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We analyze the evolution of the superconducting gap structure in strongly hole-doped Ba1−xKxFe2As2 between
x = 1 and x ∼ 0.4 (optimal doping). In the latter case, the pairing state is most likely s±, with different gap
signs on hole and electron pockets, but with the same signs of the gap on the two �-centered hole pockets (a ++
state on hole pockets). In a pure KFe2As2 (x = 1), which has only hole pockets, laser ARPES data suggested
another s± state, in which the gap changes sign between hole pockets (a +− state). We analyze how a ++ gap
transforms into a +− gap as x → 1. We found that this transformation occurs via an intermediate s + is state
in which the gaps on the two hole pockets differ in phase by φ, which gradually involves from φ = π (the +−
state) to φ = 0 (the ++ state). This state breaks time-reversal symmetry and has huge potential for applications.
We compute the dispersion of collective excitations and show that two different Leggett-type phase modes soften
at the two end points of the time-reversal-symmetry-breaking state.
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I. INTRODUCTION

The high interest in iron-based superconductors (FeSC)
is primarily due to two key reasons. The first is a hope
that the analysis of FeSCs will not only resolve the pairing
mechanism in these systems, but also provide important
insights into the electronic pairing in a generic high-T c

superconductor. The second is a hope to explore multiband
structure of FeSCs and discover exotic superconducting states
which have not been observed in other systems. Out of such
superconducting states, the most searched for are those which
break time-reversal symmetry. A spin-triplet time-reversal-
symmetry-broken (TRSB) px ± ipy state has likely been found
in Sr2RuO4;1 the spin-singlet d + id TRSB state has not yet
been observed experimentally, although it was once proposed
as a candidate state for high-Tc cuprate superconductors,2 and
was recently predicted theoretically to occur for fermions on
hexagonal and honeycomb lattices near van Hove doping.3

Several groups already searched for the TRSB state in
FeSCs by exploring the idea that at least in some FeSCs, both s-
and d-wave channels are attractive,4–10,12–14 and that one can, in
principle, transform from s-wave to d-wave pairing by varying
system parameters: electron12 or hole9 doping, hybridization
between electron pockets,13 or degree of magnetic scattering.14

In-between, there is a coexistence regime in which both s and
d order parameters are present, with relative phase ±π

2 , i.e.,
the system develops a TRSB s ± id superconductivity. The
majority of proposals for the s + id state are for electron-
doped FeSCs, but up to now a d-wave superconductivity has
not been found in strongly electron-doped Ba(Fe1−xCox)2As2

nor in KFe2Se2-type systems which contain only electron
pockets.

In this paper, we discuss another possible realization of
the TRSB state in FeSCs, a purely s-wave state with phase
difference φ between superconducting order parameters on
different Fermi pockets, which is not a multiple of π . The
free energy of such a state is symmetric with respect to φ →
−φ. This Z2 symmetry (which corresponds to time reversal
since φ → −φ implies � → �∗) is broken when the system
spontaneously chooses φ or −φ. We label such a state as s + is.
The s + is state has been discussed in Refs. 15–23 as a generic

possibility of the superconducting order in the case when there
are more than two Fermi pockets and as a surface state in a
two-band superconductor.24 We show in the following that the
TRSB s + is state with varying φ can be realized in strongly
hole-doped Ba1−xKxFe2As2 near x = 1.

We begin by listing several facts about Ba1−xKxFe2As2.
(i) Near optimal doping x ∼ 0.4, angle resolved photoemission
spectroscopy (ARPES),25,26 neutron scattering,27 penetration
depth,28 and thermal conductivity29,30 measurements give
strong evidence for nodeless, near-constant s± gap, which
changes sign between hole and electron pockets. This is con-
sistent with theoretical calculations.5–8,11,31 (ii) Recent mea-
surements on Ba1−xKxFe2As2 with x = 1 (Refs. 33 and 34)
and x = 0.93 and 0.88 (Ref. 32) indicate that superconducting
Tc most likely remains nonzero from x = 0.4 → 1. (iii) For
the x = 1 material KFe2As2, ARPES measurements33,34 show
that only hole pockets are present. According to theory, in
this situation, both d- and s-wave pairing amplitudes are
attractive,5,9–11,35 and which state wins depends on delicate
interplay between system parameters. The d-wave gap is the
largest on the hole pocket, which in the unfolded Brillouin
zone is centered at (π,π ) (Refs. 10 and 11), and the s-
wave gap is the largest on the two �-centered hole pockets
(GCPs), and changes sign between them.35 The existing
experiments point to either d- and s-wave gap symmetry:
thermal conductivity36,37 and specific heat38 data on KFe2As2

have been interpreted in favor of d-wave gap symmetry, while
laser ARPES measurements34 and other thermal conductivity
data39 have been interpreted as evidence for an s-wave gap.

If the gap in KFe2As2 is d wave, one should obviously
expect a transition from d wave to s± state in Ba1−xKxFe2As2

as x decreases from 1, and the region of an intermediate s + id

state at low T .9 In this work, we consider what happens if the
gap in KFe2As2 is s wave. At a first glance, one might expect a
gradual evolution of the gap structure with x as the symmetry
at x = 1 the same as at optimal doping. On a more careful
look, however, we note that at optimal doping, the gaps on the
two GCPs have equal signs (a ++ state), while in the s-wave
state of KFe2As2, they are of opposite signs (a +− state). The
issue then is how a +− gap transforms into a ++ gap between
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x = 1 and optimal doping. We show that this transformation
occurs via an intermediate s + is state in which the relative
phase φ of the superconducting order parameters on the two
GCPs gradually evolves between π (the +− state) and 0 (the
++ state). The system spontaneously chooses either clockwise
or counterclockwise evolution (i.e., positive or negative φ) and
by this breaks time-reversal symmetry.

To illustrate the emergence of the s + is state, we first
consider in Sec. II the minimal model with two identical
GCPs and two electron pockets, all with the same density
of states N0, and with the two angle-independent repulsive
pair-hopping interactions: Uhh between the two GCPs and Uhe

between hole and electron pockets. A three-band version of this
model has been considered in Refs. 15, 18–21, and 23). The
interaction Uhh gives rise to +− gaps on the two GCPs, while
Uhe gives rise to an s± state with different signs of the gaps
on the two hole pockets. We model the doping dependence
by varying the strength of hole-electron coupling Uhe and
analyze the system evolution with Uhe/Uhh. We show that it
occurs via a TRSB state. In Sec. III, we extend the model
and include intrapocket repulsions and anisotropy between the
two hole pockets. We show that the TRSB state still exists in
a certain parameter range, but for nonequivalent hole pockets,
the region of the TRSB state is separated from the Tc line. We
present our conclusions in Sec. IV. Technical details of our
analysis are presented in Appendixes A–C. In Appendix C,
we also discuss plasmon mode in a clean three-dimensional
(3D) superconductor.

II. TRSB IN THE MINIMAL MODEL

The Hamiltonian of the minimal model is40 H = Hkin +
Hint, where Hkin = ∑

i,k,α εk(c†ikαcikα − f
†
ikαfikα) and Hint =

1
2

∑
k,α,β[Uhhb

†
c1k

bc2k + ∑
i,j Uheb

†
cik

bfik + H.c.], where
bx k = ∑

k xk↑αxk↓β and x ∈ {c1,c2,f1,f2}, and i,j = 1,2
number the hole pockets (c) and electron pockets (f ). We
define superconducting gaps on two hole pockets as �h1

and �h2 and the gap on electron pockets as �e1 and �e2 .
We neglect the angular dependence of Uhe in which case
�e1 = �e2 because Uhe for pockets e1 and e2 are equivalent
due to C4 symmetry of the underlying lattice. The equivalence
between �e1 and �e2 persists even if we include intrapocket
interactions and interpocket interaction between the two
electron pockets.

The set of linearized equations for �h1 , �h2 , and �e1 =
�e2 = �e is obtained straightforwardly and reads as⎛

⎜⎝
�h1

�h2

�e

⎞
⎟⎠ = −L

⎛
⎜⎝

0 uhh 2uhe

uhh 0 2uhe

uhe uhe 0

⎞
⎟⎠

⎛
⎜⎝

�h1

�h2

�e

⎞
⎟⎠ , (1)

where uhe = UheN0,uhh = UhhN0, N0 is the density of states,
L ≡ ln( 2	

Tc
), and 	 is the upper cutoff for the pairing. This

set can be easily solved. For uhe > uhh/
√

2, the eigenfunction
with the largest eigenvalue is the ++ solution (1,1, − γ ),

where γ = uhh

4uhe
+

√
1 + ( uhh

4uhe
)2, and for uhe < uhh/

√
2, is a

+− solution (1, − 1,0). Precisely at uhe = uhh/
√

2, the two
states become degenerate and a(1,1, − γ ) + b(1, − 1,0) with
arbitrary ratio of a/b becomes an eigenfunction. To see what

happens immediately below Tc at this critical uhe/uhh, we
expand the free energy in powers of �hi

and �ei
to fourth

order and obtain (see Appendix A)

F = F0 − K0(|a|2 + |b|2) + K1(|a|2 + |b|2)2

+K2|a2 + b2|2 + K3|a|4, (2)

where K0 ∝ Tc − T , K1,2 > 0, and 0 > K3 > −2K2. Min-
imizing with respect to a and b, we immediately obtain

b = ±ia
√

1 + K3
2K2

, i.e., the ++ and +− states coexist with
relative phase ±π/2. As a consequence, immediately below
the degeneracy point, the system selects an s + is state, which
breaks time-reversal symmetry (a TRSB state).

Inside the TRSB state, we can set �e to be real and
�h1 = �eiφ/2,�h2 = �e−iφ/2. We solved the set of three
nonlinear gap equations at T = 0 (see Appendix B) and
found that the TRSB state exists between umin

he = 0 and
umax

he ≈ uhh√
2

(1 + uhh

4 ln 2). At the lower boundary, the TRSB

state borders the +− state and the relative phase reaches
φ = π , and at the upper boundary the TRSB state borders
the ++ state and φ = 0. In-between,

φ = ±2 arccos

[
uhh

2uhe

e(2u2
he−u2

hh)/(2u2
heuhh)

]
. (3)

We show the evolution of the relative phase φ on the two hole
pockets with uhe/uhh in Fig. 1.

Combining the results at Tc and at T = 0, we obtain the
phase diagram shown in Fig. 2(a). The TRSB state exists in
the “triangle” which begins as a point at Tc and extends to a
finite interval at T = 0.

A. Collective modes

The existence of phase transitions at the boundaries of
the TRSB state implies that there must be soft collective
excitations. In a generic multigap superconductor, there are
three types of collective excitations: (i) variation of the overall
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FIG. 1. (Color online) Variation of the relative phase φ of the
gaps on two hole pockets with uhe. This phase is zero for uhe > umax

he ,
but becomes nonzero at smaller uhe and eventually reaches φ = ±π

at uhe = 0. When |φ| is between 0 and π , it can be either positive or
negative, and the choice breaks Z2 time-reversal symmetry. The width
of the TRSB region is controlled by interpocket hole-hole interaction
uhh and increases when uhh gets larger.
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FIG. 2. (Color online) Qualitative phase diagram for Ba1−xKxFe2As2 at x � 1. We model the doping dependence by varying the ratio of
interpocket electron-hole and hole-hole interactions uhe/uhh which roughly scales as 1 − x. The +− state has gaps of opposite signs on the
two GCPs and no gap on electron pockets, the ++ state is an ordinary s± state in which the gaps have opposite signs on hole and electron
pockets, and between them is the TRSB state. The gap structures are pictorially presented inside each region by vectors placed inside the circles.
The magnitudes of the vectors represent |�i | and the angles represent the phases. Cases (a) and (b) are for equal and nonequal intrapocket
interactions (uh1 and uh2 ) for the two hole pockets, respectively. For (a), the TRSB state starts right at Tc and extends into a finite range at
T = 0. For (b), the TRSB region splits off from the Tc line and is only accessible at lower temperatures, while immediately below Tc the +−
state gradually evolves into the ++ state as uhe/uhh increases.

phase, (ii) variations of relative phases of different gaps
(Leggett modes41), and (iii) variations of the gap magnitudes.
The overall phase mode is coupled by long-range Coulomb
repulsion to density variations and becomes a plasmon.42,43

The other modes that do not couple to density variations
are generally either overdamped or have energy close to 2�.
However, near the boundaries of the TRSB state, some of these
modes soften.

We analyzed the dispersion of collective excitations in our
model by introducing small perturbations in the form of pairing
and density vertices with nonzero external momentum and
frequency (δ�h1 ,δ�h2 ,δ�e, and δρi , i = 1,2,3) and calculat-
ing the fully renormalized vertices (see Fig. 3). Each δ� is
generally a complex function δ�i = δR

i + iδI
i , so for arbitrary

momentum q, the problem reduces to solving the set of nine
coupled equations for δR

i , δI
i , and δρi . We verified, however,

that at small q, when short-range interactions uhh,uhe can be

FIG. 3. The diagrammatic representation of the equations for
dispersion of collective modes. The equations for other δ�j are
similar to the one for δ�h1 and are not shown. Wavy lines: interactions
uij ; chainsaw line: Coulomb interaction Vq . The bare vertices are not
shown.

neglected compared to the static Coulomb interaction V (q),
all three δρi are equivalent because the Coulomb repulsion
does not distinguish between the different fermions (Refs. 41
and 44). In this approximation, i.e., δρi = δρ, and the number
of equations reduces to seven.

The equation for δ�h1 is graphically shown in Fig. 3. Other
equations are similar. In explicit form, we have

2δR
i = 2δR

i (0) +
∑

j

ui,j

[

11

jj δ
R
j − 
12

jj δ
I
j + 
13

jj δρj

]
,

−2δI
i = −2δI

i (0) +
∑

j

ui,j

[

21

jj δ
R
j − 
22

jj δ
I
j + 
23

jj δρj

]
,

2δρi =
∑

j

2N0V (q)
[

31

jj δ
R
j − 
32

jj δ
I
j + 
33

jj δρj

]
, (4)

where δ(0) are bare pairing and density vertices which
we introduced as small corrections to the Hamiltonian (see
Appendix C), V (q) is long-range Coulomb potential, and the
components of the matrix uij are

ui,j =

⎛
⎜⎝

0 uhh 2uhe

uhh 0 2uhe

uhe uhe 0

⎞
⎟⎠ . (5)

Further, 
ab
ii = 
ab

ii (q,�) = 1
N0

∫
d2k dω/(2π )3Tr[Gi(k,ω)

σaGi(k + q,ω + �)σb], where σa are Pauli matrices,
and Gi are Nambu Green’s function of a superconductor,
i ∈ {c1,c2,e}.

In explicit form, we have (see Appendix C for details)


11
ii (�q,�) = −

[
2Li − 1 − cos φ −

(
4

3
− 2

3
cos φ

)
X2

i

]
,


22
ii (�q,�) = −

[
2Li − 1 + cos φ −

(
4

3
+ 2

3
cos φ

)
X2

i

]
,


33
ii (�q,�) = −

[
2 − 4

3

(
�

2�i

)2 ]
,
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12
ii (�q,�) = − sin φ

[
1 − 2

3
X2

i

]
= 
21

ii (�q,�),


13
ii (�q,�) = − i�

�i

sin
φ

2

[
1 − 2

3
X2

i

]
= −
31

ii (�q,�),


23
ii (�q,�) = − i�

�i

cos
φ

2

[
1 − 2

3
X2

i

]
= −
32

ii (�q,�), (6)

where Li = ln( 2	
�i

) and X2
i = −( �

2�i
)2 + v2

F

2 ( q

2�i
)2.

It is intuitive to reexpress Eq. (4) as

2
∑

j

(u−1)ij δ
a
j = 2

∑
j

(u−1)ij δ
a
j (0) +

∑
b



a,b
ii δb

i ,

2δρ = −
∑

j

2N0V (q)
[

31

jj δ
R
j − 
32

jj δ
I
j + 
33

jj δρ
]
,

(7)

where δb
i = (δR

i , − δI
i ,δρ). This 7 × 7 set can be cast into the

form
K(q,�)�δ = u−1�δ(0), (8)

where �δ is a seven-component vector with elements
δR
i , − δI

i ,δρ [�δ(0) is the bare vertex):

u−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
uhh

− 1
uhh

− 1
uhe

0 0 0 0

− 1
uhh

1
uhh

− 1
uhe

0 0 0 0

− 1
2uhe

− 1
2uhe

− uhh

2u2
he

0 0 0 0

0 0 0 1
uhh

− 1
uhh

− 1
uhe

0

0 0 0 − 1
uhh

1
uhh

− 1
uhe

0

0 0 0 − 1
2uhe

− 1
2uhe

− uhh

2u2
he

0

0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(9)

and

K(q,�) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
uhh

+ 
11
h1h1

− 1
uhh

− 1
uhe

−
12
h1h1

0 0 
13
h1h1

− 1
uhh

1
uhh

+ 
11
h2h2

− 1
uhe

0 −
12
h2h2

0 
13
h2h2

− 1
2uhe

− 1
2uhe

− uhh

2u2
he

+ 
11
ee 0 0 −
12

ee 
13
ee

−
21
h1h1

0 0 1
uhh

+ 
22
h1h1

− 1
uhh

− 1
uhe

−
23
h1h1

0 −
21
h2h2

0 − 1
uhh

1
uhh

+ 
22
h2h2

− 1
uhe

−
23
h2h2

0 0 −
21
ee − 1

2uhe
− 1

2uhe
− uhh

2u2
he

+ 
22
ee −
23

ee


31
h1h1


31
h2h2

2
31
ee −
32

h1h1
−
32

h2h2
−2
32

ee M

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (10)

Here, M = − 1
N0Vq

+ 
33
h1h1

+ 
33
h2h2

+ 2
33
ee . The dispersions

of seven collective excitations are obtained from the condition
DetK(q,�) = 0.

To adequately describe the full spectrum of all long-
wavelength collective modes, one has to expand in vF q/�,
but allow frequency to be of order of � (see Ref. 46 and
Appendix C). Our goal, however, is limited: we want to find
the plasmon mode in two dimensions (2D) and the modes
which soften at the boundaries of the TRSB state. All these
modes are low-energy modes in the long-wavelength limit,
and to capture them in our approach, it is sufficient to use
double expansion in vF q/� and in �/�. To get other modes
(or resonances), one needs to search for frequencies around
2�.

In the ++ state, φ = 0 in equilibrium, and δI and δR

describe phase and magnitude fluctuations, respectively. One
can easily make sure (see Appendix C) that these two sets of
fluctuations decouple and there are no solutions for amplitude
fluctuations at � 
 �.

The three orthogonal phase modes are δI
a ≡ δI

1 −
δI

2 , δI
b ≡ δI

1 + δI
2 + (2/γ )δI

3 , δI
c ≡ δI

1 + δI
2 − (2/γ )δI

3 , where

γ = 2uheL0 and L0 = uhh+
√
u2

hh + 16u2
he

8u2
he

. The mode δI
b is

gapped everywhere in the ++ phase. The mode δI
c describes

fluctuations of the overall phase. This mode is coupled to
fluctuations of the electron density δρ as

− i�

�
δI
c −

(
1

N0Vq

+ 8

)
δρ = 0,

(11)
v2

F q2 − 2�2

4�2
δI
c + 4i�

�
δρ = 0.

The corresponding dispersion is a 2D plasmon with �2
pl =

v2
F q2

2 (8N0Vq + 1). Observe that the plasmon frequency remains
the same as in the normal state.48 In general, �pl in a
superconductor scales with the density of superconducting
electrons and is sensitive to disorder.43 In our case (clean
limit), superconducting density coincides with the full electron
density, hence �pl does not change between normal and
superconducting states.

The mode δI
a describes antisymmetric phase fluctuations

of the gaps on the two hole pockets. The condensation
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FIG. 4. (Color online) Doping evolution of the frequencies of the
relevant collective modes at q = 0. The plasmon mode frequency
vanishes at q = 0 for all uhe. Mode M1 describes relative phase
fluctuation of the two hole gaps. It softens (Refs. 20, 21, and 23)
at the transition point between ++ and TRSB states (at uhe = umax

he ,
indicated by the arrow). Mode M2 describes coupled antisymmetric
phase fluctuation of the two hole gaps and longitudinal fluctuation of
the electron gap. This mode lies below twice the energy of the electron
gap and softens at the boundary between TRSB and +− states, at
umin

he = 0. Numerically, the energy of the M2 mode becomes small al-
ready for uhe � umax

he because the electron gap rapidly decreases with
decreasing uhe. The circle represents the case discussed in Ref. 23.

of this mode signals the transition to the TRSB state. In
the static limit, this mode totally decouples from density
fluctuations. Near uhe = umax

he we obtained at q = 0, (�δI
a
)2 =

(8
√

2/3)(2�/umax
he )2(uhe − umax

he ). Not surprisingly, the anti-
symmetric phase mode softens at the transition point into the
TRSB state (where uhe = umax

he ). We show the behavior of �δI
a

in Fig. 4. To properly obtain the dispersion of this mode, one
has to do more involved calculations as the combinations of
δI

1 , δI
2 , and δI

3 , which decouple at a finite q, are not the same
as at q = 0. As a result, the dispersions of Leggett-type modes
generally depend on the Coulomb interaction.21,41,44

Inside the TRSB state, phase and amplitude fluctuations get
mixed up, as was noticed in Refs. 21 and 23. This is easily seen
from Eq. (10) as the off-diagonal components which connect
the real and imaginary parts of the order-parameter fluctuations
are given by 
12 which are proportional to sin φ [see Eq. (6)]
and are nonzero once φ �= 0,π .

The mode which corresponds to the overall phase change
is now −(δR

1 − δR
2 ) sin φ

2 + (δI
1 + δI

2 ) cos φ

2 − 2
γ
δI

3 , where in

the TRSB state γ = 2(uhe/uhh) cos φ

2 , and φ is given by
Eq. (3). This mode decouples from other phase and magnitude
modes, but again couples to δρ and remains a 2D plasmon.
We solved for the remaining modes and found that the mode
δI

1 − δI
2 , which described antisymmetric phase fluctuations of

�h1 and �h2 outside the TRSB region and softened at the upper
boundary of the TRSB state, acquires a new functional form
inside the TRSB state, and gets gapped, as expected. As uhe

decreases and φ increases and approaches π , another mode,
indicated as the M2 mode in Fig. 4, gets soft. This mode is
a coupled oscillation of δR

3 and δR
1 + δR

2 . The first describes
longitudinal fluctuations of the electron gap, which vanishes
at the lower boundary of TRSB state, the second describes

antisymmetric phase fluctuations of the two hole gaps [for
φ = π − 2φ̃ and φ̃ 
 1, �h1 → �ei( π

2 −φ̃) ≈ �(i + φ̃), and
�h2 → �e−i( π

2 −φ̃) ≈ �(−i + φ̃), and δR
2 + δR

1 = 2δR
2 = 2φ̃

describes small deviations from the +− state]. The calculation
of this mode requires some extra care because electron gap �e

vanishes at the lower boundary of the TRSB state, and the
expansion in �2/(2�e)2 is only valid if the mode frequency
is below 2�e (Ref. 45). Using the formal expansion in �,
we obtained the frequency of M2 mode �M2 =√

3(2�e), which
is outside the applicability limit of the expansion. A more
accurate approach is to keep � along with �e, i.e., replace
�2/(2�e)2 by �2/(4�2

e − �2). This gives �M2 = (
√

3/2)(2�e),
which is below the threshold at 2�e. We also found another
low-energy mode using the expansion in �, however, its
energy is above 2�e even when we keep � along with �e.
This excitation is then inside the continuum and is not a true
collective mode.

We emphasize that the vanishing of �e is a peculiarity of
the minimal model. In a more general model, the TRSB state
emerges from the modified +− state, in which �e is already
nonzero. Then, it is completely safe to search for soft modes
by expanding in �/�i .

III. BEYOND THE MINIMAL MODEL

We analyzed whether the TRSB state survives in more
general cases. As a first step, we included intrapocket density-
density interactions uh1 , uh2 , and ue. Applying the same
procedure as before, we found that, for uh1 = uh2 , the phase
diagram and the behavior of collective modes remain the same
as in Figs. 2 and 4, the only modification is that at T = 0
the lower boundary of the TRSB state now shifts to a finite
umin

he =√
ueuhh

2 . The upper boundary becomes umax
he ≈ u0

he[1 +
uhh

4

(1− uh1
uhh

)2

χ2 ln( 2
χ

)], where χ = (
√

1 − uh1−ue

uhh
) and u0

he = uhh√
2
χ is

the point at which the TRSB state emerges right at Tc.
When uh1 �= uh2 , the phase diagram changes qualitatively

[see Fig. 2(b)]. Now, one of the hole gaps continuously evolves
from negative to positive along the Tc line, passing through
zero in-between (see Appendix A for details). The TRSB
state still emerges, but at a lower T , and survives as long
as intrapocket interactions remain small compared to uhh

(see Appendix B). To simplify the presentation, we consider
the representative case when uh2 ,ue = 0 and uh1 
 uhh to
understand the changes to the phase diagram. The phase
diagram for a generic uh1 �= uh2 is qualitatively the same as
in the case we considered. We found that the TRSB state
at T = 0 now exists in an interval between umin

he = 0 and
umax

he ≈ uhh√
2
(1 − uhh

4 ln[2/(1 + e−uh1 /u2
hh )2]).

We also considered anisotropic interpocket interaction uhh

with an extra cos 4θ term, consistent with lattice symmetry.11

This gives rise to cos 4θ angular variations of �h1 and �h2 and
may lead to accidental gap nodes. The solution of the set of the
gap equations for uh1 �= uh2 and uhh(θ ) = uhh[1 + α(cos θh1 +
cos θh2 )] is quite involved. However, one can show quite
generally that the TRSB state is confined to low temperatures
and is separated from the Tc line, like we previously had
for angle-independent interactions. Immediately below Tc, the
+− state gradually evolves into the ++ state, however, now

144511-5



SAURABH MAITI AND ANDREY V. CHUBUKOV PHYSICAL REVIEW B 87, 144511 (2013)

0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

Angle/(2π)

G
ap

 fu
nc

tio
ns

s−wave solution

u
he

=0.02

h
1

h
2

electron

0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

Angle/(2π)

G
ap

 fu
nc

tio
ns

s−wave solution

u
he

=0.04

h
1

h
2

electron

0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

Angle/(2π)

G
ap

 fu
nc

tio
ns

s−wave solution

u
he

=0.06

h
1

h
2

electron

0 0.05 0.1 0.15 0.2 0.25
−1.5

−1

−0.5

0

0.5

1

1.5

Angle/(2π)

G
ap

 fu
nc

tio
ns

s−wave solution

u
he

=0.09

h
1

h
2

electron

FIG. 5. (Color online) The +− to ++ transition at Tc, with
increasing uhe for the case when the two hole pockets are not
equivalent and the interaction uhh has cos 4θ angular dependence. The
solutions of the linearized gap equations are shown for uhe = 0.02,
uhe = 0.04, uhe = 0.06, uhe = 0.09 from left to right and top to
bottom, respectively. Other parameters are α = 0.05, uh1 = 0.2,
uh2 = 0.26, uhh = 0.2. Note how one of the hole gap’s average
value gets smaller as uhe increases, goes through zero, and reappears
with the opposite sign and with small angular variation at larger
uhe. We expect such behavior immediately below the Tc line in
Ba1−xKxFe2As2 as x decreases from one.

only the average value of the “minus” gap goes through zero at
some intermediate uhe, while the gap itself does not vanish and
just oscillates along the corresponding pocket. We illustrate
this in Fig. 5.

Inside the TRSB state at T < Tc, the number of coupled
gap equations equals to nine because in general �hi

= �i

(eiφia + rie
iφib cos 4θ1), i = 1,2. For uh1 = uh2 , we find that

�h1 = �∗
h2

= �eiφ/2[1 + (rae
−iφ + rb) cos 4θ1]. For φ = 0
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FIG. 6. (Color online) The gap evolution in the TRSB state for
angle-dependent interactions and two equivalent GCPs, in a situation
when the gap in the +− state has accidental nodes and the gap in
the ++ state is nodeless. The nodes disappear once the system enters
the TRSB state, but deep minima (shown by arrows) remain in some
range of φ (or equivalently uhe).

(the ++ state), accidental nodes exist if |ra + rb| > 1, for
φ = π (the +− state), they exist if |ra − rb| > 1. In the TRSB
state, however, |�hi

| does not cross zero and can only have
gap minima. We illustrate this behavior in Fig. 6 for the
experimentally relevant case when the +− state is nodal and
the ++ state has a full gap. Observe that the distance between
deep minima gets larger upon entering the TRSB state. This
behavior is consistent with recent laser ARPES studies of
doped Ba1−xKxFe2As2 (Ref. 32).

IV. CONCLUSIONS

We considered the evolution of the superconducting gap
structure in strongly hole-doped Ba1−xKxFe2As2. Near op-
timal doping (x ∼ 0.4), the pairing symmetry is s±, with
different gap sign on hole and electron pockets, but the same
sign of the gap on the hole pockets (a ++ state in our
terminology). In pure KFe2As2 (x = 1), which has only hole
pockets, there are experimental and theoretical arguments for
both d- and s-wave gaps; the latter changes sign between the
two GCPs (a +− state). We assumed s-wave-gap symmetry
for KFe2As2, consistent with the laser ARPES data.34 The
issue we addressed is how a ++ gap on the GCPs transforms
into a +− gap as x → 1. We found that, for identical GCPs,
there is a critical point along the Tc line at which the system
jumps from the +− to ++ state [see Fig. 2(a)]. At a lower
T , the transformation occurs via an intermediate s + is state
in which the gaps on the two GCPs differ in phase by φ

which gradually involves from φ = π on one end (the +−
state) to φ = 0 on the other end (the ++ state). The system
spontaneously chooses either φ or −φ and with this choice
breaks time-reversal symmetry. We computed the dispersion of
collective excitations and found that two Leggett-type modes
soften at the two ends of the TRSB state. We found that the
TRSB state survives even when the two GCPs are nonidentical
and also when the gap on hole pockets is angle dependent,
and even when the +− and/or ++ states have accidental gap
nodes. In the former case, near Tc the system gradually evolves
from the +− to ++ state, but the TRSB state still emerges at
a lower T [see Fig. 2(b)]. In the second, the nodes get lifted
once the system enters into a TRSB state (but deep minima
remain). The s + is state is not chiral, but, e.g., Polar Kerr
effect measurements still should be able to detect the breaking
of time-reversal symmetry. These measurements are clearly
called for.
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APPENDIX A: FREE ENERGY

We follow a standard procedure and introduce bosonic
fields �h1 , �h2 , and �e, which describe fluctuations of the
superconducting order parameters on the two hole and one
electron pockets. We decouple four-fermion interactions using
a Hubbard-Stratonovic (HS) transformation, integrate over
fermions, obtain Z = ∫

d�ie
−F[�i ], and analyze F[�i] in

the saddle-point approximation. For a model with intrapocket
and interpocket interactions within hole pockets (uh1 , uh2 , and
uhh terms, respectively) and the interaction between hole and
electron pockets (uhe term), we obtained

F[�i] = − 1

2uhh − uh1 − uh2

[
− 2

(∣∣�h1

∣∣2 + ∣∣�h2

∣∣2)
+ 2

(
�h1�

∗
h2

+ �∗
h1

�h2

)
+ 2

(
uhh − uh2

)
uhe

(
�h1�

∗
e + �∗

h1
�e

)

+ 2
(
uhh − uh1

)
uhe

(
�h2�

∗
e + �∗

h2
�e

)

+ 2
(
uh1uh2 − u2

hh

)
u2

he

|�e|2
]

− 2L
∑

x

|�x |2 +
∫

G2G̃2
∑

x

|�x |4, (A1)

where L ≡ ∫
GG̃ ∼ ln 2	

T
, the sum over x runs over two

hole and two electron pockets, and G = (iω − ε)−1 and
G̃ = (iω + ε)−1.

Let us first consider the case uh1 = uh2 = 0. Then, one can
diagonalize the quadratic part of the free energy by introducing

φ1 = cos �
�h1 + �h2

2
− sin ��e,

φ2 = sin �
�h1 + �h2

2
+ cos ��e, (A2)

φ3 = �h1 − �h2

2
,

where cos � = 1/
√

1 + ζ 2, sin � = ζ/
√

1 + ζ 2, and ζ =
uhh

4uhe
(1 +

√
1 + 16u2

he

u2
hh

). The action in terms of φi takes the form

�F(2)[φi] = λ1|φ1|2 + λ2|φ2|2 + λ3|φ3|2, (A3)

where

λ1 = uhh

2u2
he

(
1 +

√
1 + 16u2

he

u2
hh

)
− 4L,

λ2 = uhh

2u2
he

(
1 −

√
1 + 16u2

he

u2
hh

)
− 4L, (A4)

λ3 = 4

uhh

− 4L.

Since λ2 is strongly negative, the HS transformation for φ2

does not make sense. Because this field does not condense
on physics grounds, we just set φ2 = 0 (see Ref. 49 for more

discussion on this). The two other λ’s change sign at some,
generally different, temperatures, which depend on uhe/uhh.
When this happens, either φ1 or φ3 condense, depending
on whether λ1 or λ3 changes sign first upon lowering T ,
i.e., increasing L. (This procedure is formally equivalent
to diagonalizing the linearized gap equation to identify the
state with the leading eigenvalue which in this case would
correspond to either the field φ1 or φ3.) The condensation
of φ1 with φ2 = φ3 = 0 brings the system into a ++ phase
(�h1 = �h2 = −�e/γ ), while the condensation of φ3 with
φ2 = φ1 = 0 brings the system into a +− phase (�h1 = −�h2 ,
�e = 0). At uhe = uhh/

√
2, λ1 and λ2 reach zero at the same

T , and φ1 and φ3 condense simultaneously (for this uhe,
cos � = 1/

√
3). The relative magnitude and the relative phase

between φ1 and φ3 are decided by minimizing the quartic terms
in the free energy. Plugging in �i in terms of φi into Eq. (A1),
neglecting φ2, and using uhe = uhh/

√
2, we obtain

�F(4)[φi] = K1(|φ1|2 + |φ3|2)2 + K2

∣∣φ2
1 + φ2

3

∣∣2 + K3|φ1|4,
(A5)

where K1 = C
3 , K2 = C

6 , K3 = − 2C
9 , and C > 0. The K1 term

is isotropic, the K3 term depends on the relative magnitudes of
φ1 and φ3 fields, and the K2 term K2|φ2

1 + φ2
3 |2 = K2(|φ1|4 +

|φ3|4 + 2|φ1|2|φ3|2 cos 2θ ) depends on the relative magnitude
and the relative phase θ between φ1 and φ3: A positive K2

(our case) selects θ = ±π/2, i.e., if one condensate is real,
another is purely imaginary. Solving for the amplitudes, we
find |φ3|2 = |φ1|2(1 + K3/2K2) = |φ1|2/3. The state in which
both φ1 and φ3 are present and the relative phase is not 0 or π

is our TRSB state. Equation (A5) is presented in the main text
with φ1 → a and φ3 → b.

Away from the degeneracy point, the quadratic part of the
free energy takes the form

F(2)[φi] =
(

λ + 16

3

x

uhh

)
|φ1|2 + λ|φ3|2, (A6)

where λ = 4(1/uhh − L) and x = 1 − √
2uhe/uhh. The lead-

ing instability to the left of the degeneracy point (at x > 0)
is into the φ3 state, and to the right of it (at x < 0) it is
into the φ1 state. Once one order sets in, it acts against the
appearance of the other. Still, we found that, e.g., at x > 0,
φ1 still condenses at λcr = −(16x/3uhh)[(K1 + K2)/2K2] =
−(16x/3uhh) ∗ (3/2). The corresponding temperature Tcr is
smaller than without K terms, but is still finite. Once φ1

becomes nonzero, a positive K2 again selects a relative phase
of ±π/2 between φ3 and φ1 (which corresponds to the φ = π

boundary for the TRSB state). This consideration leads to the
phase diagram in Fig. 1(a) in the main text.

We extended this analysis to the case when uh1 = uh2 �= 0
and found the same results as above. However, when uh1 �=
uh2 , the phase diagram changes qualitatively. To show the
new physics and at the same time avoid lengthy formulas,
we set uh1 
 uhh; uh2 = 0 and consider uhe near uhh/

√
2, at

which ++ and +− phases cross at Tc. Specifically, we set
uh1 = 2yuhh, u2

he = (u2
hh/2)(1 + 2cy), and obtained the phase

diagram to first order in y 
 1.
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At a nonzero y, the quadratic part of the free energy reads
as

F2[φi] = 4

(
1 + y(1 − 4c)/3

uhh

− L

)
|φ1|2

+ 4

(
1 + y

uhh

− L

)
|φ3|2

− 4

(
1 + y(7 − 10c)/3

2uhh

+ L

)
|φ2|2

− 2
√

2y√
3uhh

(φ∗
3 (φ2 −

√
2φ1) + c.c.). (A7)

The φ2 mode is again noncritical, and φ2 can be sent to zero.
For the remaining two modes, we have

F2[φi] = 4

(
(1 + y)

uhh

− L

)
|φ3|2

+ 4

(
1 + y(1 − 4c)/3

uhh

− L

)
|φ1|2

+ 4y√
3uhh

(φ3φ
∗
1 + +c.c.). (A8)

Diagonalizing this quadratic form by
φ1 = ψ1 cos η + ψ3 sin ηφ3 = −ψ1 sin η + ψ3 cos η, (A9)

we obtain tan 2η = √
3/(1 + 2c). Taking the positive root

tan η = 1√
3
[
√

(1 + 2c)2 + 3 − (1 + 2c)], we obtain

F2[ψi]

= 4

[(
1 + y

3 (2(1 − c) −
√

(1 + 2c)2 + 3)

uhh

− L

)
|ψ1|2

+
(

1 + y

3 (2(1 − c) +
√

(1 + 2c)2 + 3)

uhh

− L

)
|ψ3|2

]
.

(A10)

We see that the temperatures at which ψ1 and ψ3 modes
condense are different and the ψ1 mode condenses first for all
values of c. The ψ1 mode condenses at Lψ1 = [1 + S1(c)]/uhh,
where S1(c) = ( 8

3 )(1 − c −√
1 + c + c2), and the ψ3 mode

condenses at Lψ3 = [1 + S3(c)]/uhh, where S3(c) = ( 8
3 )(1 −

c +√
1 + c + c2). We plot the temperatures at which the

prefactors for |ψ1|2 and |ψ3|2 terms vanish in Fig. 7. The
condensation of the ψ1 field leads to a superconducting state
in which all three gaps �h1 , �h2 , and �e are generally present
and are different from each other. At large positive c (i.e.,
at larger uhe), the state immediately below the condensation
temperature of ψ1 is close to the ++ state, with �h1 ≈ �h2 and
�e of opposite sign compared to �h1 and �h2 . At large negative
c (smaller uhe), the state immediately below the condensation
temperature of ψ1 is close to the +− state, with �h1 ≈ −�h2

and smaller �e. In-between, the condensed state is a mixture of
++ and +− states. In particular, for c = 0, �e = −�h2/

√
2,

and �h1 = 0, i.e., the gap on the hole pocket, for which we
kept intrapocket repulsion, vanishes. We analyzed the form of
the condensate for various c (i.e., various uhe/uhh) and found a
continuous evolution, in the process of which one of hole gaps
gets smaller, passes through zero, and then reemerges with the
opposite sign. Specifically, we found, right below Tc for the
ψ1 mode,

�e = −�h1 + �h2√
2

,

�h1 − �h2

�h1 + �h2
= (1 + 2c) −

√
3 + (1 + 2c)2

. (A11)

Without quartic terms, the modes ψ1 and ψ3 are decoupled
and the system undergoes two superconducting transitions at
Lψ1 and Lψ3 . The mode which condenses at Lψ3 is almost
the ++ state at large negative c, almost the +− state at large
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FIG. 7. (Color online) Temperatures (T ) at which the prefactors for the quadratic terms in Ginzburg-Landau expansion for the two critical
fields change sign. The parameter c measures the deviation of hole-electron interaction uhe from the critical value (=uhh/

√
2). Left panel: two

equivalent hole pockets (y = 0). In this situation, the condensation of one critical field leads to +− order, the condensation of the other leads
to ++ order. The two lines cross at the critical uhe. In the presence of mode-mode coupling, the emergence of one order tends to prevent the
emergence of the other, and the actual temperature, at which the second order emerges, gets smaller (black line). We found (see text) that below
the black line the two orders lock into the TRSB state. Right panel: nonequivalent hole pockets (y = 1

8 ). The eigenfunctions reduce to pure
+− and ++ only at large |c|, while in the region labeled “mixed” the system gradually transforms form the +− to ++ order with one of the
hole gaps going through zero in-between. The lines at which the prefactors for the quadratic terms vanish now do not cross. Due to mode-mode
coupling, the order which appears first now induces second order, i.e., both are present immediately below the actual Tc line, with a relative
phase of 0 or π , i.e., time-reversal symmetry is not broken at Tc. The TRSB state still emerges, but at a lower T (below the black line).
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positive c, and a mixed state in-between. For example, at c =
0, the ψ3 condensate has components �h1 = −2�h2 ,�e =
�h2/

√
2.

The situation changes when we include quartic terms into
consideration. We use Eq. (A5) as an input, substitute φ1,3

in terms of ψ1,3 via (3), and obtain F4[ψi]. Carrying out the
calculations, we find that the fourfold term contains a linear
piece in ψ3 in the form 2K3 sin 2η cos2 η|ψ1|3|ψ3| cos θ13,
where θ13 is a relative phase between the condensates of ψ1

and ψ3. This term acts as an “external field” for ψ3 and makes
ψ3 nonzero once ψ1 condenses. Because K3 < 0, the system
initially selects θ13 = 0, i.e., φ3 field emerges with the same
phase as φ1. This implies that the state immediately below Lψ1

breaks a U(1) gauge symmetry (the overall phase gets fixed),
but time-reversal symmetry remains unbroken. The situation
changes, however, when the temperature gets lower and ψ3

grows. The full dependence of F4[ψi] on θ13 is in the form

F4[ψi] = 2K3 cos θ13 sin 2η

× |ψ1||ψ3|(|ψ1|2 cos2 η + |ψ3|2 sin2 η)

+ cos2 θ13|ψ1|2|ψ3|2(4K2 + K3 sin2 2η). (A12)

Analyzing this form, we immediately find that the prefactor
for cos2 θ13 is necessary positive. Minimizing with respect to
θ13, we then find that, at some finite ψ3, the equilibrium value
of θ13 shifts from φ13 = 0 to a finite θ13 = ±b, b �= 0. For large
and small c, this happens already at small ψ3, which are well
within the applicability of the expansion in powers of ψ . Thus,
for large positive c, the critical |ψ3| = |ψ1|/(

√
3|1 + 2c|).

Once the system selects a nonzero θ13, it breaks additional
Z2 symmetry by selecting either positive or negative value of
the relative phase θ13. The Z2 breaking then implies that time-
reversal symmetry is broken, i.e., once θ13 becomes nonzero,
the system enters into a TRSB phase. The region of this phase
shrinks as uh1 increases but definitely remains finite as long as
uh1 
 uhh, i.e., as long as our parameter y is small.

When both uh1 and uh2 are nonzero, the calculations become
more involved, but the physics remains the same. We also
analyzed the effect of adding intrapocket interaction ue for
electron pockets. Like in the case of uh1 = uh2 , a nonzero
ue shifts the lower boundary of the TRSB state to a finite
uhe. There is one new effect compared to the case uh1 = uh2 :
because now (when uh1 �= uh2 ), �e remains nonzero to the
left of the lower boundary of the TRSB state, the mode which
describes longitudinal fluctuations of �e no longer strongly
couples to antisymmetric phase fluctuations of the two hole
gaps, and the mode which softens at the lower boundary of the
TRSB state becomes a pure Leggett-type phase mode.

APPENDIX B: NONLINEAR GAP EQUATIONS AT T = 0

The key goal of the analysis is to show that the TRSB state,
which starts as a point along the Tc line, extends to a finite
range of system parameters at T = 0. The set of nonlinear
gap equations in a generic model with interpocket interactions
uhh, uhe, and intrapocket interactions uh1 , uh2 , and ue is shown
diagrammatically in Fig. 8. Each anomalous vertex is a gap �x ,
which, in general, is a complex variable (x = h1,h2, and e),
and each fermionic bubble is a sum of normal and anomalous

FIG. 8. Diagrammatic representation of the set of nonlinear
equations for the gaps �h1 and �e1 (viewed as anomalous self-
energies). In our case, �e1 = �e2 ≡ �e. The equation for �h2 is
similar and not shown. The double-headed arrows correspond to the
anomalous Green’s functions. The single and double solid lines and
the single and double dotted lines are anomalous Green’s functions
for fermions near the hole pockets (h1,2) and near electron pockets
(e1,2), respectively.

Green’s functions

G
(x)
αβ = −δα,β

iω + εx

ω2 + E2
x

, F
(x)
αβ = gα,β

�x

ω2 + E2
x

, (B1)

where Ex =
√
ε2
x + |�|2x , εx is the fermionic dispersion near

the pocket x, and gα,β = iσ
y

αβ . Evaluating the diagrams, we
obtain at T = 0

�h1 = −uh1�h1L1 − uhh�h2L2 − 2uhe�eLe,

�h2 = −uhh�h1L1 − uh2�h2L2 − 2uhe�eLe, (B2)

�e = −uhe�h1L1 − uhe�h2L2 − ue�eLe,

where Lx ≡ ln( 2	
|�x | ).

1. Symmetric case

Consider first the symmetric case uh1 = uh2 . Then, �h1 =
�h2 = � and L1 = L2 = L. Without loss of generality, the
overall phase can be set such that �e is real. The two hole gaps
must then satisfy �h2 = �∗

h1
, i.e., in general �h1 = �eiφ/2,

�h2 = �e−iφ/2. The electron gap �e also scales with �, and
we write �e = −γ�, in which case Le ≡ L − lnγ . The three
variables �, γ , and φ are the solutions of the set of three
nonlinear gap equations (we recall that L = ln 2	

�
). We have,

from Eq. (B2),

[1 − (uhh − uh1 )L] sin(φ/2) = 0,

[1 + (uhh + uh1 )L] cos(φ/2) = 2uheγLe,

[1 + ueLe]γ = 2uhe cos(φ/2)L. (B3)

For the +− state, φ = π , and we have γ = 0 and L =
1/(uhh − uh1 ). For the ++ state, φ = 0, L is approximately
the smallest positive solution of

1 + [ue + (uhh + uh1 )]L + [
ue(uhh + uh1 ) − 4u2

he

]
L2 = 0

(B4)
and γ is the solution of γ [1 + ue(L − lnγ )] = 2uheL.
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For the TRSB state, φ is different from 0 and π , and we
have

L = 1

uhh − uh1

, Le = uhh

2u2
he − ueuhh

,

γ = 2
uheL

1 + ueLe

cos
φ

2
. (B5)

The upper and lower boundaries of the TRSB state are
obtained by matching the TRSB solution and the solutions for
the ++ and +− states, respectively. This gives umax

he and umin
he ,

which we presented in the main text.

2. Nonequivalent hole pockets

For uh1 �= uh2 , �hi
= �ie

iφi/2, and both �1,2 and φ1,2 are
generally different. The analysis now involves five variables
(two complex �hi

an one real �e), and is quite involved.
However, less efforts are needed to just prove that the TRSB
state exists because near its upper and lower boundaries φ1

and φ2 approach zero or differ by π , respectively, and one can
expand in the deviations from equilibrium φi’s.

As an example, consider the system near the upper
boundary of the TRSB state. Here, φ1 and φ2 are both small.
Expanding in the set of complex equations (B2) for �hi

and
�e to linear order in φ1,2, and separating real and imaginary
parts, we obtain, from the imaginary parts,

�1 (1 + uh1L1) φ1 + L2�2φ2 = 0,

�2 (1 + uh2L2) φ2 + L1�1φ1 = 0, (B6)

�1L1φ1 + �2L2φ2 = 0.

Combining, e.g., the first two and the last two equations and
each time setting the determinant to be zero and combining
with the third equation in (B6), we immediately obtain

L1 = ln
2	

�1
= 1

uhh − uh1

, L2 = ln
2	

�2
= 1

uhh − uh2

.

(B7)

The real parts of the same set of Eqs. (B2) can be evaluated
at φ1 = φ2 = 0. The first two equations of the set (B2) with
real �hi

= �i are identical for L1,2 (and �1,2) given by (B7)
and using them we can express �eLe = �e ln 2	

|�e| in terms
of various couplings u. Solving for �e and substituting the
result into the last equation in (B2), we obtain the expression
for uhe = umax

he for the upper boundary of the TRSB state. The
result for umax

he for uh2 = ue = 0 and uh1 
 uhh is presented in
the main text. The result for the lower boundary of the TRSB
state umin

he is obtained in a similar manner by expanding near
φ1,2 = π .

3. TRSB state for angle-dependent interaction

Our primary interest is to study how the TRSB state is
modified if outside this state the gaps on the two �-centered
hole pockets have angular dependence and even accidental
nodes, if this dependence is strong enough. To focus on
this physics and avoid lengthy formulas, we ignore potential
anisotropy of intrapocket interactions uhi

and ue and of
electron-hole interaction uhe, and only include the anisotropy
of the interaction uhh between the two �-centered hole pockets.

By symmetry,11 angle dependence of uhh comes in the form

uhh(k,p) = uhh(1 + 2α cos 4θk + 2α cos 4θp) + · · · , (B8)

where the ellipsis stands for cos 8θ , etc., terms which we
neglect. The most general solution for the hole gaps for this
form of the interaction is

�h1 = �1(eiφ1a + r1e
iφ1b cos 4θ ),

�h2 = �2(eiφ2a + r2e
iφ2b cos 4θ ), �e = �3, (B9)

where without loss of generality we can set �i and ri to be
positive. As before, we select �e to be real by adjusting the
overall phase.

To obtain the gaps in the TRSB state for arbitrary interac-
tions u, one has to solve the set of nine coupled equations,
which can only be done numerically. One can, however, still
find an analytical solution for the case uh1 = uh2 . In this
situation, two hole pockets are equivalent, and one can easily
show that �h1 = �∗

h2
. We verified that the set of nonlinear gap

equations is satisfied if we use the following ansatz:

�h1 = �∗
h2

= �eiφ/2[1 + (rae
−iφ + rb) cos 4θ ],

�e = −γ�. (B10)

This ansatz contains five unknowns (�,γ,ra,rb,φ). By sub-
stituting these forms into the set of nonlinear gap equations
Eq. (B2) [with uhh given by (B8)], we obtain

ra = −2αuhh

∫
Lθ (1 + rb cos 4θ ),

rb = −2αuhhra

∫
Lθ cos 4θ,

cos
φ

2
= −

∫ (
uhhAθ + uh1

)
Lθ (1 + rb cos 4θ ) cos

φ

2

− ra

∫ (
uhhAθ + uh1

)
Lθ cos 4θ cos

φ

2
+ 2uheLeγ,

1 =
∫ (

uhhAθ − uh1

)
Lθ (1 + rb cos 4θ )

− ra

∫ (
uhhAθ − uh1

)
Lθ cos 4θ,

γ = 2uhe

∫
Lθ cos

φ

2
[1 + (ra + rb) cos 4θ ] , (B11)

where Lθ = ln 2	
|�(θ)| and Aθ = 1 + 2α cos 4θ . When α = 0,

we have ra = rb = 0, and the other three equations coincide
with what we had in the isotropic case.

We analyzed this set both analytically and numerically and
found that the TRSB state (the one with φ different from zero
or π ) still exists, at T = 0, in some range of uhe, even if the hole
gaps in the +− and/or ++ states have accidental nodes. How-
ever, in the TRSB state, the gap amplitude has minima but no
nodes, simply because |�h1 | = |�h2 | = �2{[1 + (ra cos φ + rb)
cos 4θ ]2 + r2

a sin2 φ cos2 4θ} never hits zero when sin φ is
nonzero. We discuss this in the main text.

APPENDIX C: COLLECTIVE MODES

In this appendix, we present some details of the derivation
of the dispersion of collective modes. We consider the minimal
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model with two equal hole pockets and two interpocket
interactions uhe and uhh. The extension to more general
cases is straightforward, but the formulas become more
cumbersome.

We include both the pairing interactions (uhe and uhh) and
2D long-range Coulomb interaction Vq = A2/|q|, A2 = 2πe2.
To obtain the dispersion of collective modes, we add to
the system a small frequency- and momentum-dependent
perturbation (the bare terms)

Hpert =
∑

k

(
δ�h1 (0)c†1↑c

†
1↓H.c.

) +
∑

k

[c1 ↔ c2]

+
∑

k

[c1 ↔ f1] +
∑

k

[c1 ↔ f2]

+ δρ(0)
∑

(c†1c1 + · · · + f
†
2 f2), (C1)

where δ�i ≡ δ�i(q,�)ei(�t−q·r) and �ρ ≡ δρ(q,�)ei(�t−q·r),

compute fully renormalized δ� and δρ, and obtain collective
modes as the poles of the generalized susceptibility. Alterna-
tively, the collective modes can be computed by extending the
HS approach to finite q and � (see Refs. 44, 46, and 49).

The field δρ(q,�) ≡ δρ is real, while δ�i(q,�) is generally
complex and it is instructive to split it into real and imaginary
parts: δ�j (q,�) = δR

j + iδI
j . If the equilibrium gap �j is

real, δR
j and δI

j describe amplitude (longitudinal) and phase
(transverse) fluctuations of the gap. If the equilibrium gap
is complex, each of δR

j and δI
j describes amplitude and

phase fluctuations. In particular, if in equilibrium �h1 =
�eiφ/2, �h2 = �e−iφ/2, �e = −γ�, the relation between δR

j ,
δI
j and the changes of the amplitudes and the phases of

the three gaps [|�h1 | → � + mh1,φ/2 → φ/2 + φh1 ; �h2 →
� + mh2 , − φ/2 → −φ/2 + φh2 ; |�e| → −γ� + me,0 →
φe] is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

δR
h1

δR
h2

δR
e

δI
h1

δI
h2

δI
e

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos φ

2 0 0 − sin φ

2 0 0

0 cos φ

2 0 0 sin φ

2 0

0 0 −1 0 0 0

sin φ

2 0 0 cos φ

2 0 0

0 − sin φ

2 0 0 cos φ

2 0

0 0 0 0 0 −γ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mh1

mh2

me

� · φh1

� · φh2

� · φe

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (C2)

Each of the bare vertices gets renormalized by the pairing
interactions and long-range Coulomb interaction. At weak
coupling, only ladder-type particle-particle renormalizations
and small-q particle-hole renormalizations are relevant. Col-
lecting the relevant diagrams (see Fig. 4 in the main text), we
obtain the set of coupled equations for fully renormalized ver-
tices δ�i = δR

i + iδI
i and δρ = δρ as we said in the main text.

The seven branches of collective excitations are obtained
from the condition that DetK(q,�) = 0. Two of these branches
are fluctuations of the overall phase and of the total density, the
others are three longitudinal gap fluctuations and two different
fluctuations of the relative phases of the three gaps. Some
of these fluctuations decouple from the others, but some are
coupled.

The components of 
a b
ii (q,�) can be represented in the

Nambu formalism as


a b
i (q,�)

= 1

N0
T

∑
ω

∫
d2k

(2π )2
Tr[Gi(k,ω)σaGi(k + q,ω + �)σb],

(C3)

where ω is the fermionic Matsubara frequency, σ i are the Pauli
matrices, and

Gi(k,ω) =
(

Gi(k,ω) −Fi(k,ω)

−F
†
i (k,ω) G̃i(k,ω)

)
, (C4)

where

G̃i(k,ω) = − iω + εk,i

ω2 + E2
i

, G↓↓ = − iω − εk,i

ω2 + E2
i

,

(C5)

F↓↑ = − �i

ω2 + E2
i

, F
†
↑↓ = − �∗

i

ω2 + E2
i

.

To properly describe all collective excitations, one should
keep the frequency to be of order �, as some of the modes
exist only as resonances at � > 2�. Our goal, however, is
more focused as we are only interested in the 2D plasmon
mode and in the modes which soften at the boundaries of the
TRSB state. These modes are the solutions of DetK(q,�) = 0
at small �, and to get these modes one can safely expand in
both vF q/� and in �/�.

By evaluating the integrals and converting from Matsubara
to real frequency axis, we obtain the expressions for 


jk

ii and
K(q,�) at small � and �q, which we presented in Eqs. (6)
and (10) in the main text.

Solving for DetK(q,�) = 0, we obtain seven branches of
collective excitations, which we discuss in the main text. One
can show quite generally that fluctuations of the overall phase
and of the total density are coupled to each other but decoupled
from the other five branches of collective excitations. One
of the coupled oscillations of the overall phase and the total
density is a plasmon mode (see the main text). Among the other
five modes, longitudinal and transverse fluctuations decouple
in the ++ and +− phases, but couple in the TRSB state. This
coupling leads to a peculiar structure of low-energy collective
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excitations near the boundaries of the TRSB state. We present
the results in the main text.

1. Plasmon mode in a 3D superconductor

For completeness, we also present the diagrammatic deriva-
tion of the dispersion of a plasmon mode (a coupled oscillation
of a phase of a superconductor order parameter and an electron
density) in a 3D superconductor. In 3D, plasmon frequency
tends to a finite value at q → 0, and the approximation � 
 �,
which we used in the previous section, is not applicable, at least
in the clean limit.

In the dirty limit, the plasmon frequency is small (it can
be much smaller than �). A general gradient expansion
analysis in this case shows43 that the plasma frequency
scales with the density of superconducting electrons (the
“superfluid density”). In a clean limit, superfluid density
coincides with the full density, and it is reasonable to expect
that the plasma frequency remains the same as in the normal
state.

That the plasma frequency is not renormalized in the clean
limit and at T = 0 has been argued by Anderson back in 1958
on general grounds (Ref. 47) and has been shown explicitly
by Ohashi and Takada using a random phase approximation
(RPA) formalism, extended to a superconducting state.48 We
reproduce this result in a direct diagrammatic approach,
similar to the one we used in the main text for the 2D
case. For briefness, we consider the case of a single-band
s-wave superconductor. The extension to multiband systems
is straightforward.

We follow the same strategy as in the main text: introduce
bare particle-particle and particle-hole vertices, which corre-
spond to small variations of a superconducting gap and a total
density (δ� = δR + iδI and δρ, respectively), and express the
full vertices in terms of the bare ones, using dimensionless
u < 0 for the pairing interaction and Vq = A3/q

2 for Coulomb
interaction in 3D, with A3 = 4πe2. The diagrams for the
vertices are shown in Fig. 9.

As in the previous section, we introduce the vector δ with
the components δR, − δI , and δρ, and write the full vertex δ̄

in the same way as in (8), but now with

K(q,�) =

⎛
⎜⎜⎝

− 2
u

+ 
11 0 0

0 − 2
u

+ 
22 −
23

0 −
32 − 1
N0Vq

+ 
33

⎞
⎟⎟⎠ .

(C6)

The zeros indicate that the magnitude fluctuations δR do
not couple to the phase and density fluctuations (δI and δρ

terms). The last two fluctuations, however, couple to each
other. The dispersions of the collective modes are again
obtained from the condition DetK(q,�) = 0. The mode which
corresponds to coupled phase-density oscillations is obtained
from

(
2

u
− 
22

) (
1

N0Vq

− 
33

)
= 
23
32. (C7)

FIG. 9. Diagrammatic representation of the coupled equations for
fluctuations of the total density δρ and the SC order parameter δ� (and
δ�∗) for the one-band case. The solid and dotted wavy lines represent
the pairing interaction u < 0 and unscreened Coulomb interaction Vq .
The lines with single and double arrows represent the normal (G) and
anomalous (F) Green’s functions. The coupling is due to GF terms
which are nonzero when �q,� �= 0.

Expanding only in �q, we get


23 = i�

2�

[
I� +

(
Q

2�

)2

I23
�

]
, 
32 = −
23,


22 = 2

u
−

(
�

2�

)2

I� +
(

Q

2�

)2

I22
� , (C8)


33 = −I� −
(

Q

2�

)2 [
I23

� + I33
�

]
,

where E =√
ε2 + �2, 	 is the upper cutoff, and Q2 =

〈(�vF .�q)2〉 = v2
F q2

3 in 3D (and v2
F q2

2 in 2D). In 
22, we have
used the BCS gap equation that tells us

− 2

u
=

∫ 	

	

dε

E
. (C9)

Also,

I� =
∫

�2

E
(
E2 − �2

4

) , I22
� =

∫
�4

(
3E2 − �2

4

)
2E3

(
E2 − �2

4

)2 ,

I23
� =

∫
�4

[
E2(2E2 − 5�2) + (2E2 − 3�2)

(
�
2

)2]
2E5

(
E2 − �2

4

)2 , (C10)

I33
� =

∫
�4

E3
(
E2 − �2

4

) .

Equation (C7) now becomes, to the leading order in q,

�2 = N0VqQ
2

[
I22

� −
(

�

2�

)2 (
I33

� − I23
�

) ]
+ O(Q2).

(C11)
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Using

I22
� = 2 +

(
�

2�

)2 ∫
�4

(
5E2 − 2

(
�
2

)2 )
2E5

(
E2 − �2

4

)2 ,

(C12)

I33
� − I23

� =
∫

�4
(
5E2 − 2

(
�
2

)2 )
2E5

(
E2 − �2

4

)2 ,

we immediately find that

I22
� −

(
�

2�

)2 (
I33

� − I23
�

) = 2 (C13)

and hence

�2 = 2N0VqQ
2, (C14)

which is the same result as in the normal state. Substitut-
ing the expressions for Vq = 4πe2/q2, Q2 = v2

F q2/3, N0 =
mpF /(2π2), and using the relation between pF and the density

of fermions p3
F /(3π2) = n, we obtain

�2 = 4πne2

m
= �2

pl, (C15)

which is the same plasma frequency as in the normal state.
This result is well known starting from the Anderson work.47

Like we said, our goal was just to demonstrate how this result
can be rederived in a direct diagrammatic approach.

At a finite T � Tc and/or in the presence of impurity
scattering, coupled density and phase fluctuations are more
complex, and near Tc there exists a weakly damped, near-
gapless Carlson-Goldman mode.50 The evolution of plasma
oscillations with increasing T and/or impurity scattering are
not fully understood as only the cases � = �pl and � 

� 
 �pl have been analyzed in detail (see, e.g., Ref. 44).
The diagrammatic approach which we present here offers the
way to obtain the results for all T and also with and without
impurity scattering.
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