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Hybrid quantum circuit consisting of a superconducting flux qubit coupled to a spin ensemble
and a transmission-line resonator
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We propose an experimentally realizable hybrid quantum circuit for achieving a strong coupling between
a spin ensemble and a transmission-line resonator via a superconducting flux qubit used as a data bus. The
resulting coupling can be used to transfer quantum information between the spin ensemble and the resonator. In
particular, in contrast to the direct coupling without a data bus, our approach requires far less spins to achieve a
strong coupling between the spin ensemble and the resonator (e.g., three to four orders of magnitude less). This
proposed hybrid quantum circuit could enable a long-time quantum memory when storing information in the
spin ensemble, and allows the possibility to explore nonlinear effects in the ultrastrong-coupling regime.
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I. INTRODUCTION

Cavity quantum electrodynamics (QED) involving the
interaction between light and matter is widely utilized in
implementing quantum communication and quantum informa-
tion processing. It can be realized in several mixed systems,
such as atom-cavity devices and spin-cavity systems, which
have been studied for many years. An atomic system has
stable energy levels that can be used to represent the different
states of qubits.1,2 Moreover, the coherence time of isolated
atoms (or spins) is long because of their weak interaction with
the environment. However, due to the small dipole moment
and weak fields in the cavity, the coupling strength g in
these systems is usually not in the strong coupling regime
corresponding to g � κ,γ , where κ and γ are the decay rates
of the cavity and the atomic system, respectively. Remarkable
progress has been made on superconducting (SC) circuits,3–5

where the SC qubit behaves as an artificial atom. Such SC
circuits promise good scalability and allow robust control,
storage and readout, owing to their strong interaction with
external fields.6 SC circuits consisting of SC qubits coupled
to a SC resonator, such as a transmission-line resonator,
are often called circuit QED, which were widely used in
quantum technologies in recent years.7 The strong coupling,
even ultrastrong coupling,8 between the SC qubit and the
resonator has also been experimentally achieved.9–11 However,
compared with atomic systems, SC qubits have relatively short
coherence times.

Recently, intense effort has been devoted to coupling atomic
system with SC qubits to form hybrid quantum circuits,
aiming to combine “the best of two worlds” (see Ref. 12
and references therein). There are two different approaches
to couple these two subsystems. In one approach, both of
the atomic system and the SC qubit couple to a common
SC resonator, which plays the role of a data bus.13–20 Due
to the weak coupling between a single atom (or spin) and
the SC resonator, an ensemble with a large number N of

atoms (or spins) is employed for enhancing the coupling
strength by a factor of

√
N . Recently, this approach has been

experimentally demonstrated (see Ref. 19). However, in the
presence of inhomogeneous broadening, the high density of
atoms (or spins) would lead to short coherence times.21,22

In the other approach, an atomic system directly couples to
a flux qubit via the magnetic field produced by the qubit.23–27

The coupling strength can be about three orders of magnitude
stronger than using a transmission-line resonator as the data
bus. However, the controllability of this approach is not good
and the states in both subsystems are easily affected by each
other due to their direct coupling.

In this paper, we propose a hybrid quantum circuit
consisting of a SC flux qubit coupled to a spin ensemble
and a transmission-line resonator. Nitrogen-vacancy (NV)
centers in diamond are used as the spin ensemble in our
approach because of their long coherence times, even at room
temperature.28–30 Therefore such a spin ensemble can be used
as a quantum memory in the hybrid quantum circuit. Note
that Ref. 31 proposed to resonantly couple a flux qubit in
a transmission-line resonator with a single NV center, while
now we are considering an ensemble of NV centers. Moreover,
here we study how to achieve a strong effective coupling
between the spin ensemble and the resonator, by adiabatically
eliminating the degrees of freedom of the flux qubit. With
this strong effective coupling we can transfer the quantum
information from the spin ensemble to the photon states in
the resonator, which can be used as flying qubits for quantum
communication. In addition, in our proposed circuit, the flux
qubit shares a segment with the central line of the resonator,
so as to achieve a very strong coupling strength between the
flux qubit and the resonator.32 The effective coupling between
the spin ensemble and the resonator via this flux qubit is
stronger than the direct coupling between the resonator and the
same number of spins without using the flux qubit. Therefore,
for a given value of the coupling strength, less spins in the
ensemble are required in our approach, as compared to the
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direct-coupling approach. This design has the potential to
achieve a larger quantum coherence time for the spin ensemble,
which acts as a quantum memory. Furthermore, we also discuss
the case when the coupling strength between the flux qubit and
the resonator (spin ensemble) reaches the ultrastrong coupling
regime. In this case, the effective coupling between the spin
ensemble and the resonator is much increased, but nonlinear
terms appear in the resulting effective Hamiltonian. These
nonlinear terms rapidly reduce the fidelity of the quantum
state transfer.

This paper is organized as follows. In Sec. II, we describe
our proposed hybrid quantum circuit and give the total
Hamiltonian of the whole system. Then, we derive the effective
interaction Hamiltonian between the spin ensemble and the
resonator by considering the strong coupling regime in Sec. III
and the ultrastrong coupling regime in Sec. IV. Finally, a brief
discussion and conclusion are given in Sec. V.

II. PROPOSED HYBRID QUANTUM CIRCUIT

We consider the hybrid quantum circuit shown in Fig. 1(a),
which is composed of a spin ensemble, a SC flux qubit,
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FIG. 1. (Color online) (a) Schematic diagram of the hybrid
quantum circuit. (b) Schematic diagram of the subsystem consisting a
three-junction flux qubit and a spin ensemble. (c) Schematic diagram
of the subsystem consisting a tunable four-junction flux qubit and
a spin ensemble. In these three diagrams, the blue part refers to
the transmission-line resonator, the silver and red parts denote the
superconductor and insulator parts of the flux qubit, respectively, and
the light purple part shows the spin ensemble. In a three-junction flux
qubit (b), two of these junctions are identical, with the same Josephson
coupling energy EJ , while the other junction has lower Josephson
coupling energy αEJ , where α < 1. In a tunable four-junction flux
qubit (c), the small junction is replaced by a SQUID, whose effective
Josephson coupling energy α′EJ (α′ < 1) could be adjusted by an
external magnetic field threading through the SQUID loop.
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FIG. 2. The ground electronic-spin states of the NV center in the
presence of an external magnetic field parallel to the crystalline axis.

and a one-dimensional cavity formed by a transmission-line
resonator. The spin ensemble, composed of N identical and
noninteracting spins, is placed inside or slightly above the
qubit loop (see Fig. 1). The flux qubit shares a segment with the
central line of the resonator at an antinode of the standing wave
of the current in the transmission-line, as shown in Fig. 1(a).

We will first derive the Hamiltonian of the hybrid system
consisting of a flux qubit and a spin ensemble [see Fig. 1(b)
or 1(c)], and then obtain the total Hamiltonian of the proposed
hybrid quantum circuit in Fig. 1(a).

A. Flux qubit coupled to a spin ensemble

We use NV centers as the spin ensemble, whose spin-1
triplet sublevels of the electronic ground state have a zero-field
splitting � ≈ 2π × 2.87 GHz between the ms = 0 and ±1
sublevels. By introducing an external magnetic field along
the crystalline axis of the NV center, an additional Zeeman
splitting between the ms = ±1 sublevels occurs. Thus we can
isolate a two-level quantum system with sublevels ms = 0
and −1 (see Fig. 2). The NV center can be described by the
Hamiltonian37

HNV = DS2
z + E

(
S2

x − S2
y

) + geμ �B · �S, (1)

where D is the ground-state zero-field splitting, �S are the usual
Pauli spin-1 operators, E is the ground-state strain-induced
splitting coefficient, ge = 2 is the NV Landé factor, and μ =
14 MHzmT−1 is the Bohr magneton. In this paper, we set
h̄ = 1. Furthermore, we consider the case where the strain-
induced fine-structure splitting is negligible compared to the
Zeeman splitting, i.e., |E(S2

x − S2
y )| � |geμ �B · �S|. Thus the

second term in HNV can be neglected here.
A flux qubit can have a superposition state of clockwise

and counterclockwise persistent currents in the qubit loop
with hundreds of nanoamperes. By applying a static external
magnetic field (with half a flux quantum perpendicular to the
qubit loop), the flux qubit can be brought to the degeneracy
point of the clockwise and counterclockwise persistent current
states, where the qubit is less sensitive to the flux fluctuations.
The flux qubit can be described by the Hamiltonian

HFL = 1
2 (εσz + λσx), (2)

where �σ denotes the Pauli operators of the flux qubit, λ

is the tunneling energy between the two wells of the qubit
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potential, and ε = 2Ip(
 − 
0/2) is the energy bias of the
flux qubit, with Ip being its persistent current, 
 the applied
magnetic flux, and 
0 the magnetic-flux quantum. Obviously,
parameters of the qubit, such as Ip and λ, are determined by its
fabrication, while the external magnetic flux 
 can be adjusted
in the experiment. However, in a tunable four-junction flux
qubit [see Fig. 1(c)], λ is a function of the external magnetic
flux through the superconducting quantum interference device
(SQUID),33 and can also be tuned in experiments.

In our approach, we set the crystalline axis of the NV centers
as the z axis, and apply an external magnetic field �Bext, whose
component parallel to the z axis tunes the NV centers into
near-resonance with the cavity mode, and whose component
perpendicular to the qubit loop adjusts the superposition
state of the clockwise and counterclockwise persistent current
states of the flux qubit. These persistent currents produce an
additional magnetic field �BFQ. The interaction between the NV
center and the magnetic field produced by the flux qubit leads to
a coupling between the two subsystems. The dynamics of these
two coupled systems can be described by the Hamiltonian23

H = 1

2
(εσz + λσx) +

N∑
j

[
D

(
Sj

z

)2 + geμBext
z Sj

z

+ σzgeμ �BFQ · �Sj
]
, (3)

where Bext
z is the parallel part of the external magnetic

field, which adjusts the energy splitting of the NV center.
When the z axis is not perpendicular to the qubit loop, the
frequencies of the NV center and the flux qubit can be adjusted
by independently changing the components of the external
magnetic field in different directions.23 Here, we assume that
the z axis is parallel to the direction of the transmission-line
resonator, as shown in Fig. 1(a). The total Hamiltonian for the
flux qubit and the two states with ms = 0 and −1 of the NV
centers reads23

H = 1

2
(εσz + λσx)

+
N∑
j

[
1

2
ωSτ

j
z + 1√

2
geμBFQσz(τ

j
+ + τ

j
−)

]
, (4)

where �τ denotes the Pauli operators of states with ms = 0 and
−1 of the NV center, and ωS = D − geμBext

z is the energy gap
between these two states. The last term of this Hamiltonian
describes the exchange of energy between NV centers and the
flux qubit.

In order to enhance the coupling strength, a spin ensemble
is employed rather than a single spin. The ground state of this
ensemble is |g〉 = |0 · · · 0〉, while the excited state is |e〉 =

1√
N

∑N
j τ

j
+|g〉. We then define

s† = 1√
N

N∑
j

τ
j
+ (5)

to describe the collective excitation of the spin ensemble. In
the conditions of large N and low excitations, s† satisfies the
bosonic commutation relations34

[s,s†] ≈ 1, (6)

and behaves as a bosonic operator, because only a few spins
are excited. Therefore the interaction between the flux qubit
and the spin ensemble can be rewritten as

HQS = gQSσz(s
† + s), (7)

where gQS = √
Ngs is the coupling strength between the flux

qubit and the spin ensemble, with

gs = 1√
2
geμBFQ (8)

being the coupling strength for a single NV center. As
estimated in Ref. 23, the coupling strength can reach gQS ∼10
MHz with 106 NV centers, which is in the strong-coupling
regime. Furthermore, by increasing the persistent current in
the flux qubit, the coupling strength can be further enhanced.

B. Flux qubit coupled to both a spin ensemble
and a transmission-line resonator

So far, a strong coupling between the flux qubit and the
spin ensemble can be obtained.23 Then, we integrate these
two subsystems into a transmission-line resonator, as shown
in Fig. 1(a).

The transmission-line resonator has been realized in many
experiments (see references in Ref. 7). In this resonator, two
ground planes are placed on the two sides of a central SC wire,
and two gap capacitors at the two ends of the central wire
play the role of “mirrors” in a conventional optical cavity. The
distance between these two capacitors is an integer number of
half-wavelengths. Such a structure forms a one-dimensional
cavity with frequency ∼1–10 GHz when the entire setup is on
the millimeter scale. The transmission-line resonator can be
described by the Hamiltonian

HR = ωR

(
a†a + 1

2

)
, (9)

where a(a†) is the annihilation (creation) operator of the cavity,
and ωR is the frequency of the cavity.

The flux qubit is fabricated at the antinode of the standing
wave of the current on the transmission line, where the strength
of the magnetic field is maximum, so that at this place the flux
qubit can strongly couple to the transmission-line resonator
via the mutual inductance. The interaction between the flux
qubit and the transmission-line resonator is described by the
Hamiltonian32

HQR = gQRσz(a
† + a), (10)

where gQR = MIpIr0 is the coupling strength between the
flux qubit and the transmission-line resonator, with Ir0 =√

hωR/LR being the zero-point current in the resonator and
LR the total inductance of the resonator.

In our proposed hybrid quantum circuit, the flux qubit and
the central line of the resonator share a common segment
for achieving strong coupling strength. In the case that the
flux qubit is separated from the central line of the resonator,
the mutual coupling can only be enhanced by increasing the
size of the qubit loop or reducing the distance between the
qubit and the central line. However, a large area of the qubit
loop would lead to a large susceptibility to the surrounding
flux noise, while the close distance between the qubit and the

144516-3
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central line induces an additional capacitive coupling between
them. In contrast, the direct coupling via a shared segment does
not have such problems and can reach a very strong coupling
strength, even in the ultrastrong coupling regime when adding
an additional Josephson junction on the central line of the
resonator to increase the mutual inductance.11

Note that the NV center can also couple to the magnetic
field in the transmission-line resonator.38 However, compared
with the magnetic field produced by the current in the qubit
loop, this magnetic field is much weaker because of the reasons
below. First, the current in the central line of the transmission-
line resonator is usually smaller (about one order of magnitude
or more smaller) than the current in the qubit loop. Second,
a closed loop with a static current can produce a stronger
magnetic field than the magnetic field at the same distance
produced by the central line of the transmission-line resonator
with a sinusoidal distributed current, when the maximum value
of the current in the central line equals the static current of the
qubit loop. Thus the coupling strength between the NV center
and the transmission-line resonator is much smaller (about
two to three orders of magnitude smaller) than between the
NV center and the flux qubit. Below, we neglect this small
interaction in our calculations.

To the end, we adjust the flux qubit to the degeneracy point
at ε = 0 and express the Hamiltonian in the eigenvector basis
of the flux qubit. Then, the total Hamiltonian of the proposed
hybrid quantum circuit in Fig. 1(a) can be written as

H = 1
2ωQσz + ωRa†a + ωSs

†s + gQR(σ+ + σ−)(a† + a)

+ gQS(σ+ + σ−)(s† + s), (11)

where ωQ = λ, and �σ denotes the Pauli operators expressed in
the eigenvector basis of the qubit. When the coupling strengths
gQR and gQS are not very strong, i.e., the coupling strengths
are much smaller than the frequencies of the cavity mode and
the spin ensemble, the Hamiltonian can be reduced, in the
rotating-wave approximation, into a Jaynes-Cummings form:

H = 1
2ωQσz + ωRa†a + ωSs

†s + gQR(σ+a + σ−a†)

+ gQS(σ+s + σ−s†). (12)

Note that the resonant case, i.e., ωQ = ωR = ωS, was theo-
retically discussed in Ref. 31 using a similar hybrid circuit,
where only a single NV center was employed. If a tunable
four-junction flux qubit is used as in our approach [see
Fig. 1(c)], we can transfer the information between the spin
ensemble and the transmission-line resonator following the
steps below [see Fig. 3(a)]. First, we fix the frequencies of
the transmission-line resonator and the spin ensemble to far
off-resonance. Then, by changing the magnetic flux through
the SQUID, we can adjust the frequency of the flux qubit
successively into resonance with the resonator and the spin
ensemble to achieve the quantum-information transmission
from the resonator to the flux qubit and then to the spin
ensemble, and vice versa. Here the flux qubit acts as a
data bus. However, for a high-fidelity quantum-information
transmission with the above protocol, it requires very accurate
time-dependent controls for the coupling between the flux
qubit and the transmission-line resonator (spin ensemble).

To avoid using these very accurate time-dependent controls
of the two couplings, we focus on the case when the flux qubit is
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FIG. 3. (Color online) Schematic energy diagrams of the three
subsystems in our proposed hybrid quantum circuit in two cases.
(a) The tunable four-junction flux qubit acts as a data bus to exchange
quantum information between the transmission-line resonator and
the spin ensemble, whose frequencies ωR and ωS are fixed to far off
resonance. (b) The flux qubit is tuned to far off-resonance from the
frequencies of the resonator and the spin ensemble for exchanging
quantum information between these two subsystems via the virtual
excitation (dashed black arrows) of the flux qubit. In these two
diagrams, the blue horizontal segment refers to the transmission-line
resonator, the red line denotes the flux qubit, and the purple horizontal
line shows the ensemble of NV centers. The method (a) requires the
accurate separate control of two couplings gQR and gQS, while the
approach in (b) requires the control of only one coupling geff .

tuned to have a large qubit energy, so as to be far off-resonance
from the frequencies of the transmission-line resonator and the
spin ensemble [see Fig. 3(b)]. Here, the resonator and the spin
ensemble are assumed to be near resonance to each other.
Thus an effective interaction between the resonator and the
spin ensemble, with coupling strength geff , can be achieved
by adiabatically eliminating the degrees of freedom of the
flux qubit. Choosing appropriate parameters of the circuit, this
effective coupling strength can be much larger than the direct-
coupling strength between the transmission-line resonator and
the spin ensemble. For details, see the two sections below.
Importantly, the information-transmission protocol based on
this effective interaction does not require very accurate time-
dependent controls of the two coupling strengths gQR and
gQS. One could transfer quantum information between the
resonator and the spin ensemble only by controlling the
effective coupling strength geff .

III. STRONG-COUPLING REGIME

We now consider the case where the flux qubit strongly cou-
ples to both a transmission-line resonator and a spin ensemble,
i.e., κ,γ � gQR,gQS � ωR,ωS. Moreover, the frequency ωQ of
the flux qubit is fixed to be much larger than the frequency ωR
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(ωS) of the resonator (spins) and satisfies �R,�S � gQR,gQS,
where �R(S) = ωQ − ωR(S). This corresponds to the large
detuning regime and allows us to apply a Fröhlich-Nakajima
transformation35,36 to deduce an effective coupling between
the spin ensemble and the transmission-line resonator. Here,
we further assume that the frequencies of the transmission-line
resonator and spins are both slightly off-resonance to each
other.

We now rewrite the total Hamiltonian (12) as H = H0 + HI

in terms of the free part

H0 = 1
2ωQσz + ωRa†a + ωSs

†s , (13)

and the interaction part

HI = gQR(σ+a + σ−a†) + gQS(σ+s + σ−s†). (14)

To use the Fröhlich-Nakajima transformation,35,36 we should
find out a unitary transformation U = exp(−V ), such that V

is an anti-Hermitian operator V = −V † and satisfies

HI + [H0,V ] = 0. (15)

We apply this unitary transformation to H and obtain, up to
second order, an effective Hamiltonian:

Heff = UHU † = H0 + 1
2 [HI ,V ] + O(g3). (16)

In the present case, the anti-Hermitian operator V for the
Fröhlich-Nakajima transformation adopts the following form:

V = ξR(σ−a† − σ+a) + ξS(σ−s† − σ+s) , (17)

where ξR = gQR/�R, and ξS = gQS/�S.
Because the coefficients ξR and ξS are small in the large de-

tuning regime, the high-order terms of the Fröhlich-Nakajima
transformation can be dropped out and only the second-order
term [HI ,S] should be considered. Furthermore, we assume
that the flux qubit is initially in the ground state. The interaction
between the resonator and spins is induced by virtual excitation
of the flux qubit, without real energy exchanges between the
flux qubit and the two subsystems. Thus we can eliminate the
degrees of freedom of the flux qubit, and obtain the effective
Hamiltonian as

Heff = ω′
Ra†a + ω′

Ss
†s + geff(a

†s + as†) , (18)

where

ω′
R = ωR − g2

QR

�R
, ω′

S = ωS − g2
QS

�S
, (19)

geff = −1

2

(
1

�R
+ 1

�S

)
gQR gQS. (20)

According to the experimental data in Ref. 24, we can
choose the coupling strength between an NV center and a flux
qubit as ∼12 kHz. When the number of spins in the ensemble
is ∼7 × 107, the coupling strength gQS between the flux qubit
and the spin ensemble is approximately 100 MHz. Here, we
assume that the coupling strength gQR between the flux qubit
and the transmission-line resonator is also approximately equal
to 100 MHz, and the detuning between the flux qubit and the
resonator (spins) is ∼1 GHz. From Eq. (20), the effective
coupling strength geff is estimated to be geff ∼10 MHz, which
is comparable to the direct-coupling strength between 1012

NV centers and the transmission-line resonator (a recent

FIG. 4. (Color online) Two kinds of coupling strengths between
an ensemble of NV centers and the transmission-line resonator, as a
function of the number of NV centers in diamond. The red curve on
the left shows the effective coupling geff between the spin ensemble
and the resonator. The data used in this curve for a single NV center
are from Ref. 24. The black curve on the right describes the direct
coupling gRS between the spin ensemble and the resonator. The data
used in this curve for a single NV center is from Ref. 38. The blue
dashed lines denote the parameter value (number of NV centers =
108) for observing strong coupling strength (12 MHz) in our approach.
Note that for N ∼ 109, geff ∼ 102 MHz.

experiment is in Ref. 38). The low decay rates from the
cavity (κ ∼ 1 MHz), the flux qubit (γQ ∼ 1MHz), and the
spin ensemble (1 < γS < 10 MHz) have been implemented in
recent experiments.38 Thus this effective coupling is in the
strong coupling regime. This strong coupling can be used
to transfer quantum information between the spin ensemble
and photon states, which can act as flying qubits for quantum
communication with other systems, such as the SC qubit, in
future hybrid quantum circuits. Since the flux qubit is always in
its ground state, its decoherence would not affect the quantum
state transfer.

Figure 4 shows the effective-coupling strength geff (with
single-NV-center coupling data from Ref. 24) in our approach
and the direct-coupling strength gRS (with single-NV-center
coupling data from Ref. 38) versus the number of NV
centers in diamond. Figure 4 clearly shows that by using
an ensemble with the same number of NV centers (spins),
our approach can implement much larger coupling strength,
as compared to the direct-coupling approach. Physically, this
very enhanced coupling strength is induced by the two strong
couplings between the flux qubit and the other subsystems (the
transmission-line resonator and the ensemble of NV centers).

Due to the presence of interference effects caused by the
inhomogeneous broadening, the fidelity (which describes the
correspondence of the readout signal with the original signal)
was low and the coherence times were not very long when
the density of NV centers in diamond is high.21,22 There are
two main inhomogeneous broadenings leading to dephasing of
the spin ensemble of NV centers. One is the inhomogeneous
broadening due to dipolar hyperfine coupling of nearby 13C
nuclear spins, which might be reduced by polarizing the
nuclear spins. The other one is the dipolar broadening due
to the residual paramagnetic nitrogen atoms. Because the
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residual paramagnetic nitrogen atoms have a density several
times higher than the NV centers in a given sample, this
dipole broadening is the dominant dephasing mechanism
in the high-nitrogen-concentration diamond crystals.21,41,42

In general, decreasing the density of NV centers during
sample preparation is accompanied by a decreased density of
residual nitrogen paramagnetic impurities, which can reduce
the dephasing from the second inhomogeneous broadening.
Therefore a diamond sample with a low-density of NV
centers could improve the coherence performance of the spin
ensemble.

To achieve a strong coupling strength, our approach requires
far less NV centers. Because the effective size of the spin
ensemble used in our proposal is much smaller than that
utilized in the direct-coupling approach, the spin densities
of these two different approaches in recent experiments are
comparable.24,38 However, we can still enhance the coupling
strength of a single NV center by either using a flux qubit
with a larger persistent current or changing the shape of the
flux-qubit loop, and then further reduce the number of NV
centers needed in our circuit.

Now, we estimate the coupling strength in our proposed
circuit by considering a realistic NV-center sample. As in
Ref. 24, we choose a rectangular loop for the flux qubit.
According to the Biot-Savart law, the magnetic field in the
center of the rectangular loop generated by the persistent
current of a flux qubit can be written as

BFQ = α
μ0Ip

4π
√

A
, (21)

where α = 8
√

β + 1/β, with β being the length-width ratio
of the rectangular loop, A is the area of the loop, μ0 = 4π ×
10−7 N A−2 is the vacuum permeability, and Ip denotes the
persistent current of the flux qubit. From Eq. (8), it follows
that the coupling strength gs is

gs = α
geμμ0Ip

4π
√

2A
. (22)

Thus the coupling strength between the flux qubit and the spin
ensemble can be estimated as

gQS =
√

DV gs ≈
√

D d αgeμμ0Ip, (23)

where D is the density of NV centers within the rectangular
loop, and V = ASd is the volume of NV centers that
effectively couple to the flux qubit, with AS ≈ A and d

being the thickness of the NV-center sample. We consider
our circuit with experimentally accessible parameters: D ∼
3 × 106 μm−3 (see Ref. 21), Ip ∼ 900 nA (see Ref. 39),
β ∼ 50 (see Ref. 24), and d ∼ 5 μm. The coupling strength
between the flux qubit and the NV centers is estimated
as gQS ∼ 350 MHz. Therefore, according to Eq. (20), the
effective coupling strength geff between the spin ensemble
and the resonator can be ∼120 MHz, when gQR ≈ 350 MHz
and �R(S) ∼ 3gQR(QS), which is much larger than the direct-
coupling strength ∼10 MHz (see Ref. 12). If the effective
coupling strength is chosen as ∼10 MHz, the NV-center
density of the sample is reduced to D ∼ 2 × 104 μm−3, which
is much lower than the NV-center density D ∼ 3 × 106 μm−3

for achieving the same value of the direct-coupling strength.
As shown in Refs. 21,22 and 40 a lower density of NV centers

in the sample can improve the quantum coherence of the spin
ensemble. In fact, the magnetic field close to the edge of the
flux-qubit loop is much larger than that in the center of the
loop, so the real value of geff should be larger than the value
estimated above.

The coherence performance of the spin ensemble is affected
not only by the width of the inhomogeneous broadening but
also by its shape.41,42 By choosing an appropriate type of
distribution of the inhomogeneous broadening of spins, such as
a Gaussian distribution, the decoherence would be dominated
by the spins’ homogeneous broadening. This effect, known as
cavity protection, could provide longer coherence times in our
proposed circuit.

IV. ULTRASTRONG-COUPLING REGIME

Recently, the coupling strength between the flux qubit
and the transmission-line resonator experimentally reached
the ultrastrong-coupling regime11 [gQR/ωR ≈ 0.1]. When the
number of spins is larger than ∼109, the coupling strength
between the flux qubit and the spin ensemble could also be
in the ultrastrong-coupling regime. Note that, in this case, the
density of NV centers in the sample is >107 μm−3, which is
still larger than the density of NV centers achieved in recent
experiments.21

In such an ultrastrong-coupling regime, the Hamiltonian
of our proposed hybrid quantum circuit in Fig. 1(a) cannot
be reduced into the simple Jaynes-Cummings form, because
the counter-rotating terms cannot be neglected, and the
higher-order terms in the Fröhlich-Nakajima transformation
cannot be dropped in some cases. Here, we use again the
Fröhlich-Nakajima transformation to analyze the dynamics
of our proposed circuit when the large detuning condition is
satisfied.

We write the total Hamiltonian in terms of the free part H0

and the interaction part HI . The free part H0 has the same form
as Eq. (13), but the interaction part should be written, without
the rotating-wave approximation, as

HI = gQR(σ+ + σ−)(a† + a) + gQS(σ+ + σ−)(s† + s). (24)

In this case, the anti-Hermitian operator V for the Fröhlich-
Nakajima transformation adopts the form

V = ξR(σ−a† − σ+a) + ζR(σ−a − σ+a†)

+ ξS(σ−s† − σ+s) + ζS(σ−s − σ+s†), (25)

where ζR = gQR/ηR, ζS = gQS/ηS, and ηR(S) = ωQ + ωR(S).
After eliminating the degrees of freedom of the flux qubit,

we can obtain an effective Hamiltonian as follows:

Heff = ω′
Ra†a + ω′

Ss
†s + geff(a

† + a)(s† + s)

− 1
2αR g2

QR(a†a† + aa) − 1
2αS g2

QS(s†s† + ss),

+O (26)

where

ω′
R = ωR − αR g2

QR, ω′
S = ωS − αS g2

QS, (27)

geff = −(αR + αS) gQR gQS/2 , (28)

αR(S) = 1

�R(S)
+ 1

ηR(S)
, (29)
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FIG. 5. (Color online) The fidelity of quantum state transfer vs
the dimensionless time γ t . The red and black curves correspond to the
coupling strength in the ultrastrong-coupling regime (gQR = gQS =
ωR = ωS and ωQ = 9 ωR) and the strong-coupling regime (gQR =
gQS = 0.05 ωR,ωS = ωR, and ωQ = 2 ωR), respectively.

and O represents the higher-order terms that can be neglected
when g/� is small. Owing to the larger coupling strength
gQR and gQS, the effective coupling strength geff can be larger
than that in the strong-coupling regime derived in Sec. III, but
additional terms appear in the second line of Eq. (26), which
can produce nonlinear effects in the system.

The first term in the second line involves squeezed photon
states in the resonator. We can apply a unitary transformation
on the Hamiltonian43

U = exp
[

1
2 r∗a2 − 1

2 r(a†)2
]
, (30)

and obtain that

Heff = [
ω′

R(sinh2 r + cosh2 r) + 2αRg2
QR sinh r cosh r

]
a†a

+ω′
Ss

†s − 1
2αSg

2
QS(s†s† + ss)

+ geff(cosh r − sinh r)(a† + a)(s† + s) , (31)

where r satisfies the equation

sinh2 r = 2√
β2 − 4 (

√
β2 − 4 + β)

,

with β = 2ωR/αRg2
QR − 2. Thus the energy exchange in this

case is between the squeezed photon states in the resonator
and the collective excitations of the spin ensemble. The second
term in the second line of Eq. (26) breaks the low-excitation
condition for the bosonic operator of the spin ensemble. These
lead to an obvious reduction of the fidelity of the quantum state
transfer, see Fig. 5. Here, the fidelity is defined as |〈ψT|ψ(t)〉|2,
where |ψT〉 is the target state of quantum transfer. Note that,
in order to clearly show the effect on the fidelity from the
change of the coupling strength, we neglect the decoherence
that comes from both the inhomogeneous broadening of the
spin ensemble and the photon leaking of the cavity. This
decoherence is also neglected in Fig. 6.

When the coupling strengths, gQR and gQS, reach the
ultrastrong-coupling regime, in order to satisfy the large-
detuning condition the energy gap of the eigenstates of the flux
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FIG. 6. The fidelity of quantum state transfer vs the dimensionless
time γ t with the coupling strength (a) gQR = gQS = 0.025 ωR, (b)
gQR = gQS = 0.15 ωR, and (c) gQR = gQS = 0.3 ωR. (d) The fidelity
of quantum state transfer versus the coupling strength (/ωR). In these
four figures, the frequencies of the transmission-line resonator and
the spin ensemble are resonant, ωR = ωS, and the frequency of the
flux qubit is ωQ = 2ωR.

qubit should be large enough, compared with the frequency of
the spin ensemble (the resonator). A large-gap flux qubit can be
achieved by using Josephson junctions with larger Josephson
energy EJ or by adjusting the qubit to move away the
degeneracy point of the persistent current states. However, this
induces large flux noise and results in decoherence of the flux
qubit. In general, the frequency of the flux qubit is several times
that of the NV center. Here, we numerically calculated the
fidelity of the quantum state transfer by changing the coupling
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strength when ωQ = 2ωS, as shown in Fig. 6. In this case, while
the coupling strength is increasing, the fidelity is decreasing.
After the large detuning condition is broken, the fidelity rapidly
reduces to a low level, because the terms O in Eq. (26) cannot
be neglected anymore. Note that our numerical calculations
neglected the effect from the decays of the resonator and spins;
otherwise, the fidelity should be much lower when the coupling
strength is in the weak-coupling regime.

To keep the low-excitation condition satisfied, we consider
another case where the flux qubit ultrastrongly couples to
the resonator (gQR ∼ 0.1ωR), but strongly couples to the
spin ensemble. In such a case, the interaction part of the
Hamiltonian becomes

HI = gQR(σ+ + σ−)(a† + a) + gQS(σ+s + σ−s†), (32)

and the corresponding anti-Hermitian operator V in the
Fröhlich-Nakajima transformation has the form

V = ξR(σ−a† − σ+a) + ζR(σ−a − σ+a†) + ξS(σ−s† − σ+s).

(33)

In applying the Fröhlich-Nakajima transformation, the
coefficients of some terms in the third order can be comparable
to those of the terms in the second order. With these terms
retained, the effective Hamiltonian becomes

Heff = ω′
Ra†a + ω′

Ss
†s − gQRgQS

2�S
(a† + a)(s† + s)

− gQRgQS

2�R
(a†s + as†) − gQRgQS

2ηR
(a†s† + as)

−αR
2g3

QR

3ηR
(σ+a + σ−a† + 2σ+a† + 2σ−a)

−αR
2g3

QR

3�R
(σ+a† + σ−a + 2σ+a + 2σ−a†)

−αR
2g3

QR

3ηR
(σ+a†a†a† + σ+a†aa + 2σ+a†a†a

+ σ−aaa + σ−a†a†a + 2σ−a†aa)

−αR
2g3

QR

3�R
(σ−a†a†a† + σ−a†aa + 2σ−a†a†a

+ σ+aaa + σ+a†a†a + 2σ+a†aa) + O, (34)

where O represents the higher-order terms that can be
neglected. In this Hamiltonian, the first line gives the effective
energies of both photons and spins, the second and third lines
involve the energy exchange between the resonator and the
spin ensemble, the next two lines describe the energy exchange
between the flux qubit and the resonator, and the last four lines
describe the energy exchange between the flux qubit and the
resonator involving three-photon processes.

As a result of this, the photon state will not be confined in
the subspace {|0〉,|1〉}. Also, the flux qubit will not remain
in the ground state as we initially assumed, because the

transimission-line resonator can now exchange energy not only
with the spin ensemble, but also with the flux qubit. Thus
the total system will exhibit very rich quantum-dynamical
behavior. However, the fidelity of the quantum state transfer
would obviously be very low in this case; thus this circuit
would not be suitable to exchange the state between the
resonator and the spin ensemble in this parameter regime.

V. DISCUSSION AND CONCLUSION

Here, we emphasize that the strong coupling gQR between
a flux qubit and a transmission-line resonator11 and the strong
coupling gQS between a flux qubit and an ensemble of NV
centers (spins)24 have both been achieved in experiments.
Therefore it becomes feasible to construct our proposed hybrid
quantum circuit, to realize a strong coupling between the spin
ensemble and the resonator. This strong coupling can be used
to transfer quantum information between the spin ensemble
(as a quantum memory) and photon states (as flying qubits).
Moreover, due to the much smaller number of NV centers used
in our approach, it is expected that a low-density sample of NV
centers could be adopted for better coherent performance. In
addition, the ultrastrong-coupling regime has recently become
a very attractive topic, and the corresponding case in our pro-
posed circuit is also discussed. Because the Hamiltonian in this
regime becomes more complex, rich quantum-dynamical phe-
nomena are expected and these will be explored in the future.

In conclusion, we have proposed an approach to achieve
a very strong effective coupling between a spin ensemble
and a transmission-line resonator via a flux qubit. Our
approach provides an experimentally realizable hybrid circuit
for exchanging quantum information between a SC resonator
and a low-density spin ensemble with long-coherence time.
Also, our proposed circuit can be fabricated on a chip,
facilitating its future scalability, which is crucial for future
quantum technologies.

ACKNOWLEDGMENTS

The authors would like to thank Yuimaru Kubo for useful
comments and suggestions. Z.L.X. and J.Q.Y. were partly
supported by the National Basic Research Program of China
Grant No. 2009CB929302, NSFC Grant No. 91121015, and
MOE Grant No. B06011. Z.L.X. was also partly supported
by the RIKEN IPA program. F.N. was supported in part
by the ARO, JSPS-RFBR Grant 12-02-92100, Grant-in-Aid
for Scientific Research (S), MEXT Kakenhi on Quantum
Cybernetics, and the JSPS through the FIRST program. X.Y.L.
was supported by Japanese Society for the Promotion of
Science (JSPS) Foreign Postdoctoral Fellowship No. P12204
and the NSF of China under grant No. 11005057. T.F.L.
was partly supported by NSFC Grants No. 61106121 and
No. 61174084.

1M. D. Lukin, Rev. Mod. Phys. 75, 457 (2003).
2R. Blatt and D. Wineland, Nature (London) 453, 1008
(2008).

3J. Q. You and F. Nori, Phys. Today 58, 42 (2005); Nature (London)
474, 589 (2011).

4G. Wendin and V. S. Shumeiko, Low Temp. Phys. 33, 724 (2007).

144516-8

http://dx.doi.org/10.1103/RevModPhys.75.457
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1038/nature07125
http://dx.doi.org/10.1063/1.2155757
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1038/nature10122
http://dx.doi.org/10.1063/1.2780165


HYBRID QUANTUM CIRCUIT CONSISTING OF A . . . PHYSICAL REVIEW B 87, 144516 (2013)

5J. Clarke and F. K. Wilhelm, Nature (London) 453, 1031 (2008).
6J. Q. You and F. Nori, Phys. Rev. B 68, 064509 (2003).
7R. J. Schoelkopf and S. M. Girvin, Nature (London) 451, 664
(2008).

8S. Ashhab and F. Nori, Phys. Rev. A 81, 042311 (2010).
9I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans,
and J. E. Mooij, Nature (London) 431, 159 (2004).

10A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. S. Huang,
J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, Nature
(London) 431, 162 (2004).

11T. Niemczyk, F. Deppe, H. Huebl, E. P. Menzel, F. Hocke, M. J.
Schwarz, J. J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano,
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