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Dynamic structure factor for 3He in two dimensions
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Recent neutron scattering experiments on 3He films have observed a zero-sound mode, its dispersion relation,
and its merging with—and possibly emerging from—the particle-hole continuum [H. Godfrin et al., Nature
483, 576 (2012)]. Here we address the study of excitations in the system via quantum Monte Carlo methods: we
suggest a practical scheme to calculate imaginary time correlation functions for moderate-size fermionic systems.
Combined with an efficient method for analytic continuation, this scheme affords an extremely convincing
description of the experimental findings.
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I. INTRODUCTION

The two isotopes of helium, 3He and 4He, provide the
opportunity to explore the quantum behavior of many-body
systems on a fundamental basis; at low temperature and
pressures, they are the only neutral quantum liquids existing in
Nature and an impressive complexity of physical phenomena
is generated by mere pair interactions between particles and
the effects of quantum statistics. In the investigation of the
fascinating behavior of strongly correlated quantum systems
a key role is naturally played by the low-energy dynamics
(see, for example, Ref. 1). In addition, due to the very simple
Hamiltonian, 3He and 4He many-body systems represent
also extremely important reference models and test cases for
general theoretical approaches.2

Recently inelastic neutron scattering experiments have been
performed on a monolayer of liquid 3He adsorbed on suitably
preplated graphite: a collective zero-sound mode (ZSM)
has been detected as a well-defined excitation crossing and
possibly re-emerging from the particle-hole continuum typical
of a Fermi fluid.3,4 From the theoretical side, a quantitative
description of such experimental findings has been achieved
by a dynamical many-body theory, without any adjustable
parameters.4 The aim of this work is to undertake an ab initio
study of the ZSM in a strictly two-dimensional (2D) 3He
sample relying on quantum Monte Carlo (QMC) methods.
It has been shown that this ideal, strictly 2D model offers a
realistic representation of the adsorbed liquid layer, as far as
the liquid phase properties are concerned.5–7

The key quantity to be computed to compare with the ZSM
observed in neutron scattering experiments on 3He systems
is the coherent dynamic structure factor,8 which, apart from
kinematical factors, is related to the differential cross section:

S(q,ω) = 1

2πN

∫ +∞

−∞
dteiωt 〈ei t

h̄
Ĥ ρ̂�qe−i t

h̄
Ĥ ρ̂−�q〉. (1)

The brackets indicate a ground state or thermal average, Ĥ is
the Hamiltonian operator, and ρ̂�q = ∑N

i=1 e−i �q·�̂ri is the local
density in Fourier space. The ZSM of the system manifests
itself in the shape of S(q,ω), appearing either as sharp peaks,
if it is long-lived, or as broad structures, if strong damping is
present.1

QMC methods give access to the coherent dynamic struc-
ture factor, S(q,ω), because they allow us to evaluate the
intermediate scattering function F (q,τ ) = 〈eτĤ ρ̂�qe−τĤ ρ̂−�q〉
by simulating the imaginary time dynamics driven by the
Hamiltonian.9,10 For a collection of 3He atoms, a very accurate
microscopic description is afforded by the simple Hamiltonian

Ĥ = − h̄2

2m3

N∑
i=1

∇2
i +

N∑
i<j=1

v(|�̂ri − �̂rj |), (2)

where m3 is the mass of 3He atoms and v(r) is an effective
pair potential among 3He atoms.11

The correlation function F (q,τ ) is the Laplace transform
of S(q,ω). Despite the well-known difficulties related to the
inversion of the Laplace transform under ill-posed conditions,
the evaluation of S(q,ω) starting from the QMC estimation of
F (q,τ ), (3), has been proven to be fruitful for several bosonic
systems.10,12–16

For a Fermi liquid, the difficulty is further enhanced by the
famous sign problem;17 thereby the computational effort grows
exponentially with the imaginary time and with the number
of particles. While accurate approximations exist to circum-
vent this problem in the calculation of static ground-state
properties,18 we are aware of no applications of approximate
schemes such as the restricted path19 or constrained path20

methods to the calculation of imaginary-time correlation
functions.

Focusing on T = 0 K, QMC calculations of the ground-
state average replaces the unknown exact ground state ψ0 by
the imaginary time projection of a trial function ψT ,10,21,22

ψ0 ≡ e−λĤ ψT . The intermediate scattering function then reads

F (q,τ ) = 〈ψT |e−λĤ ρ�q e−τĤ ρ̂−�qe−λĤ |ψT 〉
〈ψT |e−(2λ+τ )Ĥ |ψT 〉 . (3)

Unfortunately, the projection time λ required to filter out the
exact ground state from the trial function is usually larger
than the range of τ needed to extract spectral information, so
that the total imaginary time 2λ + τ in Eq. (3) is too large
for practical purposes. In this paper we propose two related
approximations which avoid the extra time 2λ, whereby the
calculation becomes feasible for a few tens of 3He atoms. The
agreement with the measured dynamic structure factor is more
than satisfactory.
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II. THE DYNAMIC FERMIONIC CORRELATION
METHOD

We adopt the standard Jastrow-Slater form for the trial
function, ψF

T = JD. The starting point of the present work is
the following approximation:

ψF
0 = e−λĤ ψF

T � De−λĤJ = DψB
0 , (4)

where ψF
0 and ψB

0 are, respectively, the fermionic and bosonic
ground states of the Hamiltonian, (2). Throughout this paper,
the superscript F (B) indicates Fermi (Bose) statistics and the
subscript 0 denotes the exact ground state. The convenience of
approximation (4) is that the extra projection time λ does not
compound the sign problem because it is applied only to the
symmetric factor of ψT

F .
In the resulting approximate correlation function,

F1(q,τ ) =
〈
ψB

0

∣∣D� ρ̂�q e−τĤ ρ̂−�q D
∣∣ψB

0

〉
〈
ψB

0

∣∣D�e−τĤ D
∣∣ψB

0

〉 , (5)

the projection time between the determinants, which deter-
mines the severity of the sign problem, is limited to τ .
F1(q,τ ) is an approximation of F (q,τ ), and its inverse Laplace
transform, S1(q,ω), is an approximation of the coherent
dynamic structure factor, (1). The bias would vanish if DψB

0
were the exact Fermi ground state. The QMC calculation of
F1 requires the ratio of two correlation functions, F1(q,τ ) =
F2 (q,τ ) /FFC (τ ), where

FFC(τ ) =
〈
ψB

0

∣∣D�e−τĤD
∣∣ψB

0

〉
〈
ψB

0

∣∣e−τĤ
∣∣ψB

0

〉 (6)

and

F2(q,τ ) =
〈
ψB

0

∣∣D� ρ̂�q e−τĤ ρ̂−�q D
∣∣ψB

0

〉
〈
ψB

0

∣∣e−τĤ
∣∣ψB

0

〉 . (7)

Both FFC(τ ) and F2(q,τ ) are bosonic correlation functions
and thus they can be evaluated with great accuracy by means
of exact bosonic QMC methods. FFC(τ ) is precisely the
correlation function that was recently used in the fermionic
correlation (FC) method7 to study the magnetic properties of
3He films. On the other hand, F2 arises as an extension of the
FC method to the calculation of the intermediate scattering
function, hence the term “dynamic fermionic correlation” for
the present methodology. Indeed, the function F2 possesses
very interesting features on its own: on one hand, it contains
the exact fermionic spectrum, as can be seen from its spectral
resolution, F2(q,τ ) = ∑+∞

n=0 e−τ(EF
n −EB

0 )bn, where EF
n are the

fermionic energy eigenvaules, EB
0 is the bosonic ground-state

energy, and bn = |〈ρ̂−�q D ψB
0 |ψF

n 〉|2/〈ψB
0 |ψB

0 〉. If, moreover,
approximation (4) is accurate enough, the coefficients bn

become, apart from an unessential normalization, the spectral
weights of the exact intermediate scattering function, F (q,τ ).
Therefore, by computing the inverse Laplace transform of F1

and F2 we can obtain two different estimations for the coherent
dynamic structure factor, S1(q,ω) and S2(q,ω + EF

0 − EB
0 ),

respectively, where the shift in ω comes from the definition
of F2 in terms of the Bose ground state. A robust test for the
validity of approximation (4) is at hand if it turns out that
S1(q,ω) � S2(q,ω + EF

0 − EB
0 ): as already noted, F2 decays

with the exact fermionic excitation energies (once shifted);
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FIG. 1. (Color online) Comparison between the spectral functions
S1(q,ω) (shaded curve down to the baseline) obtained with the GIFT
algorithm from F1(q,τ ) and S2(q,ω) (unshaded curve) obtained from
F2(q,τ ) with GIFT for some wave vectors q at density ρ = 0.047 Å−2.
The two spectral functions have a compatible shape, with a shift in
energy compatible with EF

0 − EB
0 .

moreover, if DψB
0 has a small overlap on the fermionic excited

states, it follows that e−τĤDψB
0 will quickly converge in τ to

e−τEF
0 ψF

0 . Therefore F1(q,τ ) � eτEF
0 F2(q,τ ), apart from an

unessential normalization. We have indeed verified that, in the
present case, S1(q,ω) and S2(q,ω + EF

0 − EB
0 ) possess very

similar shapes (see Fig. 1).

III. RESULTS

We studied a system of N = 26 structureless spin-1/2
fermions of mass m3, interacting via the Aziz potential,11 en-
closed in a square box with periodic boundary conditions. We
found in Ref. 7 that this system size offers a good compromise
between finite-size effects and computational cost. Indeed
the inverse Laplace transform becomes increasingly difficult
as the range of fermionic energy eigenvalues relevant for
the spectral reconstruction departs from the reference energy
of the underlying simulation, which is the bosonic ground
state EB

0 : this is precisely what happens as the system size
increases because the gap EF

0 − EB
0 is an extensive quantity.

The trial function ψF
T = JD is the same as in Ref. 7, namely a

two-body Jastrow factorJ and a Slater determinantD of plane
waves with simple backflow correlations. We have focused
on a density around 0.047 Å−2, close to the experimental
conditions.3 Moreover, we have explored the behavior of
the sample at the densities 0.038 and 0.060 Å−2 in order
to investigate the density dependence of the excitations of
the system. In particular, the highest density was chosen
very close to the freezing point.7 The QMC evaluation of
F2 requires a simple generalization of the methodology we
followed in Ref. 7 to compute FFC: a fictitious system of
bosons of mass m3 is simulated by an exact projector Monte
Carlo technique, the shadow path integral ground state.23 The
imaginary–time propagation was 1.3125 K−1 and the density
matrix approximation was a pair product9 with an imaginary
time step of 1/160 K−1. It is well known that, in order
to extract information from the imaginary time correlation
function, an inversion of the Laplace transform under ill-posed
contitions is necessary. This can be carried out by means of the
genetic inversion via falsification of theories (GIFT),13 which
has been used to retrieve nontrivial spectral features in the
study of low-energy excitations of Bose superfluids13,14,16 and
supersolids.15
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FIG. 2. (Color online) From left to right the coherent dynamic structure factor, obtained as an average of several independently extracted
S1(q,ω), for increasing wave vectors at ρ = 0.047 Å−2. Orange shading represents statistical uncertainties and filled (blue) circles are the
available experimental data from Refs. 3 and 4. The wave vectors shown are those accessible from our simulation; the experimental wave
vectors are q = 0.55 Å−1 (b), q = 1.15 Å−1 (d), q = 1.25 Å−1 (e), and q = 1.65 Å−1 (f). We have used different scales in the panels to make
the comparison with experimental data more easily visible. The dashed (green) line shows the dynamic structure factor of a fictitious system
of bosons of mass m3. The bosonic peaks in the roton region are five to nine times higher than the fermionic ones.

In Fig. 2 we show the comparison between our estimation
of the dynamic structure factor of the 3He film and the
experimental data.3,4 The dynamic structure factor has been
obtained as an average over several GIFT reconstructions
of S1(q,ω) from independent estimates of F1(q,τ ); this has
made possible an estimation of the statistical uncertainties
which we show in Fig. 2 by the (yellow) shading. We note
that the available experimental wave vectors do not exactly
match the reciprocal space grid defined by the simulation
box. For q = 0.534 Å−1 and q = 1.603 Å−1, where the
mismatch is minimal, a direct comparison is possible and
the agreement is impressive. Inspection of the wave-vector
dependence of the spectra shows that the discrepancies seen at
q = 1.069 and q = 1.336 are mostly due to the differences in q

values between theory and experiment. A major feature of the
measured S(q,ω), captured also by the dynamical many-body

theory in Ref. 4, is the appearence of a low-energy peak for both
small and large wave vectors, interpreted in Refs. 3 and 4 as
a well-defined collective mode, broadened in the intermediate
q range because of mixing with the particle-hole continuum.
In further agreement with the measurements, we find a similar
behavior. Indeed the simulation can provide information even
at small wave vectors, not accessible to the experimental
probe: at q = 0.267 the collective excitation (ZSM) is most
pronounced, and the spectral weight of the particle-hole is
negligible. It is remarkable that both the position and the shape
of the calculated spectra have a physical meaning and are
not artifacts of the reconstruction procedure. Further support
for this conclusion is offered from a comparison with the
dynamic structure factor of the fictitious 3He-mass bosonic
system. The bosonic spectrum has a completely different
behavior, featuring an extremely sharp peak with the usual

FIG. 3. (Color online) Color map of normalized S2(q,ω) for many wave vectors q. For better visibility, each S2(q,ω) for different q has
been normalized in order to have their maximum value equal to 1. The vertical scale has been shifted by a quantity EB

0 − EF
0 , so that the

excitation energies are measured with respect to the fermionic ground state.
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FIG. 4. Static response function of 3He obtained from χq =
−2ρ

∫
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S(q,ω)
ω

. Circles, ρ = 0.038 Å−2; squares, ρ = 0.047 Å−2;
triangles, ρ = 0.060 Å−2. Filled circles show the results for a fictitious
system of bosons of mass m3 at ρ = 0.047 Å−2.

phonon-maxon-roton dispersion, showing that the broaden-
ing of the fermionic spectrum is actually related to Fermi
statistics.

In Fig. 3 we report, in a color (online) plot, the estimated
S2(q,ω). In agreement with the behavior of S1 shown in Fig. 2,
at low q we find well-defined excitation energies; as the wave
vector increases, again we observe broadening of the ZSM.
The ZSM dispersion E(q) as a function of the wave vector
q can be inferred from the distance between the maximum in
S2(q,ω) and the value of the energy gap between the fermionic
and the bosonic ground state. The dispersion of the ZSM recalls
the classical phonon-maxon-roton mode in bulk superfluid
4He; the roton energies decreases with the density and the
minimum moves to higher wave vectors similarly to what
happens for the bosonic liquid. Maxon energies increase with
the density and also the zero-sound velocity has the same
trend.

As a by-product of the calculation of S (q,ω) we also
obtain the static density response function χ (q) from moment
−1, shown in Fig. 4. We are unaware of previous QMC
results for χ (q). We have also calculated the static response
of the fictitious bosonic system, which is significantly less
structured than the fermionic couterpart, as expected (see
Fig. 4).

IV. CONCLUSIONS

In this work we have presented an ab initio estimation of the
coherent dynamic structure factor of 2D liquid 3He, a strongly
interacting Fermi liquid, combining unbiased QMC sampling
techniques with a statistical method13 for the analytical
continuation from imaginary time to real frequencies under the
only approximation, (4) (ψF

0 � DψB
0 ). We find a well-defined

collective mode (the ZSM) at small wave vectors; its disper-
sion relation follows a phonon-maxon-roton pattern, with a
significant broadening in the intermediate wave-vector range
due to the mixing with the particle-hole continuum. These
features, including the shape and width of the spectra, are in
close agreement with a recent neutron scattering experiment3,4

and a sophisticated dynamical many-body theory.4

We expect that approximation (4), as suggested by the
accuracy of our results for 2D liquid 3He (see Fig. 1),
is a good one whenever the effects of quantum statistics
are dominated by strong interactions. The formalism can
be readily generalized by replacing the density fluctuations
operator ρ�q to access other spectral properties such as spin
fluctuations and particle-hole excitations.
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