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Theory for charge and orbital density-wave states in manganite La0.5Sr1.5MnO4
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We investigate the high-temperature phase of layered manganites, and demonstrate that the charge-orbital phase
transition without magnetic order in La0.5Sr1.5MnO4 can be understood in terms of the density-wave instability.
The orbital ordering is found to be induced by the nesting between segments of Fermi surface with different
orbital characters. The simultaneous charge and orbital orderings are elaborated with a mean-field theory. The
ordered orbitals are shown to be dx2−y2 ± d3z2−r2 .
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I. INTRODUCTION

The manganese oxides are prototype materials for the rich
physics of the interplay among spin, charge, and orbital degrees
of freedom, which has been an important issue in correlated
electron systems.1–3 Though intensive theoretical studies on
the phase transitions of manganites have been carried out,
most of them concentrate on the ground state, where the
kinetic energy is subject to the static spin order hence the
orbital and charge ordering may emerge.4–7 Nevertheless, in
the single-layered perovskite La0.5Sr1.5MnO4, which we will
focus on in this paper, the spin and charge-orbital phase
transitions are separated. With decreasing temperature, before
the antiferromagnetic spin ordering that emerges at T = TN ≈
110 K,8 a charge-orbital ordering phase transition emerges at
T = Tco ≈ 220 K.8–10 The charge density has a checkerboard
distribution, and the orbital has an ordered wave vector
(π/2,π/2). Another observation that may put doubt on the rel-
evance between magnetic and charge-orbital orderings is that
although similar charge-orbital orderings are experimentally
observed in single-layer and bilayer manganites, the intralayer
magnetic ordering is antiferromagnetic for the former but
ferromagnetic for the latter. To understand such a phenomenon,
it would be important to investigate the mechanism of charge
and orbital ordering in the absence of spin order.

The physics of manganites is usually described by the strong
coupling approaches. For undoped manganite LaSrMnO4, the
high-temperature orbital ordering could be achieved from
the strong coupling approach.11 And for the half-doped
La0.5Sr1.5MnO4, the low-temperature phase transition has been
studied previously.12 But various angle-resolved photoemis-
sion spectroscopy (ARPES) experiments on different layered
manganites suggest an essential connection between the Fermi
surface (FS) nesting and the charge-orbital ordering in this
family of materials. La1−xSr1+xMnO4 is insulating for all Sr
concentrations x. However, the remnant FS of La0.5Sr1.5MnO4,
which is about 190 meV below the chemical potential, has
been probed by ARPES.13 The observed fermiology consists
of a large holelike FS around (π,π ) and a very small electron
pocket around (0,0). The segment of the holelike FS is quite
flat, which may induce good FS nesting and lead to charge
and orbital orderings.13 There are other ARPES experiments
that also indicate nesting-induced charge-orbital ordering.

In an early ARPES measurement of the bilayer manganite
La1.2Sr1.8Mn2O7,14 the nesting wave vector (0.6π,0) is found
to be consistent with the modulation vector observed by
x-ray and neutron experiments.15 Another very recent ARPES
measurement on bilayer manganite (La1−zPrz)1.2Sr1.8Mn2O7

shows addition evidence of the FS nesting-induced ordering,
where the observed FSs are almost straight lines, and the
nesting wave vector (π/2,0) is confirmed as a modulation
vector above the ferromagnetic transition temperature by
elastic high-energy x-ray diffraction measurement.16 It will
be beneficial to understand the underlying physics of the
observed relation between the features of FS and charge-orbital
orderings by investigating the high-temperature charge-orbital
phase transition from the weak-coupling approach.

In this paper, we focus on the high-temperature charge-
orbital phase transition of single-layer La0.5Sr1.5MnO4. We
propose that the basic physics of the high-temperature phase
and its phase transition may be understood in the large Hund’s
coupling limit, where the electronic structure is described by
twofold Mn-3d eg-orbital electrons, whose spins are confined
to be parallel to the local t2g spins.2 The transition to the
charge and orbital ordered states is driven by FS nesting and
the interactions between eg electrons, and can be examined
by using mean-field approximations. Our theory explains
the simultaneous orbital and charge orderings in the single-
layered La0.5Sr1.5MnO4. The theory may also be applied
to understand the experiments of the bilayer compounds
La1.2Sr1.8Mn2O7

14,17 and (La1−zPrz)1.2Sr1.8Mn2O7.16

II. MODEL HAMILTONIAN

We first consider the full interaction Hamiltonian, which is
given by

HI = U
∑
iα

niα↑niα↓ +
(

U ′ − 1

2
J

) ∑
i

ni1ni2

− 2J
∑

i

�si1 · �si2 + J
∑

i

c
†
i1↑c

†
i1↓ci2↓ci2↑

− J
∑
iα

�siα · �Si + V
∑
〈ij〉

(ni1 + ni2)(nj1 + nj2),
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where U , U ′ are on-site intraorbital and interorbital direct
Coulomb repulsive interactions, respectively, and J > 0 the
exchange Coulomb interaction or the Hund’s rule coupling.
By symmetry, U = U ′ + 2J . V is the nearest-neighbor (NN)
site Coulomb interaction. �siα is the spin of an electron of orbital
α at site i. We denote α = 1 for dx2−y2 orbital and α = 2 for
d3r2−z2 orbital. �Si is the spin- 3

2 of three localized t2g electrons
at site i, and niα = niα↑ + niα↓ is the total electron number
operator for a given orbital. In our model, the interorbital
Coulomb repulsion between eg and t2g electrons is a constant,
which can be absorbed into the chemical potential.

In the large Hund’s coupling limit, where U , U ′, J are much
larger than the kinetic energy term H0 below, we shall assume,
however, U ′ − J to be comparable with the kinetic energy,
and may even be treated as a perturbation from a technical
point of view. We may argue for this limit that in a metallic
phase, the Coulomb interaction U ′ has a good screening, while
the Hund’s coupling J is not screened, so that U ′ − J could
be small. In this limit, we follow Ref. 2 to assume that �siα is
parallel to �Si , and doubly occupied eg electrons on the same
site is allowed because it costs an energy of U ′ − J . Since the
local spin degrees of freedom of eg electrons are frozen, the
eg electrons behave like spinless fermions. Note that the spin
degrees of freedom of the eg electron is frozen only locally, and
the spins at different Mn sites, hence the spins of eg electrons
at different sites, may have different polarizations. HI in the
large Hund’s coupling limit then takes the form,

HI = U0

∑
i

ni1ni2 + V
∑
〈ij〉

(ni1 + ni2)(nj1 + nj2), (1)

with U0 = U ′ − J , and the spin polarization of the eg electrons
is implied.

The kinetic energy term of the eg electrons can be described
by a NN hopping matrix of the two eg orbitals. The single-
particle part of the Hamiltonian reads,

H0 = −
∑

〈ij〉,α,β

t
α,β

iσi ,jσj

(
c
†
iασi

cjβσj
+ H.c.

)
, (2)

where σi is the spin orientation of the t2g electrons at site i.
The hopping integrals between the two sites depend on the
relative spin orientation of the two spins.2 In the semiclassical
limit, one will have t

α,β

iσi ,jσj
= cos ( θij

2 )tα,β

ij with θij the relative

angle of the two spins at sites i and j .18

The solution of H0 strongly depends on the spin con-
figurations of the localized t2g electrons. Here we consider
a high-temperature phase where the spins are random, and
approximate cos ( θij

2 ) ≈ 〈cos ( θ
2 )〉, which is an averaged value

of the solid angle and is independent of the pair 〈ij 〉. Then
we have t

αβ

iσi ,jσj
= 〈cos ( θ

2 )〉tαβ

ij , and H0 is reduced to a usual

tight-binding model for spinless fermions.19,20 The prefactor
〈cos ( θ

2 )〉 represents a reduction of the hopping integral due to
the random spins.21 Note that the average value of cos ( θ

2 ) in
the solid angle space is 2/3. H0 then can be written as

H0 = −
〈

cos

(
θ

2

)〉∑
�kαβ

2tαβγαβ(�k)c†�kα
c�kβ, (3)

FIG. 1. (Color online) FS of the spinless fermion model H0. (a)
is for eg electron density n = 0.5 per site, and (b) is for n = 0.6. Red
and blue colors on the Fermi sheets represent the states mostly orbital
dx2−y2 or d3z2−r2 , respectively. The upper right 1

4 BZ in (a) and (b)
show the FS observed in the ARPES experiments on single-layered
La0.5Sr1.5MnO4

13 and on bilayer La1.2Sr1.8Mn2O7,17 respectively. The
colors used in ARPES data represent intensity, while the blue dots in
(b) are added here to guide the eyes.

where tαβ is the hopping integral along the x-axis. γ11 =
γ22 = γ+, γ12 = γ21 = γ−, and γ±(�k) = cos kx ± cos ky . In
what follows, we shall study H = H0 + HI by solving H0 first
and studying the effect of HI in Eq. (1) from a weak-coupling
approach.

H0 can be diagonalized and the eigenenergy is given by

ε± = −〈cos θ/2〉(t11 + t22)γ+(�k)

±
√

(t11 − t22)2γ+(�k)2 + 4(t12)2γ 2−.

The hopping matrix elements are related by Slater-Koster
formalism22 if we consider the direct hopping between the
two NN Mn sites, from which we obtain t22 = t11/3 and
t12 = t21 = −t11/

√
3. Hereafter, we will take 〈cos θ/2〉t11 as

the energy unit.
Figure 1(a) shows the calculated FS for the quarter filled

eg electrons, namely 0.5 electron per Mn site, relevant to the
single layer La0.5Sr1.5MnO4. As we can see, a large segment
of the FS is quite flat, and there is a clear nesting at the wave
vector �q = (π/2,π/2), which suggests possible instabilities
toward ordered states. Figure 1(b) shows the FS for electron
number 0.6 per Mn site, corresponding to the electron density
of the bilayer compound La1.2Sr1.8Mn2O7,17 where the bilayer
splitting can be neglected. It is seen that the shape of the FS in
each plot is in good agreement with the ARPES results.

III. ORBITAL DENSITY-WAVE INSTABILITY

We now study the effect of HI . We will first identify
the most plausible instabilities by using the random phase
approximation (RPA) analysis. We then apply a mean-field
approach to examine the phase transitions. To study the
density-wave instabilities, we define the following orbital (o)
and charge (c) density operators,

ρo
i = ni+ − ni− = c

†
i1ci2 + c

†
i2ci1,

(4)
ρc

i = ni+ + ni− = c
†
i1ci1 + c

†
i2ci2,
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where the orbitals + and − are linear combinations of the
orbitals dx2−y2 and d3z2−r2 , c

†
i± = 1√

2
(c†i1±c

†
i2). As it will

become clear later, the orbital ordering in this problem is
associated with orbitals + and −, instead of 1 and 2. We
introduce a static susceptibility matrix χ̂ , whose element is
defined as

χαα′,μ′μ(q) = 1

2

∫ β

0
dτ 〈Tτραα′ (�q,τ )ρμμ′(−�q,0)〉, (5)

where ραα′ (�q) = ∑
�k c

†
�k+�q,α

c�k,α′ .
The orbital and charge susceptibilities are then given by

χo(�q) = 1
2

∑
αμ χαᾱ,μμ̄(�q),

(6)
χc(�q) = 1

2

∑
αμ χαα,μμ(�q).

Within the RPA, we have χ̂ = (Î + χ̂ (0)Û c)−1χ̂ (0), where Î

is an identity operator, and χ̂ (0) is the matrix of the bare
susceptibility,

χ
(0)
αβ,μν(�q) = 1

N

∑
�kmn

aα∗
m (�k + �q)aβ

n (�k)aν∗
n (�k)aμ

m(�k + �q)

× [f (εn(�k + �q)) − f (εm(�k))]/[εm(�k)

− εn(�k + �q) + iη],

where m and n are the band indices, and aα
m(�k) = 〈α,�k|m,�k〉 is

the orbital weight. We arrange the matrix index from 1 to 4 as
(αβ) = (11), (22), (12), and (21). The interaction matrix Û c is
of the form Û c = Û 1 ⊕ Û 2, where Û 1 = V (�q)σ0 + [V (�q) +
U0]σ1, and Û 2 = −U0σ0 with σ0 an identity matrix and σ1 the
first Pauli matrix.

In the matrix representation described above, the upper left
2 × 2 block in χ̂ describes charge part and the lower right
block describes the orbital part, as we can see from Eqs. (6).
While Û c is block diagonal, χ (0)(�q) is generally not block
diagonal, so that the charge and orbital are coupled in the
response functions. A special case is at qx = ±qy , where the
off-diagonal components of χ̂ vanish due to the symmetry in
the band structure,23 which makes the study of the instability
at �q = (π/2,π/2) and �q = (π,π ) simpler. In this case, the
interorbital nesting connecting the FS segments with different
orbital character favors the ± orbital ordering. To illustrate this
point, we define orbitals c†α = cos(ψ)c†1 + sin(ψ)c†2 and c

†
β =

sin(ψ)c†1 − cos(ψ)c†2, with orbital density ρo
ψ = c†αcα − c

†
βcβ .

In the vicinity of orbital-density-wave instability, because
of the dominant role of interorbital nesting, we have χo

ψ ≈
cos(ψ) sin(ψ)

∑
αμ χαᾱ,μμ̄, which reaches its maximum with

ψ = π/4. Therefore the ordered orbitals are + and − (for a
more detailed discussion, see Ref. 24).

We have found three types of instabilities in our calcula-
tions, namely the orbital ordering at (π/2,π/2) and at (π/2,0),
and the charge ordering at (π,π ). Note that the orbital orderings
are related to the FS nesting, while the charge ordering is
not. In Fig. 2 we plot the susceptibilities at corresponding
wave vectors as functions of interaction strengths. As we can
see, the orbital susceptibilities at (π/2,π/2) and (π/2,0) are
greatly enhanced by the interorbital repulsion U0, and the
susceptibility at (π/2,π/2) is much larger at large U0 with
a critical value of U0 ≈ 4 for the ordering. Note that the
orbital susceptibility based on the ordering between orbitals

FIG. 2. T = 0 RPA susceptibilities. (a) Orbital susceptibility
χo(�q) at �q = (π/2,π/2) and (π/2,0) for orbital ordering between
+ and − with V = 0. The dotted line is the susceptibility for orbital
ordering between orbitals 1 and 2. (b) Charge susceptibility χc(�q) at
�q = (π,π ) with U0 = 0.

dx2−y2 and d3z2−r2 , χo
ψ=0(π/2,π/2), is much weaker as we

can see from the dotted line in Fig. 2(a). For the charge
ordering at (π,π ), as plotted in Fig. 2(b), χc diverges at
V ≈ 1.1, which indicates a phase transition to (π,π ) charge
ordering.

The picture of the nesting-induced density wave could also
be applied to understand the ordering of the bilayer manganite
La1.2Sr1.8Mn1.2O7, which has a ferromagnetic-metal ground
state. Since the bilayer splitting is not observed in ARPES
experiments,14,16 we simply ignore it. The FS with orbital
character is shown in Fig. 1(b). As seen there are basically two
nesting wave vectors, the intraorbital one is q1 = (0.6π,0), and
the interorbital one is q2 = (0.6π,0.6π ). It is claimed that q1

is the charge-ordering wave vector,15 which is consistent with
our understanding that intraorbital nesting favors CDW. The
nesting at q2 should induce an orbital order, but so far there
is no experimental evidence for this ordering. Interestingly,
peaks of static susceptibility at wave vectors around q2 are
reported in a first-principle study.25

IV. PHASE DIAGRAM AND PHASE TRANSITION

The RPA calculations above have indicated two possible
major instabilities, the (π/2,π/2) orbital order (OO) and (π,π )
charge order (CO). Below we use a mean-field approach to
examine the interplay between the two orderings. We introduce
two mean fields

〈
ρo

i

〉 = 〈c†i1ci2 + c
†
i2ci1〉 = ρo cos(q1 · ri + φ),

(7)〈
ρc

i

〉 = 〈c†i1ci1 + c
†
i2ci2〉 = ρc cos(q2 · ri) + ρ̄,

with q1 = (π/2,π/2), q2 = (π,π ), and ρ̄ = 0.5. ρo and ρc are
the order parameters of charge and orbital, respectively, while
φ is the phase shift in the real space of the orbital order. The
mean field Hamiltonian then reads

HMF = H0−U0

4

∑
k

[
ρoe

iφ(c†k,2ck + q1,1 + c
†
k,1ck+q1,2) + H.c.

]

− 4(V − U0/8)ρc

∑
kα

c
†
k,αck+q2,α. (8)
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FIG. 3. (Color online) (a) Phase diagram at zero temperature. CO: charge-ordered phase; OO: orbital-ordered phase. (b) Shapes of ordered
orbitals + and −. (c) Illustration of the ordered states in real space. Electron charge is represented by the size of the circle. Orbitals are
represented by colors: Blue for dominant orbital + , green for dominant orbital −, and gray for orbital-disordered site.

The self-consistent equations for the mean fields are

ρoe
iφ = 2

N

∑
k

〈
c
†
k+q1,1

ck,2 + c
†
k+q1,2

ck,1
〉
,

(9)

ρc = 1

N

∑
kα

〈
c
†
k+q2,α

ck,α

〉
.

By solving HMF together with the self-consistent equations
(9), we obtain the zero-temperature phase diagram, which is
shown in Fig. 3. In the calculation, we found only two possible
phase shifts φ for the orbital ordering, φ = π/4 and φ = 0,
which are denoted as OO(π/4) and OO(0), respectively, in the
phase diagram. The real space modulation of each phase is
sketched in Fig. 3(c). One of the main features of the phase
diagram is that the system is in the coexistence phase of CO
and OO(0) in a large parameter space of (U0,V ). The phase
with just the orbital ordering appears in a tiny phase space with
very small V and large U0. We also note that there is a sudden
change on the orbital-ordering phase from OO(π/4) in the
absence of CO to OO(0) in the presence of CO. Below we shall
provide some understanding of the latter. Let us first consider
the orbital-ordered only phase. The preferred phase OO(π/4)
may be understood as the result of losing less kinetic energy
due to the orbital ordering. The amplitude of the orbital-order
parameter 〈ρo

i 〉 for the OO(π/4) phase is ρo/
√

2, while the
amplitude for the OO(0) phase is ρo. However, the situation is
very different in the presence of charge ordering. In that case,
the local orbital order 〈ρo

i 〉 is bound by the local charge density
of electrons 〈ρi〉. Because 〈ρi〉 are reduced on some sites, the
charge ordering suppresses the OO(π/4) phase. On the other
hand, the OO(0) is consistent with and may even be enhanced

by the charge ordering. In the limit of strong charge ordering
ρc = 1/4, the kinetic energy term diminishes, and 〈ρo〉 = 1
in the phase OO(0), in comparison with a maximum value of
〈ρo〉 = 0.5 in the absence of charge ordering. In other words,
the presence of charge order will induce the OO(0) phase. The
transition from OO(π/4) phase to CO + OO(0) phase is the
first order.

In Figs. 4(a)–4(c), we plot the orbital and charge order
parameters as functions of V for various U0 at T = 0. At

0
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ρ c
, ρ

o

V

(c)

U0=5.5
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 0.4

 0.6

 0.8

1

0  0.5 1  1.5 2  2.5 3

ρ c
, ρ

o

V

(b)

U0=3

0

 0.2

 0.4

 0.6

 0.8

1

0  0.5 1  1.5 2  2.5 3

ρ c
, ρ

o

V

(a)

U0=1

0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6

0  0.1  0.2  0.3

ρ c
, ρ

o

T

(d)

U0=4
V=1

FIG. 4. (Color online) (a), (b), and (c) V dependence of orbital
ordering ρo (blue curves) and charge ordering ρc (red curves) (a) at
U0 = 0; (b) at U0 = 3; (c) at U0 = 5.5. (d) Temperature dependence
of orbital ordering ρo (blue curves) and charge ordering ρc (red curves)
at U0 = 4,V = 0.5.

155103-4



THEORY FOR CHARGE AND ORBITAL DENSITY-WAVE . . . PHYSICAL REVIEW B 87, 155103 (2013)

small U0 = 1, as V increases, CO develops first followed
by a coexistent phase with the OO(0) order. At U0 = 3,
the transition to the charge- and orbital-ordered state is
simultaneous as V increases, and is first order with clear
jumps in the order parameters. At large U0 = 5.5, we have
only orbital ordering at small V , and coexistent phase with
charge ordering. And at the charge-ordering point, the orbital-
order parameter has a change in both the phase (not shown
here but discussed before) and its magnitude. In Fig. 4(d),
we show the order parameters as functions of temperature
for (U0 = 4,V = 1), to illustrate the simultaneous first-order
phase transition of the orbital and charge orderings at finite
temperature,26 which may explain the simultaneous orderings
observed in experiment of La0.5Sr1.5MnO4.10

We now discuss the ordered-orbital characters of the single-
layered system. Different from the usual rotational invariant
spin-1/2 space, the kinetic energy term is not symmetric
with respect to the rotation in the pseudospin eg orbital
space. Therefore, there is a selection of specific orbitals for
the orbital-density-wave ordering. The ordered orbitals have
been suggested to be d3x2−z2 and d3y2−z2 .12,27,28 Meanwhile,
some x-ray scattering experiments29,30 combined with local-
density approximation including on-site Coulomb interactions
(LDA + U) calculations30 indicate that the orbital ordering
is dominated by dx2−z2 and dy2−z2 , which is also supported
by means of x-ray structural analyses.31 To further examine
this issue, we have performed the mean-field calculations to
examine the ordering between a general linear combination of

d3z2−r2 and dx2−y2 , and have found that the ordering between +
and − has the lowest energy, which is also consistent with our
RPA analysis. Therefore, in contrast to previous arguments
that the ordered orbitals are nonorthogonal, we propose
that at temperature TN � T � Tco, the ordered orbitals are
orthogonal orbitals + and −, which are essentially equal
mixtures of d3z2−r2 and dx2−y2 . The shape of each orbital
is plotted in Fig. 3(b). We note that although our theory
is qualitative, the ordered orbitals + and − are actually
selected by the symmetry of Hamiltonian. Our results may
provide a guideline for further study of more refined numerical
approaches such as Monte Carlo simulation32,33 and density
functional theory calculations.16,30

V. SUMMARY

In summary, we have proposed that the basic physics of the
high-temperature phase in layered manganite La0.5Sr1.5MnO4

may be described by an effective band Hamiltonian. Our
theory reveals the essential connection between FS nesting and
charge-orbital ordering, and explains the simultaneous phase
transition to the charge- and orbital-ordered state.
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33C. Şen, G. Alvarez, and E. Dagotto, Phys. Rev. Lett. 105, 097203
(2010).

155103-6

http://dx.doi.org/10.1209/0295-5075/93/37009
http://dx.doi.org/10.1209/0295-5075/93/37009
http://dx.doi.org/10.1103/PhysRevLett.101.236402
http://dx.doi.org/10.1103/PhysRevLett.101.236402
http://dx.doi.org/10.1140/epjb/e2006-00340-5
http://dx.doi.org/10.1140/epjb/e2006-00340-5
http://dx.doi.org/10.1103/PhysRevB.84.155126
http://dx.doi.org/10.1103/PhysRevB.84.155126
http://dx.doi.org/10.1103/PhysRevLett.91.167205
http://dx.doi.org/10.1103/PhysRevLett.91.167205
http://dx.doi.org/10.1103/PhysRevLett.92.087202
http://dx.doi.org/10.1103/PhysRevLett.92.087202
http://dx.doi.org/10.1103/PhysRevB.80.064402
http://dx.doi.org/10.1103/PhysRevLett.84.3714
http://dx.doi.org/10.1103/PhysRevLett.84.3714
http://dx.doi.org/10.1103/PhysRevLett.105.097203
http://dx.doi.org/10.1103/PhysRevLett.105.097203



