming this fit extrapolates
to T = 0 and following a method based on sum rules12,15

(see Appendix C), we calculate C
spin
V /T per spin for the

various models found in the previous section and compare it
to experimental data in Fig. 5. If none of these models agrees
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FIG. 4. (Color online) Low-temperature behavior of the kapel-
lasite specific heat. Points are experimental data, and the lines are
polynomial fits of degree 1 (respectively, 2) of the data for T < 0.9 K
(respectively, T < 2 K).

exactly with the experimental data, only those corresponding
to J1 between −14 and −6 K have a maximum at the right
position. So, the position of the CV /T downturn definitively
excludes correlations of the q0 type and favors the cuboc2 type
described in Messio et al.13

But, the inset of Fig. 5 also shows that some entropy is
clearly missing in all cases above 10 K. We interpret the
data as follows: A large percentage of the spins (∼87%, see
below) is described by a pure model J1-J2-Jd below ∼3 K,
whereas, the remaining ones are belived to be frozen in this
low-temperature range and account for the missing entropy
at larger temperatures (5–50 K). Assuming the phonons and
this nondescribed part are negligible at low T , we, thus, set
C

exp
V = C

spin
V below T = 3 K, where C

spin
V is represented with

PPA, C
spin
V,PPA, as explained in Appendix C.

Experimental data are given as a list of points {Tk,C
exp
V,k}.

As in the previous section, we introduce a quality factor
QCV

as

QCV
=

∑
{PPA}

M(ZCV ,PPA), (6)

ZCV ,PPA = 1

NT

∑
Tk<3K

[
DC

spin
V,PPA(Tk) − C

exp
V (Tk)

εTk

]2

, (7)

whereM is a measure function [see Eq. (5)], ε = 0.0025 is the
uncertainty on CV /T , and NT is the number of experimental
points in the sum. The parameter D accounts for both mass
uncertainty and possible missing entropy and is evaluated as
explained in Appendix B.

C
spin
V,PPA depends on the unknown ground-state energy per

spin e0.16 Appendix D describes how e0 is evaluated using
an another quality factor. As a consequence, computing QCV

is much more demanding and less stable, and the figures
QCV

(J1,J2,Jd ) present several spurious discontinuities. In the
domain of interest, keeping the good PPAs to compute e0 and
QCV

removes most of these discontinuities. Figure 6 shows,
at J1 = −12.4 K, the results for QX , QCV

, and QX + QCV
.

The choice of axis, Jd/J1 and (J2 + Jd )/J1, replaces the
strongly squeezed domain of high QX (see Fig. 3) into a
more compact one. The high-Q domains are different for X
and CV and may eventually overlap as shown in Fig. 6(c).
Choosing a threshold for QX + QCV

determines the domain
of validity of the overall fit. The plateaus around the maxima
being surrounded by sharp walls, the determination of the
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FIG. 5. (Color online) Comparison with experiments of
(a) C

spin
V /T and entropy (b) Sspin(T ) = ∫ T

0 dT C
spin
V /T for various

parameters of model M12d. The dotted line stands for experiments,
the dot-dashed line stands for phonons; full (cuboc2), dotted (

√
3 ×√

3), and dashed (q0) lines stand for models in the middle of
the domains found in the previous sections. The complete sets of
parameters are given in the Supplemental Material,11 and only the
values of J1 are reported in the legend. In the “q0 domain” of Fig. 3,
all curves are very similar, so only one has been kept in this plot. In
the “

√
3 × √

3 domain,” for J1 > 2, most of the curves (not shown
here) continue to shift to higher temperatures.

best-parameter range is rather independent of the threshold.
Repeating the process for various J1’s, in Fig. 6(d), we show
the overall constraints on the parameters where the best fits of
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FIG. 6. (Color online) Quality factors (a) QX with Tmin = 17.5 K
and ε = 0.0015, (b) QCV

, and (c) QX + QCV
at J1 = −12.4 K versus

Jd and (Jd + J2)/J1. Contours are at integer values. Note that the
range of (J2 + Jd )/J1 is 2 orders of magnitude less than that of
J1 and Jd . The quality factors increase rapidly from almost 0 to
a maximum value represented by plateaus. (d) The lines are the
contours QX + QCV

= 14 for various values of J1 indicated by the
numbers near each line. In a three-dimensional plot, QX + QCV

> 14
is contained roughly in a tube that ends abruptly at J1 > −11 and in
a small cone at J1 ∼ −13 K. This can be understood by viewing the
band of high QCV

(b) entering the domain of QX > 0 (a) from the
right at J1 ∼ −10 K and gliding to the left as J1 decreases.
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FIG. 7. (Color online) Comparison with experiments for J1 =
−12, J2 = −4, and Jd = 15.6 K. (a) Magnetic susceptibility with
A = 1.027, B = −10−4 K−1, and Tmin = 16.5 K [thick vertical line,
see Eq. (3)]. (b) Specific heat with D = 0.863 and e0 = −15.674 K.
The vertical line stands for Tmax [see Eq. (7)].

X and CV are found. This figure shows that two parameters,
say J1 and Jd , are defined with a larger uncertainty than
the rather well-defined ratio (J2 + Jd )/J1. The results are
summarized as

J1 = −12.0(8) in K,

Jd = 15.6(9) + 0.5(J1 + 12) in K, (8)
J2 + Jd

J1
= −0.97(1) − 0.03(J1 + 12).

Figure 7 shows the comparison of both XT and CV /T at
the center of the best domain, i.e., J1 = −12, Jd = 15.6, and
J2 = −4 K. The uncertainties on {J2,Jd} are well represented
by the red part of the cut at J1 = −12 K of Fig. 3(a) or 3(b),
visible by zooming it.

IV. CONCLUSION

We have fitted the spin contribution of the magnetic
susceptibility and specific heat experimental data with a spin-
1/2 J1-J2-Jd Heisenberg model on the kagome lattice (see
Fig. 1). In contradiction to the ab initio calculations of Janson
et al.,10 the analyses presented here and in Ref. 5 indicate
that the nearest-neighbor coupling is ferromagnetic. This is
at variance with herbertsmithite where the nearest-neighbor
interaction is strong and antiferromagnetic: A difference that
can be traced back to the Cu-μ3OH-Cu-bonding angle being
∼13◦ smaller in kapellasite.4,17 The isostructural compound
haydeeite Cu3Mg(OH)6Cl2, also has a ferromagnetic first-
neighbor interaction but is in the ferromagnetic domain.4,18

This is not the case for kapellasite where the J2 and
Jd exchange couplings compete to form a nonmagnetic
compound.

Our analysis show that the spin susceptibility is rela-
tively easy to reproduce and imposes strong correlations
of J1, J2, and Jd . All solutions stay in antiferromag-
netic domains of the classical phase diagram, but differ-
ent phases remain potential candidates.13 The main dis-
tinctive features of the specific heat data are the low-T
downturn in CV /T at about 2 K, characteristic of the
competitive exchange couplings and a clear T 2 depen-
dency excluding a ferromagnetic ground state. The peak
strongly constrains the parameters. The best domain for

both the magnetic susceptibility and the specific heat
is obtained for J1 ∼ −12 K, a small ferromagnetic J2 ∼
−4 K, and a large antiferromagnetic Jd ∼ 15.6 K [Eq. (8)].
These parameters predict the system to have cuboc2
correlations as found independently by neutron-scattering
experiments.5 These competitive exchange energies give a
ferromagnetic behavior of the magnetic susceptibility at
high temperatures and an antiferromagnetic one at low
temperatures.

However, the agreement between experiment and theory is
not yet as good as a quick glance at Fig. 7 would suggest.
There is about 14% of missing entropy in our description
[D = 0.863 in Eq. (7), whereas, the mass uncertainty is of only
about a few percent]. Considering it improbable to find this
missing entropy at ultralow temperatures below our present
measurements, we have to find it at intermediate temperatures
between 5 and 20 K where we have not succeeded to fit the
full specific heat variations with this spin model and phonon
contributions.

Disorder might be invoked to explain this difficulty.
In fact, the actual chemical formula of the synthesized
compound, determined with neutron-powder diffraction,4 is
(Cu0.73Zn0.27)3(Zn0.88Cu0.12)(OH)6Cl2 with 27% Zn on the Cu
sites of the kagome lattice and 12% Cu on the hexagonal
Zn site. In the classical model, the concentration of Zn
on the kagome sites is not enough to kill the long-range
cuboc2 correlations, the threshold being at about 40%.19 The
pure quantum model is certainly softer, and the nature of
its ground state is still an open question. Heuristically, the
presence of vacancies or extra spins can induce a priori two
phenomena: either the manifestation of weakly coupled local
spin oscillations (the so-called “free spins”) or the freezing
of singlets. The “free impurity spins” would show up in
spin susceptibility in differences between the bulk SQUID
measurements of the magnetization and the local NMR data.
But no such phenomenon has been observed in this compound
in the range of the present experiments, and it would not
help in understanding the results of the fits. The second
possible (quantum) phenomena is a partial freezing of isolated
singlets along diagonal Jd bonds (recall that Jd is the largest
antiferromagnetic energy in this compound ∼15.6 K). These
singlets would not show up in the specific heat at temperatures
lower than a fraction of Jd , explaining the D constant ∼0.87
needed to fit the specific heat data at temperatures lower than
3 K. At higher temperatures, the liberation of these spins,
through thermal excitations of the local singlets, would explain
that the spin susceptibility measurements and fits above 17 K
give the correct amount of spins in the sample. A better
description of this phenomenon is out of the possibilities of
the present approach but could perhaps be explored with exact
diagonalizations.

In the present paper, DM interactions have been neglected.
In fact, the lack of an inversion center on the magnetic
bounds allows for DM interactions of spin-orbit origin.
In the cuprates, these couplings are usually estimated on
the order of 1/10 of the superexchange couplings, and
in herbertsmithite, they were measured on the order of
a few percent.20 In herbertsmithite, the influence of this
small coupling is emphasized by the presence of a nearby
quantum critical point.6,21,22 The situation in kapellasite is
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quite different: Whereas, neutron scattering in herbertsmithite
is essentially featureless,23,24 the experimental evidence of
short-range cuboc2 correlations in kapellasite is clear and
strong,5 and the results of the present analysis independently
point to the same conclusion: The J2 and Jd parameters
locate the system in the “cuboc2 domain,” far away from any
critical point (the cuboc2 ferrotransition is a strong first-order
transition25). Extending the present fit to take Dzyaloshinskii-
Moriya interactions into account would slightly change the
exchange parameters but would not move the system away
from the present phase. With these caveats in mind, the
present model is the best-effective model that we are able to
build.
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APPENDIX A: PPA

For fixed values of the coupling constants J1, J2, and Jd ,
we evaluate the order-n HT polynomial Pn(x), around x = 0,
of the magnetic susceptibility XHT

n (β) or of the specific heat
C

spin,HT
V,n (e), where e is the energy per spin. From a polynomial

Pn(x) of degree n, we calculate the (n + 1)-rational fractions
Nn−d (x)/Dd (x), having the same series as Pn(x) around
x = 0, with the degree d of D running from 0 to n: They
are the so-called Padé approximants of Pn(x). From this list,
we discard all the Padé approximants which have zeros either
in N or D in the whole interval of variation of x, i.e., in
[0,∞] for XHT

n (β) and [e0,0] for C
spin,HT
V,n (e), where e0 is the

ground-state energy. The remaining ones are called the PPA.
By varying the coupling parameters, the number of PPAs may
eventually change. Thus, all functions built on the sum over
the PPAs may be discontinuous. Unfortunately, this prevents
using the minimization powerful method. This is the price to
pay when using PPAs.

APPENDIX B: DETERMINATION OF
PARAMETERS A AND B OF QX

From Eq. (4) or (6), we have

QX =
∑
PPA

M(ZX,PPA), (B1)

ZX,PPA = 1

ε2NT

∑
k

[AFPPA(Tk) + BTk − F
exp
k ]2, (B2)

where X = X or CV and B is 0 for CV and the measure
function is defined in Eq. (5). F stands for XT/C if X = X
and CV /T if X = CV . The derivatives of QX with respect to

A and B are as follows:

∂QX

∂A
=

∑
{PPA}

M′(ZX,PPA)
∂ZX,PPA

∂A

= 2

ε2NT

∑
{PPA}

M′(ZX,PPA)

×
∑

k

[
AFPPA(Tk) − BTk − F

exp
k

]
FPPA(Tk), (B3)

∂QX

∂B
= 2

ε2NT

∑
{PPA}

M′(ZX,PPA)

×
NT∑
k=1

[
AFPPA(Tk) − BTk − F

exp
k

]
Tk, (B4)

where M′(x) is the derivative of M(x). We look for A and
B that cancel out these derivatives. If the weights M′(ZX,PPA)
are independent of A and B, these equations are linear and are
easily solved. Assuming the weights are smooth functions of
A and B, we solve this problem iteratively. We choose, as the
initial point, the A and B solutions of the best PPA [highest
M(ZX,PPA)],

APPA = 1

�
(T F exp T FPPA − T 2 FPPAF exp), (B5)

BPPA = 1

�
(FPPAT FPPAF exp − T F exp F 2

PPA), (B6)

� = T FPPA
2 − T 2 F 2

PPA, (B7)

where X means the mean value over the set of temperatures.
This first estimation of A and B is then used to compute the
weights M′(ZX,PPA) in Eqs. (B3) and (B4), and new A and B

are given by

A = 1

�
(〈T F exp〉〈T FPPA〉 − 〈T 2〉〈FPPAF exp〉), (B8)

B = 1

�
(〈FPPAT 〉〈FPPAF exp〉 − 〈T F exp〉〈F 2

PPA〉), (B9)

� = 〈T FPPA
2〉 − 〈T 2〉〈F 2

PPA〉, (B10)

where 〈X〉 means the average value over the set of temperatures
and over the PPA with the weightsM′(ZX,PPA). This procedure
is iterated until convergence by calculating the new weights at
the new A and B. The convergence is quick, and a couple of
iterations are sufficient for a relative precision of 10−5 on A

and B.

APPENDIX C: PADÉ APPROXIMANT FOR CV

Here, we recall how to evaluate the specific heat at all
temperatures using sum rules.12,15 For Heisenberg models
on two-dimensional lattices, as no phase transitions are
expected at finite temperatures, the thermodynamic functions
are continuous. The entropy per spin versus the energy per
spin s(e) is more suitable than CV (T ) as it is constrained to
start at the ground-state energy e0 with an entropy s = 0 and
end at e = 0 and s = ln 2 at infinite temperatures. Moreover,
this is a monotonic increasing function β = 1/T = s ′(e) with
negative curvature CV = −s ′(e)2/s ′′(e).
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From the HT-series expansion of CV (T ) = ∑n
i=2 aiβ

i (see
Supplemental Material11 for the expression of ai versus
J1,J2,Jd ) with β = 1/T , we obtain the HT series of s(T )
and e(T ) as

s(T ) = ln 2 −
∫ ∞

T

dT ′ C
spin
V (T ′)
T ′

= ln 2 −
n∑

i=2

ai

i
βi + O(βn+1), (C1)

e(T ) = −
∫ ∞

T

dT ′Cspin
V (T ′)

= −
n−1∑
i=2

ai+1

i
βi + O(βn), (C2)

where we use s(T = ∞) = ln 2 and e(T = ∞) = 0. The HT-
series expansion of s(e),

s(e) =
n∑

i=0

bie
i (C3)

is obtained order by order.
We assume a low-temperature power law for CV (T ),

CV (T )T →0 � (C0T )α. (C4)

Then, s(e) ∝ (e − e0)1/μ for e around e0 where e0 is the
ground-state energy and μ = 1 + 1/α. We define an analytic
function in the interval [e0,0],

G(e) = s(e)μ

e − e0
. (C5)

The HT-series expansion for G(e) is obtained from

G(e) = − (ln 2)μ

e0

[
n∑

i=0

Fi(μ)
P (e)i

i!

] [
n∑

i=0

(e/e0)i
]

, (C6)

P (e) = s(e)

ln 2
− 1 =

n∑
i=2

b̃ie
i , (C7)

where b̃i = bi/ ln 2 (b1 = 0) and Fi(μ) = �(μ + 1)/�(μ +
1 − i) = μ(μ − 1) · · · (μ + 1 − i). Keeping only terms up
to order n defines GHT(e). Note that P (e)i starts at
order 2i.

Then, GHT(e) is transformed in all possible Padé approx-
imants noted GHT

d (e) where n − d and d are the numerator
and denominator degrees. We keep only the PPA denoted
GHT

d∗ (e) = Nn−d∗ (e)/Dd∗ (e) whose numerator and denomina-
tor have no zero inside [e0,0]. The value GHT

d∗ (e0) is related to
C0 [see Eq. (C4)] by GHT

d∗ (e0) = C0,d∗ (α + 1)/αμ.
From GHT

d∗ , we obtain s(e), its first derivatives,

sd∗ (e) =
[

(e − e0)
N (e)

D(e)

]1/μ

, (C8)

μ
s ′
d∗ (e)

sd∗ (e)
= 1

e − e0
+ N ′(e)

N (e)
− D′(e)

D(e)
, (C9)

μ
s ′′
d∗ (e)

sd∗ (e)
= μ

[
s ′
d∗ (e)

sd∗ (e)

]2

+ N ′′(e)

N (e)
− D′′(e)

D(e)
−

[
N ′(e)

N (e)

]2

+
[
D′(e)

D(e)

]2

− 1

(e − e0)2
. (C10)

Then, we deduce β(e) = 1/T (e) = s ′
d∗ (e) and C

spin
V (e) =

−[s ′
d∗ (e)]2/s ′′

d∗ (e).
To compare various PPAs, it is sufficient to look at

Gd∗ (e0):26 Indeed all Padé’s have the same series around e = 0,
and if they have the same value at e0, it is likely that their
variations will be very similar.

APPENDIX D: EVALUATING THE GROUND-STATE
ENERGY e0

We now show how to evaluate the ground-state energy if
unknown. We look for the value giving the highest number
of similar PPAs. As mentioned in the previous appendix, it is
sufficient to look at the values Gd∗ (e0). We define the quality
of the result as

Qe(e0) =
∑
d∗

1

∑
d∗

2 >d∗
1

M
(

Gd∗
1
(e0) − Gd∗

2
(e0)

ε

)
, (D1)

where M is a measure function as defined in Eq. (5).
Unfortunately, this function may be discontinuous because the
number of PPAs may eventually change. Then, the maximum
of Qe(e0) is found after a systematic search on a grid.
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