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Continuous-time quantum Monte Carlo method combined with dynamical mean field theory is used to calculate
both periodic Anderson model (PAM) and Kondo lattice model (KLM). Different parameter sets of both models
are connected by the Schrieffer-Wolff transformation. For degeneracy N = 2, a special particle-hole symmetric
case of PAM at half filling which always fixes one electron per impurity site is compared with the results of
the KLM. We find a good mapping between PAM and KLM in the limit of large on-site Hubbard interaction
U for different properties like self-energy, quasiparticle residue and susceptibility. This allows us to extract
quasiparticle mass renormalizations for the f electrons directly from KLM. The method is further applied to
higher degenerate case and to realistic heavy fermion system CeRhlIns in which the estimate of the Sommerfeld

coefficient is proven to be close to the experimental value.
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I. INTRODUCTION

Computational study of heavy fermion materials' is a
challenging theoretical problem. These systems are a subset of
intermetallic compounds that have a low-temperature specific
heat whose linear term is up to 1000 times larger than
the value expected from the free-electron theory. The heavy
fermion behavior has been found in rare-earth and actinide
metal compounds at very low temperatures (typically less
than 10 K) in a broad variety of states including metallic,
superconducting, insulating, and magnetic states.’

The physics of the heavy fermion systems is controlled by
the antiferromagnetic interactions of local magnetic moments
residing on the rare-earth or actinide atoms with the sea of
conduction electrons. The theoretical problem of a localized
spin interacting with the conduction electrons is the celebrated
Kondo problem®® whose solution is one of the outstanding
achievements of many-body physics. It describes how the
local spin is compensated as the temperature falls below a
characteristic Kondo temperature. Something similar occurs
in the heavy fermion materials, which represents an array of
such spins forming a Kondo lattice.

In this regime, each f orbital is occupied by a fixed
number of electrons, and all types of charge fluctuations are
approximately frozen due to a large Coulomb repulsion penalty
that the system pays when the electron is added/removed from
the shell. Therefore the low-energy degrees of freedom are
provided by localized spins only and the corresponding model
is known as the Kondo lattice model (KLM).>~!7 The KLM
effective Hamiltonian is obtained by using a second-order
perturbation with respect to hybridization'® of a more general
periodic Anderson model (PAM)'*~2! where the localized f
electrons can exchange with the conduction electrons bath
thus allowing both charge and spin fluctuations to occur. The
introduction of the limit of infinite dimensions and subsequent
development of the dynamical mean field theory (DMFT)
has allowed the study of the properties of both models in a
systematic manner.>>~28
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Due to developments in the electronic structure theory for
strongly correlated systems based on a combination of density
functional theory (DFT) in its local density approximation
(LDA) and DMFT,” studies of real heavy fermion materials
have recently appeared in the literature.’*~*? Here the develop-
ment of continuous-time quantum Monte Carlo method (CT-
QMC) for solving corresponding Anderson impurity problem
has played a central role.>3-3¢ These calculations are extremely
computationally demanding especially for the f elements such
as plutonium®’-*® where a large number of atomic states needs
to be kept in the calculation.

We have recently proposed a simplified approach®® where
instead of full solution of the Anderson impurity model, a
corresponding Kondo impurity (or more general Cogblin-
Schrieffer impurity)*” is studied to explore low-energy physics
of heavy fermion materials*'*? using the most recently
developed CT-QMC algorithm for this problem.***3 In this
regard, an interesting question arises on how exactly the scaling
between Anderson and Kondo impurity models occurs and
whether the low-energy properties of heavy fermion systems
such as electronic mass enhancement and, associated with
it, linear specific heat coefficient can be recovered from
a restricted solution provided by the conduction electron
self-energies available within the KLM. Such scaling behavior
has been explored*® for the temperature-dependent suscep-
tibility of the symmetric Anderson model using numerical
renormalization group techniques,” where a precise mapping
has been found to the spin—% Kondo Hamiltonian. Here we
explore a similar mapping between single-particle functions
such as the self-energy where upon increasing the value
of on-site Coulomb repulsion U, we report a convergence
of the conduction electron self-energy extracted from the
solution of the PAM to the one obtained within KLM.
We use CT-QMC method for the corresponding impurity
models and the dynamical mean field theory for achieving
self-consistent solution of the lattice problem. We utilize an
inverse relationship to extract the f-electron self-energies and
monitor how the low-frequency behavior of the AIM converges
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to the KLM limit. Our obtained mapping allows the extraction
of the mass renormalization of heavy quasiparticles directly
from the solution of the Kondo lattice Hamiltonian.

As an illustration, we consider an electronic structure of
CeRhIns where we compute hybridization functions of the f
electrons with conduction bath and evaluate Kondo exchange
coupling. We subsequently solve the Kondo lattice model
with CT-QMC and DMFT, compute conduction electron self-
energies, and then use the inverse mapping obtained from our
analysis of the model Hamiltonian to evaluate electronic mass
enhancement and specific heat coefficient of this system. Our
theoretical results are compared with available experimental
data.

This article is organized as follows. In Sec. II, we discuss
the mapping between periodic Anderson model and Kondo
lattice model in the limit of large U, and provide the
results for electronic self-energies, quasiparticle residues, and
susceptibilities. In Sec. III, application is presented to evaluate
electronic mass enhancement and Sommerfeld’s coefficient
for CeRhlIns. Section IV is the conclusion.

II. MODEL CALCULATION

A. Periodic Anderson and Kondo lattice models

One of the popular models to describe the physics of heavy
fermion materials is the periodic Anderson model.'”?! The
effective Hamiltonian is given by

Heamt = Y €koChyChko + €5 D fib fio + U D _niinl,
ko io i

+ > Vilel, fio + He), (1)

iko

where czm (cko ) creates (destructs) a conduction electron with
momentum Kk, spin (and orbital) o, and dispersion €k, ; fng
(fio) creates (destructs) an f electron with spin o and energy
€fonsitei;n i‘fT (nfl) is the number operator for f electron at
lattice site i with spin up (down); U is the on-site Coulomb
repulsion; Vi is the hybridization between f electrons and
conduction electrons which we assume to be k independent,
Vk =V, for simplicity.

In systems where the Hubbard U is large, the charge
fluctuations become effectively frozen and the ground-state
wave function has a little weight of configurations with the
number of f electrons different from its average number
iiy. This results in transforming the PAM Hamiltonian,
which eliminates the hybridization term in the first order
by Schrieffer-Wolff transformation. The second order in
V Hamiltonian is a famous Kondo lattice Hamiltonian®~!7
that describes interaction between spins of localized and
conduction electrons

Hygiv = Zekaclqcka +Jk Y S0, @
ko i

where S; represents the localized spin of the f electron at the
i site, the o is the spin operator of the itinerant conduction
electron and Jx is the Kondo coupling constant.

s=v(L 41 > 3)
K= —€f €f+U '
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For the half-filled case, €, = —U/2, and Jx is simplified to
4v?/U.

B. Dynamical mean field theory

Solutions of both models in a general case represent a
complicated numerical problem. Using dynamical mean field
theory, the algorithm breaks down into (i) the solution of the
corresponding (Anderson or Kondo) impurity problem and
(i1) the self-consistency loop over hybridization functions,
which enforces lattice periodicity.?

For the periodic Anderson model, the DMFT evaluates the
local Green function for heavy electrons

vz 1!
GG.DC)',Z:E jw, — €5 — X p(iwy) — —— | .
) (iwy) a iw, — €y rliwy) F—

Then, the bath Green function is defined
G iwy) = G iwy) + Bpliwn) = iw, — €5 — Aliw,)

and used as an input to the impurity solver. The latter produces
an impurity Green function

(imp) ; 1
Gf (iwy) = - - .
iw, — €5 — A(lw,) — Lyr(iw,)

from which a new self-energy can be found
Srion) = Gy (o) — G iw,).

The process is repeated by recalculating the lattice Green func-
tion with the new self-energy. The self-consistency condition
is when

G iwy) = G (iwn).

The Kondo lattice Hamiltonian can be obtained by consid-
ering the limit V2 — oo, U — 00,6y — —oo while keeping
V2 /€y = const. First, define a local Green function for
conduction electrons

GUiwy) = [iw, — ek — Telion)] ™"
k
where conduction electron self energy is given by

V2
iw, —€r — XLr(iw,)

Thus, in the DMFT self-consistent loop one can iterate over
conduction electron quantities: The bath Green’s function

GO i) = G (iwn) + Beliwn)

serves as the input to the Kondo impurity solver. The latter
produces an impurity Green’s function GE.' mp)(i w,) from which
the new conduction electron self-energy is found. The process
is repeated by reevaluating G (iw,).The self-consistency
condition is when

GI™(iw,) = GPiw,).

Several powerful methods such as exact diagonalization
or numerical renormalization group techniques have been
developed in the past to deal with the impurity models.
In this work we utilize a continuous-time quantum Monte
Carlo method*—3® that was originally proposed to deal with
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Anderson impurities but has been recently generalized for
Kondo (Cogblin-Schrieffer) type of impurities.*’

The density of states of conduction electrons is an input
to the simulation. Despite realistic materials, which may have
complex band structures, we use a simple constant density of
states to gain the physical insight from these calculations. The
half bandwidth D is set to 1 which provides the corresponding
units. As we are looking for a mapping between the two models
in the regime of large U, we first fix the Kondo coupling Jx
to some predetermined value. There are typically two phases
that emerge in the KLM: the antiferromagnetic RKKY phase
and the paramagnetic Fermi liquid phase, which compete with
each other on the scale of Jx.!! We are mainly interested in
the Fermi liquid behavior and consider the value of Jx = 0.3
in all our calculations. Second, we study two cases with the
effective f-electron degeneracies N = 2 and N = 4. For the
case N =2, the only nontrivial occupancy of the f-orbital
is 1, which for the particle-hole symmetric placement of the
conduction electron band results in the condition € y = —U /2,
for the f orbital to be half-filled. Although the system becomes
a band (Kondo) insulator in this case, the f-electrons states
are strongly renormalized by correlations, which is the basis
for the comparison of these two models.

C. DMFT solutions for N =2

We first discuss the solutions for the case N = 2. The behav-
ior of density of f-electron states obtained from the solution
of the periodic Anderson model for several values of Hubbard
U = 3,6,9 using the CT-QMC algorithm at imaginary axis
and analytically continued to the real frequencies is shown in
Fig. 1. We can see that the energy gap is opened up at the Fermi
level as we expected. As U increases, the peaks get narrower,
which correspond to smaller values of quasiparticle residue
zr. Since we fix Jg = 4V?/U, the hybridization increases
according to U and so does the hybridization gap.

The behavior of the conduction electron density of states
from the PAM calculation is shown in Fig. 2 where we also
see the gap that gets opened at the Fermi energy. The result

N=2, T=0.01,Jx=0.3

FIG. 1. (Color online) Density of f-electron states obtained from
the solution of the periodic Anderson model for the values of Hubbard
U =3,6,9.
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N=2, T=0.01,J,=0.3
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FIG. 2. (Color online) Conduction electron density of states
obtained from the solution of the periodic Anderson model for the
values of Hubbard U = 3,6,9. Also shown the result obtained from
the Kondo lattice simulation.

of the simulation using the Kondo lattice model is shown here
as well for comparison. Upon increasing U, we see that the
conduction electron DOS of the PAM tends to the infinite U
limit represented by the KLM calculation.

1. Self-energies

We first obtain the f-electron self-energy from the PAM
calculation. Then we extract the conduction electron self-
energy and compare with the data of the KLM simulation. We
present such comparison in Fig. 3 where we plot SX.(iw,)
for several values of U and U — oo limit corresponding
to KLM. We monitor a slow convergence of the PAM self-
energy towards its KLLM value, although even for U = 10 the
discrepancy between the two is still noticeable.

We now address the question of U — oo limit for the
f-electron self-energies, which numerically corresponds to
the Kondo regime, and compare these data with our scaling

N=2, T=0.01,J;,=0.3
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FIG. 3. (Color online) Conduction electron self-energy of the
periodic Anderson model with N = 2 calculated for several values of
U and the conduction electron self-energy of the Kondo lattice model
that corresponds to U — oo limit.
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behavior established analytically. First, notice that the low-
frequency expansion for both f-electron and conduction
electron quantities can be derived without a problem

S pelion) = Tpe(0) +iw, (1 - 2;1L),

which leads us to
V2
2c(0)
_ [%Ec(o)]z Ze
/C
This formula has been used in our recent LDA + DMFT
work to extract mass renormalization parameters in several
heavy fermion compounds*? using simulations with the Kondo
lattice.

Unfortunately, this approach will not work for the model
considered here since for the particle-hole symmetric case
of the Kondo insulator the conduction electron self-energies
diverge to produce an energy gap in the excitation spectrum.

We therefore look for a scaling behavior in a different way.
We write

Zf(O) = —€f —
“

VZ

Ef(l(,()n) = ia),, —€f — m
c n

&)
and noticing that we target the U — oo limit, we replace V2
with %J x U, and divide both parts by U. For the imaginary
part we obtain the following scaling behavior

I8 p(iw)) TS (iw)
U Ao

which expresses the large U limit of the PAM self-energy via
the quantities available within KLM.

The self-energies from both models can now be directly
compared. Figure 4 shows the behavior of 3X¢(iw,)/U for
several values of U together with the corresponding data
extracted from KLM. From the figure we see that as U
increases the PAM self-energy converges to that of the KLM.
The plot actually includes both the intermediate regime and
the Kondo regime. When U < 2 the two Hubbard bands are

(6)

N=2, T=0.01,J,=0.3

0 Q. T T T
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FIG. 4. (Color online) The convergence for the f-electron self-
energy obtained from the periodic Anderson model with N = 2 upon
increase in the interaction U. The limiting behavior of this quantity
extracted from the solution of the Kondo lattice model is also plotted.
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within the conduction electron band, which has a bandwidth of
2 in our units. In this case the self-energy deviates more than
the datafor U > 2. As U goes to 8, the self-energies from both
models collapse at low energies.

Finally, we notice here that the U — oo limit produces
SZs(iw,)/ U that grows linearly with the frequency, which is
exactly the case of the self-energies obtained in slave-boson
type of methods for solving the impurity problems*’*% or
within quasiparticle Gutzwiller approximation.*’

2. Quasiparticle residues

Our self-energy results show qualitative convergence be-
tween the two models. To get quantitative agreement we
further check the quasiparticle residues that we extract from
the low-frequency behavior of the self-energies. These are
related to renormalized effective masses for the quasiparticles
responsible for the enhanced specific heat coefficient, which is
one of the central properties of systems with heavy fermions.

The CT-QMC algorithm works on an imaginary time axis,
which after the Fourier transformation gives us the data on
the imaginary frequency axis. Analytically continued to the
real axis, the real part of the self-energy around the Fermi
level exhibits a linear behavior with the slope determining
the electronic mass enhancement, while its imaginary part
exhibits a quadratic behavior, which is a known result of
the Fermi liquid theory. Despite problems associated with
numerical noise that prevents us to extract accurate data at
real frequencies using analytical continuation, we can find the
quasiparticle residue from the imaginary axis data as follows:

~S(; -1
L (1 3 03X (iw,) ) . o
w,—0

d(iwy)
For the KLM, according to Eq. (5), the zy can be written as

(KIM _ _AnT |2 (i T)|?
! JxU I8 (inT)’

®)

Although this expression is actually valid only for U =
00, where zKIM becomes zero, we expect that it gives an
approximate value for PAM with U < oo.

We present our comparisons between the two quantities in
Fig. 5 where we plot the quasiparticle residue extracted from
PAM as a function of U as well as the one extracted from the
KLM according to Eq. (8). Also plotted for comparison is the
quasiparticle residue calculated using the slave-boson method
as described in Ref. 48.

From the plots, we can quantitatively see the convergence
from the result obtained from PAM to the one obtained by
KLM. When U reaches 10, the KLM overestimates z; of
the PAM data by about 30%. While the slave-boson method,
a very fast calculation, demonstrates a similar behavior, it
overestimates the PAM data by about 100%.

3. Susceptibilities

Since the KLM freezes the spatial fluctuations but keeps
the essential magnetic properties, the corresponding spin
susceptibilities x (T) should agree between the PAM and KLM
at least for low temperatures. Indeed, these quantities have
been calculated and compared against each other for the cor-
responding impurity models using numerical renormalization
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N=2, T=0.01,J,=0.3
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FIG. 5. (Color online) Comparison between quasiparticle
residues z; calculated as a function of Hubbard U using periodic
Anderson model with N = 2, Kondo lattice model as well as a
slave-boson method described in Ref. 48.

group methods long time ago*® where a precise mapping
between Anderson impurity and spin-% Kondo impurity has
been observed.

We present our own calculations in Fig. 6 where we
plot T x(T) against the temperature for several values of
U calculated using the PAM as well as the data extracted
from the KLM. The comparison shows a nice convergence
for susceptibility within our chosen temperature range. The
deviation may result from the combination of thermal effect
and charge fluctuations. We see that the convergence is worse
here than that for the quasiparticle residues discussed earlier,
but we believe that the susceptibilities should map precisely to
each other at lower temperatures.

D. DMFT solutions for N =4

The N = 2 case with one localized electron leads to the
Kondo insulator state which is topologically special. However,

N=2,J,=0.3

xT

U=15 —o— |
01 £ v
Kondo ~-e--
0 1 1 1 1 1 1 1
0.01 0.02 0.03 004 0.05 006 0.07 008 0.09 0.1
T

FIG. 6. (Color online) Calculated using the periodic Anderson
model with N =2 temperature dependence of spin susceptibility
(times the temperature) for several values of Hubbard U as well as
the data extracted for the Kondo lattice model.
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N=4, T=0.01,];=0.3
14 T T T

FIG. 7. (Color online) Density of f-electron states obtained from
the solution of the periodic Anderson model for the values of Hubbard
U =3,5,10.

our method can be generalized to larger orbital degeneracy,
where any integer occupancy of the f shell can be explored.
Also the Cogblin-Schrieffer model is more favorable. Below
we consider the case with N =4 and ny = 1, which is away
from particle-hole symmetry. As is the case with N = 2, we
fix the value of the Kondo coupling Jx to 0.3. For each value
of U that we input to the PAM calculation, there are two
remaining parameters, the impurity level € ¢, and the value of
hybridization V2 that should be searched for to obtain n =1,
Jx =0.3.

The density of f-electron states obtained from the solution
of the periodic Anderson model for several values of Hubbard
U = 3,5,10is shown in Fig. 7. Away from particle-hole sym-
metry, this shows a Fermi-liquid behavior, i.e., a quasiparticle
peak at the Fermi level instead of the hybridization gap. As U
increases, the trend is similar to the N = 2 case, Fig. 1.

The behavior of the conduction electron density of states
from the PAM calculation is shown in Fig. 8, together with the

N=4, T=0.01,J,=0.3

0.6 T T T T T
04
< 03
02
U=3 ——
01 F (=3
U=10 -oeoem
Kondo -+~
0 1 1
-0.4 -0.2

FIG. 8. (Color online) Conduction electron density of states
obtained from the solution of the periodic Anderson model for the
values of Hubbard U = 3,5,10. Also shown is the result of the
simulation with the Kondo lattice.

155106-5



R. DONG, J. OTSUKI, AND S. Y. SAVRASOV

N=4, T=0.01,J;=0.3

ImX,.

FIG. 9. (Color online) Conduction electron self-energy of the
periodic Anderson model with N = 4 calculated for several values of
U and the conduction electron self-energy of the Kondo lattice model
that corresponds to U — oo limit.

result of the simulation using the Kondo lattice model. Upon
increasing U, the conduction electron DOS of the PAM tends
to the infinite U limit given by the Kondo lattice.

Conduction electron self-energies IX.(iw,) calculated
within PAM for several values of U as well as within KLM
corresponding to U — oo limit are compared in Fig. 9.
We see that the convergency of IX.(iw,) is rather slow
when U increases similar to the N =2 case presented in
Fig. 3. The low-frequency behavior of I¥.(iw,) shows that
the hybridization gap is no longer opened at the Fermi energy
and the system remains metallic contrary to the particle-hole
symmetric case of the Kondo insulator where IX.(iw,)
diverges atiw, — 0as seen on Fig. 3. Here, the low-frequency
slopes determine quasiparticle residues z. for conduction
electrons which display a somewhat faster convergence to the
Kondo limit upon increase in U.

To compare how X (iw,) scales to the Kondo limit, we
start from Eq. (5), take its imaginary part and divide by U on
both sides. Using Eq. (3), the formula becomes

SZp(iwn) iwy I ((w,)
U g TR = ar ©
<

where n = — ¢ is a dimensionless parameter which affects the
electron counting at impurity site.

Figure 10 presents the behavior of SX ¢(iw,)/U calculated
within PAM for several values of U together with the
corresponding data extracted from KLM. From the figure we
see that as U increases, the PAM self-energy maps into its
U —> oo limit of the KLM.

The low-frequency behavior of X (iw,) shown in Fig. 9
may lead to a conclusion on the presence of some exotic non-
Fermi liquid behavior but this is actually only a temperature
effect. Our model with N =4 (Cogblin-Schrieffer model
and multiorbital periodic Anderson model) has the ordinary
Kondo fixed point and does not show undercompensated or
two-channel Kondo effect. Indeed, the f-electron self-energy
in Fig. 10 clearly shows a Fermi liquid behavior.

We have finally extracted the values for quasiparticle
residues from the low-frequency slopes of IX ¢(iw,), which
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N=4, T=0.01,J;=0.3
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FIG. 10. (Color online) The convergence for the f-electron self-
energy obtained from the periodic Anderson model with N = 4 upon
increase in the interaction U. The limiting behavior of this quantity
extracted from the solution of the Kondo lattice model is also plotted.

can be compared with the values of z, that we obtain from
the KLLM calculation either using the approach that leads us
to Eq. (8) or using the low-frequency behavior of X (iw,)
that leads us to Eq. (4). We present such comparison in Fig. 11
where the behavior of z ; is plotted against Hubbard U. We see
that starting from U = 10, the quasiparticle residues computed
from PAM and KLM become very close to each other.

III. APPLICATION TO CeRhlIns

Realistic heavy fermion materials have much more compli-
cated electronic structures than we used in our model calcu-
lations. The f orbitals are fourteenfold degenerate and split
in the presence of spin-orbit coupling and crystal-field effects.
This makes LDA + DMFT calculations with full solution of
Anderson impurity problem dramatically heavy. With the ad-
vantage of reaching lower temperature range, LDA + DMFT
simulations with Kondo (or Cogblin-Schrieffer) impurity was

N=4, T=0.01,J,=0.3

1 - T T T T T T T
Anderson —+—

Equation (8)
Equation (4) -
08 | R

06 f i

Zr

FIG. 11. (Color online) Comparison between quasiparticle
residues z; calculated as a function of Hubbard U using periodic
Anderson model with N = 4, and the values extracted from the Kondo
lattice model using two different approaches described in text.

155106-6



SCALING BETWEEN PERIODIC ANDERSON AND KONDO ...

established.* In this method, the first step is to find the local
hybridization function A,(€) between fully localized f and
conduction spd electrons, where subscript « refers to a par-
ticular representation that tries to diagonalize a general matrix
Aome (€) by taking advantage of spin-orbit and crystal-field
symmetries. This is achieved by using the so-called Hubbard I
approximation® where purely atomic f-electron self-energy
is entered to the LDA 4+ DMFT calculation. Knowing A, (¢),
the Kondo coupling constant Jx and the initial Green’s
function of conduction electrons can be extracted.

Dcumﬂ' X Arx (€) cutoff
Ga(iwn)zf // deIAy(e), (10)
—Deytoft Deyoft

and
/ Dcu[oﬂ
B Lul(!ff
These are required for solving realistic Kondo lattice problem
with Jg calculated from the Schrieffer-Wolff transformation,
Eq. (3).
Our target material is CeRhlns, which is believed to have
the most localized f electrons in the 115 family. The spin-

orbit coupling and crystal fields of the tetragonal structure
effectively reduce the degeneracy and make the I"; doublet of

3A (e)

Y

T=0.002 [eV] CeRhlns T,
01 T T T T

0.09 b
0.08 - b
0.07 b
0.06 b
0.05 b
0.04 - b
0.03 E

ReX, [eV]

0.02 b
0.01 b

0 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25

o, [eV]

T=0.002 [¢V] CeRhing T
0 : : : :

-0.015 | b

Imz, [eV]

-0.025 R

-0.035 : : : :
0 0.05 0.1 0.15 0.2 0.25

o, [eV]

FIG. 12. (Color online) Conduction electron self-energies
RE.(e)(top plot) and IX.(e) (bottom plot) of I'; states for
CeRhlns at temperature 7' = 0.002 eV(~23 K) calculated using the
LDA + DMFT method with the Kondo lattice.
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TABLE 1. Calculated LDA density of states at the Fermi en-
ergy, N(0) (states/eV/cell), the hybridization V2 (eV?), estimated
quasiparticle residue z ¢ for the f electrons as well as predicted and
experimental values of the Sommerfeld coefficient y (mJ/mol/K?)
for CeRhlIns.

materials N(O)pa V2 f 14 Vexp

CeRhlns 2.21 0.16 0.01255 414 400°

4Reference 51.

the j = 5/2 state to be the ground state. Therefore at very low
temperatures, a single localized f electron resides at the I';
doublet and we have the N = 2 case discussed above in the
model calculation.

A general LDA +DMFT calculation for this material
has been done in the former work®® with € F=-25¢eV
and U =5 eV which are the typical values for Ce-based
compounds. Here we provide an analysis of its low-energy
physical properties. Figure 12 shows calculated conduction
electron self-energies, SRX..(¢)and IX.(¢), for the I'; state
from our LDA + DMFT simulation with the Kondo lattice.
We clearly see that the imaginary part of X, tends to diverge at
leastto T &~ 23 K although this behavior could result from the
temperature being not low enough in our simulation. However,
a conventional low-frequency expansion of the self-energy and
the connection between z ¢ and z., Eq. (4), cannot be utilized
to estimate the quasiparticle residue for the f electrons and
the Sommerfeld coefficient y.

Here we use our mapping method to extract z; exactly as
we illustrated for our model calculation. In this way, we first
estimate the quasiparticle residue z; and, second, evaluate the
renormalized density of states at the Fermi level N(0)ef =
N(O)Lpa/zs. Then the Sommerfeld coefficient can be found

y = 37 Neii(0). 12)

All calculated properties are summarized in Table I. It can be
seen that our estimate for y is very close to the experimental
value which indicates that our simulation is sufficiently
accurate to describe this material.

IV. CONCLUSION

We have studied a mapping of the periodic Anderson
model to the Kondo lattice model in the limit of U — oo for
single-particle functions such as the self-energy. The crossover
occurs at the values of interaction U = 10D where the models
become equivalent. This allowed us to map the quasiparticle
residue z ; of the f electrons and extractits values directly from
the Kondo lattice model. We applied the method to realistic
heavy fermion system CeRhlns where our estimates for the
Sommerfeld coefficient agree well with the experiment.
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