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The complexity of competing orders in cuprates has recently been multiplied by a number of bulk evidences of
charge ordering with wave vector that connects the antinodal region of the Fermi surface. This result contradicts
many spectroscopic results of the nodal nesting. To resolve this issue, we carry out a unified study of the
resulting electronic fingerprints of both nodal and antinodal nestings (NNs/ANs) and compare with angle-resolved
photoemission, scanning tunneling spectroscopic data, as well as bulk-sensitive Hall-effect measurements. Our
result makes several definitive distinctions between them in that while both nestings gap out the antinodal
region, AN induces an additional quasiparticle gap below the Fermi level along the nodal direction, which is
so far uncharted in spectroscopic data. Furthermore, we show that the Hall coefficient in the AN state obtains a
discontinuous jump at the phase transition from an electronlike nodal pocket (negative value) to a large holelike
Fermi surface (positive value), in contrast to a continuous transition in the available data. We conclude that
individual NNs and ANs have difficulties in explaining all of the data. In this spirit, we study a possibility of
coexisting NN and AN phases within a Ginsburg-Landau functional formalism. An interesting possibility of
disorder pinned “chiral” charge ordering is finally discussed.
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I. INTRODUCTION

Doped materials can accommodate multiform competing
phases of matter, either in a uniform phase or phase separated,1

with a subclass of it that inherits high-Tc superconductivity.
In cuprates, different theoretical routes to the mechanism of
superconductivity are primarily motivated by the experimental
evidence of different competing orders in the corresponding
normal state. In particular, the well-established results of
many bulk-sensitive probes have suggested a uniform or
nonuniform nodal nesting (NN), which usually involves spin
(and a possible interplay with charge excitations via incom-
mensurability) modulations in La-based cuprates.2 In stark
contrast, recent measurements, including scanning tunneling
microscopy (STM),3 nuclear magnetic resonance (NMR) at
finite magnetic field,4 x-ray probes,5 and a thermodynamic
measurement at high field,6 indicate a charge modulation
in Y-, Bi-based cuprates, arguably due to either uniaxial or
biaxial antinodal nesting (AN). There also exist other possible
experimental scenarios, such as smectic,7 nematic,8 and orbital
loop orders,9 with various active degrees of freedom which
can sometimes differ from spin and charge quanta. Therefore,
discerning the correct nature of the competing phases and their
possible coexistence and competition is not only important to
throw light on the pairing mechanism, but also to expand the
possible choices of known emergent phases that can arise in
an inhomogeneous environment.

From a theoretical standpoint, the presently debated com-
peting order scenarios of the pseudogap literature can mainly
be classified into three categories: (1) a NN giving rise to
the umklapp process,10 d-density wave,11 or spin-ordering;12

(2) an AN between the van Hove singularity (VHS) region
producing a charge density wave (CDW);13 and (3) an
incommensurate version of the NN involving both spin and
charge excitations (“stripe” phase).1,14 The perfect NN of
any active order renders a nodal hole pocket in hole-doped
systems,10–12 consistent with Luttinger volume counting. On

the other hand, in recent works, Harrison and co-workers13 and
Markiewicz et al.15 have demonstrated that the AN governs a
nodal electron pocket in these systems. Given that the shadow
bands of the nodal pocket are difficult to detect unambiguously
by angle-resolved photoemission spectroscopy (ARPES) and
STM [via the quasiparticle interference (QPI) technique], both
scenarios can be taken to be consistent with these data as
long as only the Fermi-surface (FS) topology is concerned.
To resolve this issue, we carry out a mean-field calculation
within a single-band model. A main conclusion of this paper
is that an electron pocket in the nodal region leads to several
inconsistencies when compared to other spectroscopies. Since
the nodal electron pocket implies an additional quasiparticle
gapping along the nodal direction below the Fermi level (EF ),
it leads to an inconsistency when compared to well-established
ARPES and STM results.16,17 The NN Qn ∼ (π,π ), which
yields a nodal hole pocket and no nodal gap opening below
EF , is in detailed agreement with most features observed in
spectroscopies. The stripe phase,14 creating many FS pockets
in contrast to a single “Fermi arc,” is not discussed here.

To strengthen our conclusion, we also compute the temper-
ature (T )-dependent Hall coefficient by solving the Boltzmann
transport equation in the two nesting cases, and compare with
experiments. We find that while experimental data in Y- and
Hg-based cuprates18,19 show a “continuous” sign reversal from
negative to positive at a T below the onset of the pseudogap, the
transition from an electron pocket in the AN phase to a large
hole FS in the paramagnetic state is discontinuous. Finally, we
write down a Ginsburg-Landau functional for the competing
scenario between the NN and AN phases, and propose a
candidate phase diagram. An interesting manifestation of
disorder pinned “chiral” CDW is also proposed.

The rest of the paper is arranged as follows. In Sec. II,
we compute the electronic fingerprints of NN and AN, and
compare with ARPES, STM, and Hall-effect measurements.
In Sec. III, we present a Ginsburg-Landau argument for the
possible coexistence and competition of these two phases. A
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mechanism of chiral charge order is presented in Sec. IV.
Finally, we conclude in Sec. V.

II. ELECTRONIC FINGERPRINTS OF NODAL
AND ANTINODAL NESTINGS

A. Angle-resolved photoemission spectroscopy

In Fig. 1, we illustrate the NN and AN properties and their
differences in the electronic structure. In the NN phase, FSs
across the magnetic zone boundary are nested, and thereby
introduce a hole pocket centering at the nodal point, as shown
in Fig. 1(a). The hole pocket incipiently implies that the top
of the lower split band crosses EF and a gap opens in the
empty state along the nodal direction; see Fig. 1(d). On the
other hand, the biaxial AN nests the VHS regions of the FS and
thereby creates an electron pocket whose center lies in between
� → (π/2,π/2) and its equivalent directions, as shown in
Refs. 13 and 15; see Fig. 1(b). The “nodal electron pocket”
implies that the bottom of the upper split band lies below EF

and a gap opens in the filled state along the nodal direction,
as illustrated in Fig. 1(e).

To provide a proof of principle, we perform a mean-field
calculation using NN (Ref. 12) and AN,13 with the same
noninteracting starting point, and the corresponding results
are shown in Fig. 2. We use a one-band tight-binding model
with parameters fitted to the ab initio band structure of
YBa2Cu3O6+x (YBCO) given in Ref. 20. Using Qn = (π,π ),
we obtain the quasiparticle spectral weight map at EF , as
shown in Fig. 2(a), which gives the impression of the FS
measured in ARPES.21 Using the same AN at Qx
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FIG. 1. (Color online) (a) Schematic FS evolution for the NN
at Qn → (π,π ). (b) Same as (a), but for the AN at Qa →
(±π/2,0),(0, ± π/2). (c), (d) Electronic dispersion along the nodal
direction for the two cases discussed in (a), (b), respectively.
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FIG. 2. (Color online) (a) Computed FS for the NN at Qn. (b)
Same as (a), but for the AN at Qa (see text). (d), (e) Computed
dispersion along the nodal direction for the two cases discussed in (a)
and (b), respectively. ARPES (c) FS and (f) dispersion along nodal
line for underdoped YBCO6.3.16

and Qy
a = (0,π/2) from Ref. 13, which presumably yields a

CDW, we obtain the expected nodal electron pocket, as shown
in Fig. 2(b). The corresponding dispersion along the nodal
direction is shown in Fig. 2(d), which clearly reveals a gap
opening below EF . This is a robust result expected for any
electron pocket.

The ARPES FS, shown in Fig. 2(c) for a representative
case of underdoped YBCO6.3, observes the main segment of
the Fermi pocket or the so-called Fermi arc. ARPES FS can
be considered to be consistent with both hole- or electron-
pocket scenarios with the notion that it is difficult to detect the
weak intensity of the shadow band, which is present either on
the front or on the back side of the main band, respectively.
However, an important distinction between the hole pockets
and electron pockets along the nodal direction can be made
via ARPES by searching for a gapless or gapped dispersion
below EF along the nodal direction, respectively, as shown in
Figs. 2(d) and 2(e). The ARPES dispersion shown in Fig. 2(f)
does not reveal any such gap opening.

B. Scanning tunneling microscopy/ spectroscopy

The multiple gap structure for the AN, as compared to a
single gap in the NN case, is also evident in the density of states
(DOSs), plotted in Fig. 3. In both cases, the gap at the antinode
(denoted as AG) occurs at EF (dictated by a purple horizontal
arrow). For AN, the gap along the nodal axis (denoted as NG)
manifests as a separate gap in the DOS below EF , marked by
a red horizontal arrow in Fig. 3. For NN, however, the AG and
NG (above EF ) are connected to each other via the “hot-spot”
momenta, and thus appear as a single gap. The STM results
in the normal state for two hole-doped cuprates22 (shown by
different symbols), as available in this energy scale, do not
show any signature of the second gap.
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FIG. 3. (Color online) Computed DOS for AN and NN cases
(solid thick lines) are compared with STM results for two different
hole-doped systems. The data for Ca1.88Na0.12CuO2Cl2 (Na-CCOC)
and Bi2Sr2Dy0.2Ca0.8Cu2O8+δ (Bi2212) (normal state) are obtained
from Ref. 22. The two horizontal arrows dictate the antinodal gap
(AG) and nodal gap (NG) for the AN case.

C. Hall effect

Hall coefficient RH provides a crucial test of the nature of
the quasiparticles on the FS, and its low-T dependence gives
valuable insights into the FS evolution and the characteristic
phase transition. Being interested in low-T and low field, we
employ a Boltzmann approach with a momentum-independent
quasiparticle scattering rate.23 Furthermore, since our focus
here is to compare the signatures of NN and AN on RH (T ),
we fix the same T dependence of the gap to be BCS-like
as �(T ) = �0(1 − T/To)0.5, where �0 is the gap amplitude,
taken to be the same as in Figs. 2 and 3, and To = 55 K is
the same transition temperature. Sample results of RH (T ) for
the NN and AN phase are shown in Fig. 4, which indeed
reveal a sharp difference between them, both of which also
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FIG. 4. (Color online) Computed Hall coefficient RH as a func-
tion of T for the AN and NN cases. Symbols give experimental data
for YBCO6.51 at doping x = 0.1 and magnetic field B = 55 T, taken
from Ref. 18. In both cases, the phase transition is assumed to occur
at the same T = 55 K. NN gives positive RH and connects smoothly
to its paramagnetic value, whereas RH for the AN case is negative
(coming from electronlike FS) below Ta , and, at the transition, it
shows a discontinuous jump (dashed line) to the positive value for
the paramagnetic holelike FS. We note, however, that although the
Boltzmann approach is applicable in the low-field region as compared
to high-field experimental data, the results are pertinent.

depart from the experimental data.18 For AN, the electron-
pocket (RH < 0) to paramagnetic hole-FS (RH > 0) transition
at To is discontinuous. For NN, although RH is smooth at
the phase transition, a dominant negative RH is difficult to
reproduce unless the electronlike chain state in YBCO is taken
into account.23 The similar result of continuous transition from
negative to positive RH in the Hg-based cuprate,19 however,
indicates that both AN and NN may indeed coexist and/ or
compete in these systems at some intermediate doping.

III. COEXISTENCE AND COMPETITION OF NODAL
AND ANTINODAL NESTING PHASES

In this spirit, we study the stability of the two phases and
their possible coexistence at the level of the Ginsburg-Landau
(GL) functional argument. The Lagrangian of a system with
competing interactions at Qa and Qn can be written in the
Nambu decomposition of the Grassmann (fermionic) field
ψk,σ as

L = 1

2

∑
k,σ,ωm

{
ψ

†
k,σ G−1

k (iωm)ψk,σ

+
∑
i=a,n

[
ψ

†
k+ Qi ,σ

G−1
k+ Qi

(iωm)ψk+ Qi ,σ

+ Uiψ
†
k,σψk,σψ

†
k+ Qi ,σ

′ψk+ Qi ,
′
]}

, (1)

where σ denotes spin, and σ ′ is either the same spin for a CDW,
d-density wave, or any phenomenological umklapp process,
or a spin flip for spin ordering. The corresponding Green’s
functions are G−1(k′,ωn) = iωn − ξk′ , for k′ = k,k + Qa/n,
where ωm is the Matsubara frequency and ξk is the bare
fermionic dispersion. The factor 1/2 arises due to summing
twice over the reduced Brillouin zone.

We decouple the interaction terms into two correspond-
ing bosonic fields, �n/a = Un/a

∑
k,s,t ψ

†
k+ Qn,s

[σ/δ]stψk,t , by
means of Hubbard-Stratanovich transformation, where σ gives
the Pauli matrices. For the case of competing orders, the
expansion of Eq. (1) is standard,25 which up to the quartic
term of both fields (assuming they are real) becomes

L =
∑
i=a,n

[
αi

2
(T − Ti)|�i |2 + βi

2
|�i |4

]
+ βan

2
|�a|2|�n|2.

(2)

Tn/a are the corresponding transition temperatures, and the
expansion parameters αi,βi are given in Ref. 26. At the mean-
field level, the leading instability for each order parameter
stems from the logarithmic divergence of the corresponding
susceptibility in the particle-hole channel. Since Qa nests
the antinodal region of the FS (see Fig. 5), it is prone to
reaching a singularity when the VHS approaches EF near or
above the optimal doping, and drives the system to a CDW or
ferromagnetic ordering.27 On the other hand, the NN, which
leads to antiferromagnetism at half filling, dies off quickly with
doping [see Figs. 5(b1) and 5(b2)], leaving a residual hot-spot
instability at Qn with suppressed bare susceptibility in the
two-dimensional system. The second-order phase transitions
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FIG. 5. (Color online) (a) Phase diagram in the (x,T ) plane for
the AN (Ta) and NN (Tn) phases. The shaded area represents a
possible phase coexistence region. T ∗ is a common critical point
of present interest. The doping axis is rescaled with respect to the
VHS doping at which AN nesting is strongest. (b1), (b2) The bare
susceptibilities, plotted in two-dimensional momentum space at zero
energy, show NN and AN at underdoped and optimally doped regions,
respectively. (c1), (c2) Corresponding RPA susceptibilities. (d1), (d2)
Self-consistent susceptibilities in the corresponding gap states.

of individual order can thus be monitored by these leading
instabilities in the quadratic terms [Eq. (2)].

Within the GL treatment, the competition and coexistence
of two phases can be studied comprehensively near their com-
mon critical point at T ∗ ≈ Ta ≈ Tn.25 A general formalism is
obtained in the context of iron pnictides that the free energy
for any competing orders of the form in Eq. (2) drives a
coexistence of the two order parameters if βaβn − β2

an > 0.
βa/n correspond to the quartic umklapp susceptibility with
momentum transfer Qa/n, respectively, and a double umklapp
process involving both Qa and Qn generates the coupling term
βan. As shown below in the Appendix, the divergence in the
noninteracting susceptibility also leads to that in its quartic
channel, and thus a qualitative correspondence between the α

and β coefficients for a given order can be built for discussion
purposes. For the reasons given in the previous paragraph,
near T ∗, the noninteracting susceptibilities at Qa/n govern
βa � βn, and βa > βan > βn. To grasp the qualitative insights,
let us assume δ � 0 is the same departure of βa/n from βan

such that βan = βa − δ ≈ βn + δ; then the above condition for
the coexistence reads δ2 − δ(βa − βn) > 0. This implies that
for βa > βn, a phase coexistence is unfavored and a first-order
phase transition separates the AN and NN phases.

When many-body corrections are included in the Green’s
functions of the expansion parameters given in Ref. 26, a
second-order phase transition can be monitored in two ways.
Within a random-phase approximation (RPA), a strong diver-
gence in the susceptibility can be obtained in the spin channel
at Qn, but not at Qa below a critical value of U ; see Figs. 5(c1)
and 5(c2). Furthermore, a self-consistent calculation causes the
Green’s function to be evaluated in the gapped quasiparticle
state. Recalling the results from Fig. 2, both nestings gap
out the antinodal region of the FS and, in turn, reduce the
interacting susceptibility peak at Qa; see Figs. 5(d1) and 5(d2).

Both RPA and self-consistent scenarios thus promote βn � βa ,
driving a uniform phase coexistence, and hitherto a tetracritical
point at T ∗, as shown in the phase diagram in Fig. 5. A similar
result was also proposed earlier in a different context.25 The
possibility of having a bi- or tetracritical point near the optimal
doping clearly makes it an exciting problem for future study,
both experimentally and theoretically.

IV. CHIRAL CHARGE OSCILLATION

Since �x and �y are decoupled order parameters having
different modulation vectors Q − nx/y , they form different
domains. An interesting situation emerges when disorder pins
one of the unidirectional AN order parameter �

(x/y)
a domains

only. When one of the domains, say �x , falls into a disorder,
its value becomes enhanced from that of �y sitting in a clean
domain. According to group symmetry of the system, these
two order parameters will now mix in a chiral form. This
situation locally breaks in-plane rotational symmetry, as well
as turns on a time-reversal breaking combination of �

(x/y)
a as

�t
a = �x

a ± i�
y
a with a finite expectation value of �t∗

a �t
a =

|�|2, where � is a real number. Rewriting �t
a = |�|eiφ , we

find that such a scenario supports the presence of a Goldstone
field φ, according to the Nambu-Goldstone theorem.28 More
interestingly, since the order parameter also breaks additional
discrete crystal rotational symmetry, the emergent Goldstone
mode becomes massive in this case. A U(1) symmetry-induced
current hence arises as J = −|�|2∂μφ, due to the spatial (μ =
x,y) variation of the order parameter around the disorder. The
corresponding Lagrangian density that supplements the total
free-energy functional in Eq. (2) reads

L′ = −1

2

(
∂μ�t∗

a

)(
∂μ�t

a

) + m2�t∗
a �t

a

= −|�|2
2

(∂μφ)(∂μφ) + m2|�|2. (3)

Here the constant term m has no physical significance to the
fermionic ensemble, since it merely shifts the overall energy
scale. This special scenario gives an alternative explanation
to the observations of both rotational8,29 and time-reversal
symmetry breakings9,30,31 from a solely charge ordering
mechanism in doped systems, although other mechanisms to
them exist.29,32–35

V. CONCLUSIONS

Based on the present results, we conclude that the FS pocket
or the segment of the FS observed in ARPES near the nodal
region is holelike. Of course, such a hole-pocket scenario
cannot explain the electronlike FS predicted by numerous
magnetoresistance measurements. For the NN, electronlike
FSs appear near the antinodal region close to the bi- or
tetracritical point of the pseudogap where its strength is weak.
Since such an electron pocket appears in the region where
the FS is on the verge of becoming the large metallic FS, it
is difficult to experimentally separate out the presence of the
electron pocket.24 For YBCO, however, the chain state is elec-
tronlike and contributes to its large negative Hall coefficient.24

Our obtained results suggest that the CDW modulation is
preferably a secondary order, which is either phase separated
or coexists in a narrow doping range with the NN order.
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APPENDIX: GINSBURG-LANDAU EXPANSION
COEFFICIENTS

The expansion parameters in Eq. (2) can be obtained in the
zero-frequency limit as25

αa/n ⇒ T
〈
GkGk + Gk+ Qa/n

Gk+ Qa/n

〉
≈ 1

N

∑
k

tanh
(

ξk
2T

) − tanh
( ξk+ Qa/n

2T

)
ξk − ξk+ Qa/n

, (A1)

βa/n ⇒ 2T
〈
G2

kG
2
k+ Qa/n

〉

≈ 1

N

∑
k

Aiksech2
(

ξk
2T

) − Aik+ Qa/n
sech2

( ξk+ Qa/n

2T

)
T

(
ξk − ξk+ Qa/n

)3 ,

βan ⇒ 4T
〈
G2

kGk+ Qa
Gk+ Qn

〉
≈ 1

N

∑
k

∑
i=a,n

Aiksech2
(

ξk
2T

) − Aik+ Qi
sech2

( ξk+ Qi

2T

)
T (ξk − ξk+ Qi

)2(ξk+ Q ī
− ξk+ Qi

)
,

(A2)

where 〈·〉 → 1/N
∑

k, with N being the phase-space volume.
Aik = −ξk + ξk+ Qi

+ 2T sinh (ξk/T ). ξk is the noninteracting
band. The index ī = a,n, while i = a,n, respectively.

It is evident from the above expressions for αa/n and
βa/n that in the particle-hole channel, the divergence in
these coefficients is controlled mainly by the same condition,
ξk = ξk+ Qa/n

. Therefore, the noninteracting susceptibilities at
Qa/n govern αa � αn, βa � βn, and βa > βan > βn.
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