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Magnetic structure of individual flux vortices in superconducting MgB2 derived
using transmission electron microscopy
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Images of flux vortices in superconductors acquired by transmission electron microscopy should allow a
quantitative determination of their magnetic structure but, so far, only visual comparisons have been made
between experimental images and simulations. Here, we make a quantitative comparison between Fresnel images
and simulations based on the modified London equation to investigate the magnetic structure of flux vortices in
MgB2. This technique gives an absolute, low-field (∼ 30 Oe) measurement of the penetration depth from images
of single vortices. We found that these simulations gave a good fit to the experimental images and that if all the
other parameters in the fit were known, the penetration depth for individual vortices could be measured with
an accuracy of ±5 nm. Averaging over 17 vortices gave a penetration depth of �ab = 113 ± 2 nm at 10.8 K
assuming that the entire thickness of the sample was superconducting. The main uncertainty in this measurement
was the proportion of the specimen which was superconducting. Allowing for a nonsuperconducting layer of up
to 50-nm thickness on the specimen surfaces gave a penetration depth in the range �ab = 100–115 nm, close to
values of 90 ± 2 nm obtained by small-angle neutron scattering and 118–138 nm obtained by radio-frequency
measurements. We also discuss the use of the transport of intensity equation which should, in principle, give a
model-independent measure of the magnetic structure of flux vortices.
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I. INTRODUCTION

Superconductors expel magnetic flux from their interiors
(the Meissner effect) but if a magnetic field is applied to a
type-II superconductor which is larger than the lower critical
field Hc1, magnetic flux penetrates the superconductor by
flowing along channels called flux vortices. Each vortex
carries a single quantum of magnetic flux given by �0 = h/2e

where h is Planck’s constant and e the electron charge. They
consist of a core where superconductivity is suppressed with
a radius given by the coherence length ξ , surrounded by
circulating supercurrents which persist over a radius given
by the penetration depth �. When flux vortices move, energy
is lost and so the performance of almost all superconducting
devices is determined by the behavior of flux vortices.

Flux vortices can be imaged using transmission electron
microscopy1,2 as shown in Fig. 1(a). The superconductor is
thinned to about 250 nm so that it is electron transparent and the
flux vortices penetrate normal to the thin surface. It is mounted
at a high angle, α (typically 45◦), to provide a component of
the B field normal to the electron beam so that the electrons
are deflected by the Lorentz force and appear as black-white
features in an out-of-focus image. Electron microscopy is
the only imaging technique which gives information on the
internal magnetic structure of flux vortices, not just the stray
fields, and it allows imaging at video rate. As we show here, it
can be used to investigate the magnetic structure of individual
flux vortices and give an absolute measure of the penetration
depth at low magnetic fields (typically 30 Oe) irrespective of
whether the vortices form a regular array or not. Obtaining
an absolute value for the penetration depth is important
as it gives information on the number density of electrons
involved in superconductivity,3 the nature of the supercon-
ducting state,4 and the types of vortex interaction which can
occur.5

The ability to measure the magnetic properties of individual
vortices is useful for the investigation of materials in which
the vortices do not form a regular array: an effect which
is hampering current research into some of the iron-based
superconductors.6 The technique would also provide a good
method to test predictions that vortices containing noninteger
multiples of the flux quantum should occur in two-component
superconductors such as MgB2 when their size becomes
comparable to the coherence length.7,8 It is also useful if
the structure of certain vortices is altered by pinning as it
would then be possible to see how the vortices respond to
different types of pinning site. This type of experiment has been
undertaken by Beleggia et al.9 but so far the only comparisons
with theory have been visual. As shown in Ref. 10, much of
the information on the structure of the vortex is contained in
the contrast of the image rather than its visual appearance.
Here we use images of flux vortices taken from MgB2 to
make a quantitative comparison with simulations to assess how
much information can be obtained using transmission electron
microscopy. We first compare simulations of defocused images
with those obtained experimentally and then discuss the use
of the transport of intensity equation which in principle allows
the magnetic structure of flux vortices to be derived directly
from the experimental images.

II. MAGNESIUM DIBORIDE

MgB2 was discovered to be a superconductor in 2001.11

It has a transition temperature Tc = 39 K and a hexagonal
crystal structure (space group 191: P 6/mmm) composed
of alternating layers of magnesium and boron with lattice
parameters a = b = 3.086 Å and c = 3.542 Å. It is an unusual
superconductor as it has two sources of electrons which
contribute to superconductivity: one associated with the σ
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FIG. 1. (a) Experimental arrangement for imaging flux vortices.
The electrons are deflected by the component of the B field from
the vortices normal to the electron beam giving a black-white feature
in an out-of-focus image. (b) The specimen geometry. The MgB2

specimen was mounted to a copper post glued to a standard 3-mm
diameter copper ring at an angle of 45◦. An electron transparent
window was then cut by focused ion-beam milling.

bonding from the boron pxy orbitals and the other associated
with π bonding from the boron pz orbitals. As a result,
the penetration depth varies with the applied field as this
changes the proportion of σ to π electrons contributing to
superconductivity.12,13 In this experiment, the specimen was
thinned to electron transparency in the c direction and since
flux vortices penetrate parallel to the thin direction of the
crystal, we make a low-field (∼30 Oe) measurement of the
penetration depth in the ab plane, �ab.

Only a few papers give values for the low-field penetra-
tion depth for MgB2 resolved in crystallographic directions.
Cubitt et al.13 use small-angle neutron scattering in which
measurements were extrapolated to zero field (the lowest
was made at 0.1 T) to give �ab = 82 ± 2 nm at 2 K. Very
low field (∼ 1 μT) radio-frequency measurements were also
made by Manzano et al.14 giving �ab = 110–130 nm and
�c = 210–280 nm and a coherence length ξab = 5.5 nm as
the temperature approaches absolute zero. They also show that
�ab increases by 8.0 ± 1.6 nm as the temperature is increased
from 1.35 to 10.8 K, the temperature at which the experiments
were conducted here.

III. METHODS FOR IMAGING FLUX VORTICES USING
ELECTRON MICROSCOPY

As flux vortices are magnetic objects, they deflect but do
not absorb the electron beam from the transmission electron
microscope and so affect only the phase and not the intensity
of the electron wave function. Consequently they are invisible
in an in-focus image. There are two main imaging modes by
which flux vortices can be visualised, giving access to the
phase information. The first is off-axis holography15 where a
positively charged wire (called an electron biprism) is placed
beneath the specimen and used to interfere electrons which
passed through the specimen with those which passed through
vacuum to produce an interference pattern called a hologram.
From this, the phase of the electron wave function can be
calculated directly and differentiating the phase gives the
B field or more precisely, the induction-thickness product:

the component of the B field normal to the electron beam
integrated along the path of the beam.

The other method is out-of-focus (also called Fresnel)
imaging where images are taken out of focus and the vortices
appear as black-white features.1 These can be compared with
simulations or, if several images are taken at different defoci,
the phase shift can be reconstructed using the transport of
intensity equation but this is not as direct as holography as the
intensity in an out-of-focus image is not sensitive to the phase
or the phase gradient but only to the curvature and higher
derivatives of the phase. As the induction-thickness product
is proportional to the first derivative of the phase, this has
the consequence that it can only be determined to within an
additive constant. It might be thought, therefore, that off-axis
holography would be the better method for investigating the
structure of flux vortices as it gives a direct measurement of
the phase shift but, in fact, it has only been used to examine
vortices in niobium by Bonevich et al.15,16

The main reason why out-of-focus imaging is the preferred
method for investigating flux vortices lies in the way Shot noise
in the image is transferred to noise in the recovered phase. In
the Supplemental Material17 we show that if the mth derivative
of the phase is denoted φ(m) then the noise associated with the
phase derivatives recovered by holography is

σ
φ

(m)
holo

= 1

Xm

√
2m+1

NV 2
, (1)

where N is the number of counts per reconstructed pixel, V is
the visibility of the holographic fringes (the difference between
the maximum and minimum intensity divided by the sum), and
X is the size of one pixel.

On the other hand, the noise associated with the phase
derivatives obtained from Fresnel images is

σ
φ

(m)
Fresnel

= π

Xm−2λ
f

√
2m−1

N
. (2)

Using reasonable values of V = 30%, N = 200, λ =
0.00197 nm (the wavelength of 300-kV electrons) gives the
noise in the curvature of the phase recovered by off-axis
holography as σφ′′

holo
= 2.3 mrad/nm2 for the pixel size X =

16.9 nm used in this experiment. The noise can be reduced
by increasing the pixel size and if X = 50 nm is used for the
same number of electrons arriving at the detector, the noise is
σφ′′

holo
= 0.09 mrad/nm2. This is close to the lowest resolution

at which individual vortices can be resolved as the penetration
depth of niobium is 52 nm.

Simulations for a 250-nm-thick specimen tilted to α = 50◦
give a maximum phase curvature of 0.47 mrad/nm2 for
niobium (taking � = 52 nm; Ref. 18) and 0.12 mrad/nm2 for
MgB2 (taking � = 110 nm) so it is clear that Bonevich et al.
were working near the limit of what is possible using electron
holography, as they acknowledge.16 We acquired electron
holograms from MgB2 and found that although the average
B field from the array of flux vortices could be observed,
individual vortices could not be identified.

On the other hand, the noise expected in a phase recon-
struction from defocused images is σφ′′

Fresnel
= 0.03 mrad/nm2

for 
f = 1.1 cm and X = 16.9 nm (used in this experiment)
which is an improvement of 2 orders of magnitude compared
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with holography at the same resolution. This shows why
out-of-focus imaging is the more commonly used method for
imaging flux vortices. This mode of imaging is often referred
to as “semi quantitative” but, as we show here, provided that
the images are energy filtered and recorded on a medium with
a linear response, they contain all the information needed to
make a quantitative comparison with simulations.

IV. EXPERIMENTAL METHODS

MgB2 single crystals were synthesised by J. Karpinski via
the peritectic decomposition of MgNB9 as described in Ref. 19.
The samples were thinned to 250 nm in the c direction so
that they were electron transparent using a Helios Nanolab
dual-beam focused ion beam microscope. To tilt the sample to
a high angle [α in Fig. 1(a)], the specimen was mounted on a
tilted copper post attached to a standard 3-mm copper ring as
illustrated in Fig. 1(b).

Microscopy was undertaken using a Philips CM300 trans-
mission electron microscope operated at 300 kV equipped
with an electron biprism for holography, a “Lorentz” lens,
and a Gatan imaging filter. The microscope was operated in
low-magnification mode at a nominal magnification of 105×
with the main objective lens turned off and the image was
focused with the diffraction lens. This proved more convenient
than imaging with the Lorentz lens as a wider range of defoci
could be accessed and in this mode, the selected area apertures
become objective apertures and vice versa whereas in Lorentz
mode, neither set of apertures is in the correct plane. The
images were energy filtered so that only electrons which had
lost 0–20 eV on passing through the specimen contributed to
the image and an aperture was used so that only the 000 beam
and the low-angle scattering from the vortices contributed to
the image and the other crystallographic beams were excluded.
The sample was cooled using a Gatan liquid-helium cooled
“IKHCHDT3010-Special” tilt-rotate holder which has a base
temperature of 10 K.

The defocus and magnification were calibrated by acquiring
images with the same lens settings as the original images from
Agar Scientific’s “S106” calibration specimen which consists
of lines spaced by 463 nm ruled on an amorphous film. The
defocus was found by taking digital Fourier transforms of the
images acquired from the calibration specimen and measuring
the radii of the dark rings which result from the contrast transfer
function.20

A thickness map of the specimen was created by dividing
an unfiltered image by an energy-filtered image and taking the
natural logarithm21 which gives the thickness parallel to the
electron beam l as a multiple of the inelastic mean free path
λi . To determine λi , an electron hologram was taken at room
temperature at an edge of the specimen which gives a phase
shift proportional to the thickness, φ = CEV0l. CE is a constant
which depends only on the microscope voltage and has the
value 6.523 × 106 m−1 V−1 at 300 kV. V0, the mean inner
potential, was calculated as V0 = 17.71 V from theoretical
scattering factors given in Ref. 22, giving λi = 152 ± 2 nm and
the thickness l varied from 330 to 400 nm across the field of
view of Fig. 2(a). (Ideally the thickness of the whole specimen
would have been determined by electron holography but the
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FIG. 2. (Color online) (a) Defocus series taken in a field of
27 G at 10.8 K. The defoci are (top to bottom) 
f = 2.24, 1.10,
−1.10, and −2.07 cm. (b) The same defocus series with simulated
vortices subtracted for the case where all the variable parameters
are optimized. The other fits mentioned in the text give very
similar images. (c) Line scans at each defocus taken perpendicular
to the axis of the vortex indicated by the white box in (a). FT,
fitted thickness—simulation in which the thickness was used as a
variable parameter giving l = 543 nm, α = 58◦, �ab = 126 nm. CT,
calibrated thickness—simulation in which the thickness was fixed
at its calibrated value, l = 372 nm, giving α = 51◦, �ab = 107 nm.
DL, dead layer—simulation for which the thickness was fixed at
l = 300 nm to mimic a dead layer of nonsuperconducting material,
giving α = 49◦, �ab = 97 nm. E, experimental data.

field of view of the interference region was not sufficiently
large.)

V. COMPARISON OF DEFOCUSED IMAGES
WITH SIMULATIONS

We first compare defocused images with simulations based
on the London model3 of flux vortices. The London model
describes the B field associated with a flux vortex but gives
an unphysical divergence of the B field as the center of the
vortex is approached. This is corrected by the Clem model23

where the B-field profile is rounded near the center of the
vortex in a region called the vortex core which has a radius
given by the coherence length ξ . The London model should
be a good approximation for MgB2, however, as ξab is about
6 nm whereas the penetration depth is about 100 nm [14] and
the pixel size of the images acquired here was 16.9 nm.

The phase shift, φ(x,y), an electron experiences on passing
through a London vortex has been calculated by Beleggia and
Pozzi24 using a coordinate system in which the electron beam
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approaches the specimen in the z direction and x,y denote
the image coordinates. It should be noted that their equation
correctly accounts for the boundary conditions on the B field
at the interface between the superconductor and the vacuum
so that the spreading of the B field near the interface and the
effect of the stray field are both contained in the model. If
the intensity in the in-focus image is uniform over the field of
view [a good approximation here since the in-focus intensity
varies by about 5% over the size of each vortex image whereas
the out-of-focus intensity varies by about 40% at the lowest
defocus used here as can be seen from Fig. 2(c)], the in-focus
electron wave function can be written as ψ = eiφ and from this,
any image which could be taken using the electron microscope
can be simulated.

A defocused image can be simulated by using the Fresnel-
Kirchoff integral24 to propagate the in-focus electron wave
function by a distance 
f , called the defocus. This is most
easily accomplished by Fourier transforming the in-focus wave
function in x and y but not z and multiplying by the phase
factor e−iπ
f λk2

(where λ is the electron wavelength and k

the spatial frequency), inverse transforming, and taking the
square modulus. [Here and throughout we use the Fourier
transform convention f̃ (k) = ∫ ∞

−∞ f (x)e−2πikxdx.] It should
be noted that under the conditions which vortices are imaged,
the contribution from the spherical aberration of the lens is
negligible. Here the diffraction lens was used to focus the
image which has a spherical aberration coefficient of several
meters but the coefficient would need to be ∼106 m before the
aberration and defocusing terms were comparable.

The variable parameters used to model the images were
as follows: the penetration depth �ab, the position of the
vortex in the image x, y, the thickness of superconducting
material t , the tilting angle of the specimen α, and the angle
θ of the axis of the vortex as seen in the image. These
were chosen to minimize the sum-square difference between
the experimental and simulated images using the simplex
algorithm given in Ref. 25. A similar method was used to
investigate the properties of pn junctions in semiconductors by
Twitchett et al.26

The position of each vortex x,y and the rotation angle of the
vortices θ given by the simplex algorithm are readily checked
from the images. To give an independent measure of α, the
angle between the plane of the copper ring and the specimen
was measured in the focused-ion beam microscope as 55 ± 1◦.
However, in the electron microscope, the specimen was in
shadow when the ring was horizontal and a tilt of −8.85◦ was
required to reveal the electron transparent window. This would
give α = 46◦ if the axes of rotation were the same but since
it is likely they were different by several degrees, α will be
larger and we estimate α = 50 ± 5◦.

The specimen thickness parallel to the electron beam l was
measured to ±2 nm using a combination of electron holog-
raphy and energy-filtered imaging as explained in Sec. IV.
The thickness of the specimen parallel to the thin direction t

is related to the thickness parallel to the electron beam l via
t = l cos α and the thicknesses quoted here are those parallel to
the electron beam unless otherwise stated. This method gives
the total thickness of the specimen but does not account for the
possibility of “dead layers” of non superconducting material
produced by ion-beam thinning at the surface of the specimen.

This is the largest of the uncertainties in this experiment and
its effect is discussed later.

We began by fitting all the parameters to the experimental
data. Figure 2(a) shows the defocus series and the black-white
circular objects are the flux vortices. The diagonal stripes in the
image are thickness undulations unintentionally introduced by
focused ion beam milling. As discussed in Ref. 2 which used
the same sample, they represent thickness undulations of about
1 nm. Vortices which were strongly affected by the contrast
generated by these undulations were excluded from the fit.
Panel (b) shows the same images but where the fitted vortices
have been subtracted. The fact that the vortices have been very
effectively removed indicates that the fit is good. Panel (c)
shows line scans at each defocus taken perpendicular to the
axis of a representative vortex indicated in (a) by the white
box and it can be seen that there is a good match between
simulation and experiment.

Figure 3(a) shows scatter graphs of the optimal values of
the parameters for each vortex. The mean penetration depth
is �ab = 127 nm and the standard deviation is 12 nm. There
are no obvious outliers in the scatter graph so assuming
that all the vortices have the same penetration depth gives
�ab = 127 ± 3 nm.

To our surprise, the simplex algorithm gave thicknesses
of superconducting material which were considerably larger
than the calibrated values. The average calibrated thickness
was 365 nm but the average fitted thickness was 498 nm.
We were expecting the fitted thicknesses to be shorter as
there may have been damage introduced by the focused ion
beam milling resulting in nonsuperconducting material on the
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FIG. 3. (Color online) Scatter graphs showing the results of the
parameter optimization generated by the simplex algorithm. In (a),
the specimen thickness parallel to the electron beam l was treated
as a variable parameter. In (b), it was fixed at its calibrated value.
In (c), the thickness was reduced by 50 nm (72 nm parallel to the
electron beam) from its calibrated value to simulate a “dead layer”
of nonsuperconducting material. The horizontal line shows the mean
and points within the shaded region are 1 standard deviation from the
mean.
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specimen surfaces. The problem seems to arise because the
specimen tilt and the specimen thickness are to some extent
complementary: If a vortex has a given projected length normal
to the electron beam, this could be the result either of a thick
specimen with a low tilt angle α, or a thin specimen with a
high tilt angle. The algorithm would then adjust the penetration
depth to account for this.

To assess the extent to which a change in thickness changes
the fitted penetration depth, we fixed the thicknesses at their
calibrated values and re-ran the simplex algorithm. This
resulted in Fig. 3(b) which gave a mean penetration depth
of �ab = 113 nm and a standard deviation of 8 nm so that
�ab = 113 ± 2 nm. Figure 2(c) shows that this change has
almost no effect on the quality of the fit.

Finally we assess the effect of a dead-layer of nonsuper-
conducting material on the surfaces of the sample. In addition
to measuring the total sample thickness via a combination
of energy-filtered imaging and holography as described in
Sec. IV, we also took convergent-beam diffraction patterns
from five regions of the sample under two-beam conditions.
These were used to find the thickness of the crystalline
component of the sample as described in Ref. 20. The
difference between the two measurements gives the thickness
of any amorphous layers present but we found that to within
the experimental error of ±10 nm, there was no difference.

We repeated the simplex procedure with the supercon-
ducting thicknesses fixed at 50 nm (72 nm parallel to the
electron beam) below their calibrated values which we con-
sider to be the largest plausible dead-layer thickness. Again,
Fig. 2(c) shows that the fit is still good and this yielded an
average penetration depth of �ab = 101 nm with a standard
deviation of 8 nm. Averaging over all the vortices gives
�ab = 101 ± 2 nm. Thus we can say that at 10.8 K, �ab lies
between 100 and 130 nm and is more likely to be between 100
and 115 nm.

VI. DERIVATION OF THE VORTEX STRUCTURE USING
THE TRANSPORT OF INTENSITY EQUATION

In the previous section it was shown that simulated images
based on the London model of flux vortices in MgB2 provided a
good fit to the experimental images. It would be advantageous,
however, to derive the phase and the B field from the images
directly so that no aspects of the model are assumed. In
principle, this can be done by reconstructing the phase from the
defocused images using the transport of intensity equation.27

The transport of intensity equation is a re-expression of the
Schrödinger equation in terms of the intensity I , and phase
φ, of the electrons combined with the condition that there is a
constant flow of electrons. Using the same coordinate system
as Sec. V where the electron beam approaches the specimen
in the z direction, has wavelength λ and the image (located at
z = 0) has coordinates x,y, the transport of intensity equation
is

∇xy.(I∇xyφ) = −
(

2π

λ

)
∂I

∂z
. (3)

When the in-focus image has a uniform intensity I0 (a good
approximation for the images acquired here), the equation can

be simplified to Poisson’s equation:

∇2
xyφ = −

(
2π

λI0

)
∂I

∂z
. (4)

It can then be solved Fourier transforming in x and y but
not z to give the Fourier transform of the phase as

φ̃ = 1

2πλIo

1

k2
FT

[
∂I

∂z

]
, (5)

where FT stands for the Fourier transform of the term in square
brackets. The rate of change of the intensity in the electron
beam at the exit plane of the specimen z = 0 may be estimated
by taking two images with equal and opposite defocus, ±
f ,
so that ∂I

∂z
≈ I (
f )−I (−
f )

2
f
. The phase in real space can then

be found by calculating the inverse transform of Eq. (5)
numerically. The singularity at k = 0 in Eq. (5) is indicative
of the fact that the zero of phase is arbitrary so a constant can
always be added without any physical consequences. Here the
pixel at k = 0 was set to zero so the average phase in the image
was zero. It can also be seen from Eq. (4) that the recovered
phase is not just insensitive to an additive constant but also to
the addition of a phase ramp.

Ideally one would want to measure the B field from the
vortices. The quantity closest to this which can be derived
from electron micrographs is the induction-thickness product,
“(Bt)(x,y)”: the component of the B field normal to the
electron beam integrated along the length of the beam. It is
related to the derivative of the phase via

(Bt)(x,y) ≡
∫ ∞

−∞

(
Bx

By

)
dz = h

2πe

(−∂φ/∂y

∂φ/∂x

)
. (6)

For a conventional magnetic material where the B field is
constant through the thickness of the specimen and the stray
field is negligible, the induction-thickness product is simply
the component of the B field normal to the electron beam
multiplied by the thickness of the specimen. In the case of
flux vortices, the stray field is not negligible and is included
in the induction-thickness product. As mentioned above, the
transport of intensity equation is insensitive to the addition of
a phase ramp so the induction-thickness product can only be
recovered to within an additive constant. As the simulations
were carried out with the same boundary conditions as the
reconstructions, both have the same constant offset.

Figure 4(a) and (b) show two images, equally disposed
either side of focus with 
f = ±1.10 cm. A longer defocus
series was obtained but the transport of intensity equation
works best for images closest to focus due to the approximation
to the gradient of the intensity with defocus explained earlier.
From these images, the modulus of the induction-thickness
product shown in (c) was derived. Panel (d) shows a simulation
of the induction-thickness product for the same vortex array
using �ab = 113 nm and it can be seen that it is much more
strongly peaked at the center of the vortices. This could either
indicate that the core of the vortices was much wider than
previously thought or that the transport of intensity equation
smooths the B-field profile.

To ascertain which of these possibilities was correct,
we used the simulated phase shift to produce simulated
defocused images and then applied the transport of intensity

144515-5



LOUDON, BOWELL, ZHIGADLO, KARPINSKI, AND MIDGLEY PHYSICAL REVIEW B 87, 144515 (2013)

0

1

2
3

5

4

2   mμ

B
t

in T
.nm

(a) (b)

(c) (d)

FIG. 4. (a) Original image taken with 
f = 1.10 ± 0.02 cm.
(b) Original image taken with 
f = −1.10 ± 0.02 cm. (c) The
magnitude of the induction-thickness product derived using the
transport of intensity equation. (d) Simulated induction-thickness
product for �ab = 113 nm using the calibrated thicknesses.

equation to these. Figure 5(a) shows simulated profiles of the
induction-thickness product across the center of a vortex and
it can be seen that it is indeed the use of the transport of
intensity equation which broadens the B-field profiles. This
effect is caused by subtracting two images close to focus to
approximate the gradient ∂I

∂z
≈ I (
f )−I (−
f )

2
f
and not by a lack

of coherence in the electron beam as suggested in Ref. 27.
Thus, the transport of intensity equation does not imme-

diately yield the B field profile of a flux vortex. To compare
experiment and theory, it is first necessary to simulate defo-
cused images from the theory and then generate a magnetic
profile by applying the transport of intensity equation to these.
Figure 5(b) shows that when this is done, a close match is
obtained between the experimental profile and simulations
based on the London model and that if the penetration depth
were the only quantity subject to uncertainty, it would be
possible to determine a best fit to within ±5 nm.

As before, however, there is an ambiguity between the
specimen thickness and the specimen tilt angle and Fig. 5(c)
shows that very similar profiles can be obtained for different
sets of parameters. The best values for the penetration
depth were most likely found by direct comparison between
experimental and simulated images in Sec. V rather than the
more convoluted process of applying the transport of intensity
equation to experimental images and to simulated images
and comparing the results. If this is done, however, it yields
�ab = 125 ± 4 nm when the thickness is treated as a variable
parameter and �ab = 112 ± 3 nm when the thicknesses are
fixed at their calibrated values. As expected, these values are
very similar to those obtained by comparing the experimental
images with simulations in Sec. V.

VII. SUMMARY AND CONCLUSIONS

Transmission electron microscopy gives a method to
investigate the magnetic structure of individual flux vortices in
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FIG. 5. (Color online) (a) The modulus of the induction-thickness
product (Bt) for a simulated London vortex (solid line) and recon-
structions based on pairs of simulated images at the defoci shown.

f = ±1.10 cm was used in this experiment. (b) Comparison of the
induction-thickness product (Bt) reconstructed from experimental
data for a single vortex with simulations for different values of �ab.
(c) Induction-thickness profile derived from experimental data using
the transport of intensity equation together with simulated profiles. In
the first, the thickness parallel to the electron beam was fitted as part
of the simplex routine yielding l = 530 nm, α = 52◦, �ab = 123 nm.
In the second simulation the thickness was fixed at the calibrated
value of l = 373 nm, yielding α = 43◦, �ab = 104 nm.

type-II superconductors at low magnetic field and allows abso-
lute measurements of the penetration depth to be obtained from
individual vortices irrespective of whether they form a regular
array. In Sec. III we showed that out-of-focus imaging is a
more sensitive method for measuring the B fields associated
with flux vortices compared with off-axis holography.

We investigated the magnetic structure of flux vortices in
MgB2 by comparing simulations based on the London model
of flux vortices with out-of-focus images and found these gave
a good fit indicating that the London model gives a good
description of flux vortices in MgB2. The main uncertainty
in the fits was the fraction of the sample thickness which
was superconducting. Treating the thickness as a variable
parameter in the fits and averaging over 17 vortices yielded a
penetration depth of �ab = 127 ± 3 nm although this gave an
implausibly large specimen thickness: an average of 498 nm
as opposed to the calibrated average of 365 nm. Fixing the
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thicknesses at their calibrated values gave �ab = 113 ± 2 nm
and reducing the thicknesses from their calibrated thicknesses
by 50 nm to mimic a dead layer of nonsuperconducting
material gave �ab = 101 ± 2 nm with only minimal changes
to the goodness of fit. Thus at 10.8 K and in a field of 27 Oe,
�ab lies between 100 and 130 nm and is more likely to be
between 100 and 115 nm.

The most reliable measurement of the penetration depth
is likely to be the small-angle neutron scattering experiments
from single crystals by Cubitt et al.13 which gave �ab = 82 ±
2 nm at 2 K. According to the radio-frequency measurements
of Manzano et al.,14 this will increase to 90 ± 2 nm at 10.8 K,
the temperature at which the measurements were made here.
Although radio-frequency measurements are usually used to
derive changes in the penetration depth, Manzano et al.14 were
able to estimate absolute values of �ab = 110–130 nm at
1.35 K which will increase to �ab = 118–138 nm at 10.8 K
using data from polycrystals and values for the anisotropy. Our
values lie between these two measurements.

We also investigated the use of the transport of intensity
equation which in principle allows the magnetic fields in the
specimen to be derived without reference to a model. We
found that although this gave a useful overview of the B
fields from the vortices, the B-field profiles are broadened
due to the way the change of intensity with defocus is approx-
imated. This must be taken into account when comparing the
reconstructions with models so the technique does not provide

a model-free method to determine the magnetic structure of
vortices. It should be noted that if off-axis holography could
be used, the magnetic profile would also be broadened due to
the size of the Fourier mask used in the reconstruction process
and this too would need to be accounted for.

The coherence length ξab in MgB2 is only 5.5 nm [14] and
we did not observe any rounding of the B-field profile which
could be ascribed to the coherence length. For a material with
a larger coherence length like niobium, where the coherence
length is 39 nm [18], observing the effect on the B-field profile
should be quite feasible.

Quantitative measurements of the magnetic structure of
flux vortices is only one aspect of the information which can
be obtained using this technique. Information on the pinning
landscape of the specimen can be derived from measurements
of vortex motion28 and we are currently preparing a paper on
this subject.
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