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Early stages of magnetization relaxation in superconductors
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1Department of Physics, University of Belgrade, Studentski Trg 12, 11158 Belgrade, Serbia
2Ames Laboratory DOE, Ames, Iowa 50011, USA

(Received 18 February 2013; published 1 April 2013)

Magnetic flux dynamics in type-II superconductors is studied within the model of a viscous nonlinear diffusion
of vortices for various sample geometries. We find that time dependence of magnetic moment relaxation after
the field is switched off can be accurately approximated by m(t) ∝ 1 − √

t/τ̃ in the narrow initial time interval
and by m(t) ∝ (1 + t/τ )−1 at later times before the flux creep sets in. The characteristic times τ̃ and τ are
proportional to the viscous drag coefficient η. Quantitative agreement with available experimental data is obtained
for both conventional and high-temperature superconductors with η exceeding by many orders of magnitude
the Bardeen-Stephen coefficient for free vortices. Huge enhancement of the drag, as well as its exponential
temperature dependence, indicates a strong influence of pinning centers on the flux diffusion. Notwithstanding
the complexity of the vortex motion in the presence of pinning and thermal agitation, we argue that the initial
relaxation of magnetization can still be considered as a viscous flux flow with an effective drag coefficient.
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Magnetic flux penetrates a type-II superconductor in the
form of discrete quantized vortices. Vortex structures in
conventional and high-temperature superconductors display
remarkable complexity both in equilibrium1,2 and dynamic
regimes.3–12 Relaxation of the magnetic moment of super-
conductors is achieved through initial viscous flux flow13–18

and slow, logarithmic in time, thermally activated creep.19–23

Thermally assisted hopping of vortices and vortex bundles
between local minima in the random pinning potential is
characteristic of both the creep and the flux flow under a
driving force. In the latter, the hopping gives rise to the viscous
drag coefficient η ∝ eU/kT , where U is the effective activation
energy and T is the temperature.21 A free flux flow regime
can be realized at microwave frequencies (10–100 GHz)
when the effect of the pinning is negligible. Measurements
of surface impedance give viscous drag coefficients η0 ∼
10−6–10−7 Ns/m2 at low temperatures for all superconductors,
e.g., conventional NbSe2 (Ref. 24), cuprates YBCO and
BSCO,25,26 and pnictide LiFeAs.10 The order of magnitude is
in accordance with the Bardeen-Stephen result for the viscous
drag, η0 = �0Hc2/ρnc

2, caused by dissipation in the vortex
core (�0 = hc/2e is the flux quantum, ρn is the normal-state
resistivity, and Hc2 is the upper critical field).4

In this paper we study early stages of the flux dynamics
after switching off the external magnetic field. We use a
simple hydrodynamic approach: The local force the vortex
experiences due to interaction with other vortices, the surface,
and the local quenched disorder (pinning centers) is described
by an effective viscosity η � η0. The same approach suc-
cessfully describes the vortex creep if supplemented by a phe-
nomenological model of current-dependent or time-dependent
activation energy, U = Uc ln(jc/j ) or U = kT ln(t/t0), where
jc is the critical current and t0 is the characteristic time scale
for flux creep.19–23

We consider a model of massless vortex motion where
the driving Lorentz force equals the viscous drag (1/c)J ×
�0 − ηv = 0. Here, J is the current density, v is the vortex
velocity, and η is a viscous drag coefficient. For magnetic
induction B = n�0 related to the vortex density n, the force
balance equation reads (1/c)J × B − η|B|v/�0 = 0, with

J = (c/4π )∇ × B. Taking into account the continuity equation
∂B/∂t + ∇ · (Bv) = 0, the dynamics of the magnetic flux in
a superconductor is described by the well-known nonlinear
diffusion equation20–22

∂B

∂t
= �0

4πη
∇ · (|B| ∇B). (1)

We have solved Eq. (1) for three sample geometries: a slab,
a square-shaped plate, and a disk (see Fig. 1). We assume the
sample thickness along the field is sufficiently large and neglect
stray fields on the top and bottom of the sample. Magnetic
induction B(r,t) is directed along the sample symmetry axis
z and satisfies the following initial and boundary conditions:
(i) B is uniform within the sample at t = 0, B(x,y; t = 0) =
B0, and (ii) B vanishes at the sample edges for t > 0.

For a long superconducting slab of width L, Eq. (1) reads

∂B

∂t
= �0

4πη

∂

∂x

(
|B| ∂B

∂x

)
, (2)

where B(x,t) = 0 at x = ±L/2 for t > 0. We can seek the
solution in the form

B(x,t) =
∞∑

k=1

Bk(t) sin[kπ (x/L + 1/2)], (3)

with functions Bk(t) to be determined from Eq. (2) and
B(x,t = 0) = B0. This gives the following set of differential

FIG. 1. Vortex dynamics is studied for three sample geometries:
(a) a slab, (b) a square-shaped plate, and (c) a disk.
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FIG. 2. Magnetic induction B(x) across one half of a super-
conducting slab of width L is shown for times t/τ0 = 0.01, 0.1,
0.2, . . . ,3.2 (top to bottom).

equations:

dBk(t)

dt
= 1

B0τ0

∞∑
i,j=1

Bi(t) Fk(i,j ) Bj (t), (4)

with the initial conditions Bk(0) = (2B0/πk) [1 − (−1)k] (k =
1,2, . . .). Here, the coefficients Fk(i,j ) are given by

Fk(i,j ) = kπ

4

(
(i − j )2

(i − j )2 − k2
− (i + j )2

(i + j )2 − k2

)
(5)

for |i ± j | �= k and i + j + k odd, and Fk(i,j ) = 0 otherwise.
The characteristic time constant is

τ0 = πL2η

�0B0
. (6)

Equations (4) are solved by truncating the system at sufficiently
large k (k ∼ 40). The induction B(x,t) for the slab is shown
in Fig. 2 at various times t/τ0 = 0.01, 0.1, 0.2, . . . ,3.2. We
observe that the flux flow near the sample edges in the initial
time interval is very fast, reaching the center of the slab (x = 0)
at time t ∼ 0.1τ0 after switching off the field. This regime is
followed by a slower flux flow taking place in the bulk of the
sample.

The spatial dependence of the magnetic induction is in
accordance with the previous results for the flux flow regime
with constant activation energy.22 In the presence of flux creep,
which may take place in the center of the slab for t 	 0.1τ0, or
at large times t � τ0 when remanent magnetization is small,
a phenomenological model of current and field-dependent
activation energy should be used.19–23 Note that the obtained
B(x,t) shown in Fig. 2 is qualitatively different from the
solution of Eq. (2) when the field is switched on at t = 0.
In that case the magnetic field enters the sample in the form
of a flux front propagating from the edges.20,22,27 Magnetic
induction in the vicinity of the front is a linear function
of the coordinate, B(x,t) = (4πη/�0) vf |x − xf |, with xf (t)
and vf being the position and the velocity of the front. In
our case, the field is switched off at t = 0 and the flux
escapes the sample with no front in B(x,t) formed even at
t 	 τ0. Indeed, at a sufficiently large distance u from the edge,

FIG. 3. Numerical solutions for magnetic moment relaxation for
the slab (×), disk (◦), and square (�) geometries, compared to the
analytic approximation, Eq. (9) (solid line). Inset: A better fit for the
initial time interval t 	 τ to the analytic expression, Eq. (7). In this
case, only magnetization at the edges is affected by the flux flow.

Eq. (2) can be linearized with respect to δB = B0 − B, which
gives the exponential decay δB(u,t) ∝ (u/2κ

√
t)−1 e−u2/4κ2t

(κ = √
�0B0/4πη) characteristic of the linear diffusion.

In the following we study the dynamics of the average
magnetic induction B̄(t) = A−1

∫
dxdy B(x,y,t) (A is the

sample area) which is proportional to the magnetic moment
m(t) that can be measured. There are two regimes of the
flux dynamics in the system. At very short times t 	 τ0 after
switching off the field, the flux flow is localized near the edges
and is unaffected by the sample size. In this case, the solution
for a half-infinite superconductor is a good approximation,
B(u,t) = B0f (u/κ

√
t) (Ref. 28). Here, f is a dimensionless

function to be determined from Eq. (2) for the half-infinite
superconductor with the boundary conditions f (0) = 0 and
f (∞) = 1. Using the above expression for B(u,t) and taking
into account that it deviates significantly from B0 in the
vicinity of the edges, we find for the average induction
1 − B̄(t)/B0 ∝ (P/A)κ

√
t , where P is the perimeter of the

sample. This gives the magnetic moment relaxation

m(t) = m0(1 −
√

t/τ̃ ), t 	 τ̃ , (7)

with the time constant

τ̃ = 9π (A/P )2η/�0B0, (8)

where the numerical prefactor characterizes the spatial spread
of B away from the edges. Comparison with the numerical
solution for m(t) is shown in the inset of Fig. 3 for different
sample geometries. We find that Eq. (7) is a good approxima-
tion of the exact m(t) in the short initial time interval t/τ̃ � 0.1
before the flux flow reaches the center of the sample. The flux
flow in this time interval is very fast, leading to a 30% reduction
of the overall magnetic moment.

At times t � τ0 the flux flow extends through the
whole sample, giving rise to the magnetization relaxation
which depends on geometry. For the superconducting slab,
the first-order approximation of Eq. (4) for k = 1 reads
B̄(1)(t) = (8B0/π

2)[1 + t/(0.75τ0)]−1. Truncating Eq. (4) at
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FIG. 4. Experimental data14 (◦) for the magnetic moment m(t) in
BSCO single crystal fitted to Eq. (9) with m0 = 1.1 × 10−5 Am2 and
τ = 0.43 min (solid curve). This corresponds to η = 0.5 Ns/m2.
Inset: The inverse magnetic moment as a function of time. The
crossover between flux flow and flux creep regimes is seen as a
dramatic change of the slope at t ≈ 7 min (dashed line). The sample
is a slab 0.14 × 1.37 × 2.06 mm in size, the initial magnetic induction
B0 = 35 mT, and T = 77 K.

k ∼ 40, a practically exact solution is obtained. This solution
can be approximated by a simple formula, B̄(t) = B0[1 +
t/(0.62τ0)]−1, which is very close to the exact one for t � τ0.
This suggests that the exact solution for the magnetic moment
m(t) can be accurately approximated by

m(t) = m0

1 + t/τ
, τ = ατ0, (9)

where α is a number which depends on geometry. Fitting the
exact numerical solution for m(t) to Eq. (9) we find α = 0.620,
0.244, and 0.226 for the slab, square, and disk geometries,
respectively (Fig. 3). The fitting ensures the smallest absolute
error between exact and fitted m(t) for 1 < t/τ < 3. As
expected, the decay of m(t) is slower (that is, geometric factor
α is larger) for the slab than for the disk, other parameters
being equal.

In what follows, we analyze available experimental data
on m(t) and extract the characteristic time constant as well as
the effective drag η. Relaxation of the magnetic moment in
BSCO single crystals is studied in Ref. 14. Experimental data
are shown in Fig. 4 (open circles) fitted to Eq. (9) (solid curve)
with m0 = 1.1 × 10−5 Am2 and τ = 0.43 min. The fitting is
performed for the initial time interval before logarithmic in
time, thermally activated flux creep sets in. The linear time
dependence of the inverse magnetic moment is shown in the
inset of Fig. 4; the crossover between flux flow and flux creep
regimes is seen as a dramatic change of the slope at t/τ ≈ 16.

Let us now extract η. The dimensions of the sample used
in the experiment are 0.14 × 1.37 × 2.06 mm, which gives
B0 = 4πm0/V = 35 mT, where V is the volume. Taking
α = 0.620 for the slab of the width L = 0.14 mm, we obtain
η = 0.5 Ns/m2. This value for the effective vortex viscosity
exceeds by 6 orders of magnitude the Bardeen-Stephen drag

FIG. 5. Experimental data15 (◦) for magnetic moment relaxation
in NbSe2 monocrystal fitted to Eq. (7) (solid curve) with τ̃ = 1.13 ×
103 min, corresponding to η = 11 Ns/m2. The dashed line indicates
a crossover between the flux flow regime, Eq. (1), and the slow
quasistatic motion before the flux creep. The sample has a square
geometry 0.5 × 0.5 × 0.2 mm, the initial magnetic induction B0 =
3.3 mT, and T = 4.2 K.

coefficient η0 ∼ 10−7 Ns/m2 measured in BSCO.26 Huge
enhancement of the drag indicates a strong influence of the
pinning on the vortex diffusion. Despite the complexity of
the vortex motion in the presence of pinning and thermal
agitation, the magnetization follows a simple algebraic time
dependence, Eq. (9).

Vortex dynamics has been studied in NbSe2 using the
decoration technique for visualization of flowing vortex
lattices.15 Magnetization measurements have been performed
using the SQUID (superconducting quantum interference
device) magnetometry. A crossover has been observed as a
function of increasing flux density from a layered (smectic)
flowing flux lattice in the disorder-dominated low-field limit to
a more ordered (Bragg glass) lattice structure in the interaction-
dominated high-field case. The observed time dependence of
magnetization relaxation in the high-field limit (B0 = 3.3 mT)
is shown in Fig. 5. The regimes indicated in Fig. 5 correspond
to the flux flow and to the quasistatic vortex motion. The solid
curve in Fig. 5 is the fit of m(t) to Eq. (7) for the NbSe2

sample 0.5 × 0.5 × 0.2 mm in size, which gives the relaxation
time τ̃ = 1.13 × 103 min and the viscous drag coefficient
η = 11 Ns/m2. We observe that the simple hydrodynamic
model with an effective viscous drag force fits the data in
the initial stages of magnetization relaxation where the vortex
density is large and the flux flow takes place. The flux flow
is localized near the edges, as corroborated experimentally
by a small reduction of the magnetic moment of the sample
over the measurement time and, more directly, by observing
the static vortex structure in the center of the sample.15 Large
effective η is clearly due to hopping caused by successive
pinning and thermally assisted depinning of vortices, as
evidenced by studying single-vortex dynamics in pristine
NbSe2 monocrystals by scanning tunneling microscopy.16

Magnetic moment relaxations in YBCO polycrystal17 and
monocrystal18 are shown in Figs. 6 and 7. The relaxation
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FIG. 6. Experimental data17 (◦) for magnetic moment relaxation
in YBCO polycrystal at temperatures T = 30 K, 41 K, 50 K, 61 K, and
77 K (top to bottom), fitted to Eq. (7) (solid curves) with τ̃ = 2.1 ×
105, 5.0 × 104, 1.4 × 104, 3.0 × 103, and 7.4 × 102 min, respectively.
This corresponds to the drag coefficients η = 284, 66, 17, 2.93, and
0.19 Ns/m2. Inset: Logarithm of the drag coefficient, normalized to
η(77 K) = 0.19 Ns/m2, as a function of the temperature. The sample
has a rectangular geometry of 66 × 34 × 15 mm. The initial magnetic
induction is B0 = 3.95, 3.77, 3.48, 2.80, 0.735 T, respectively.

in the polycrystalline YBCO (rectangular geometry,
66 × 34 × 15 mm in size) is studied at 30 K, 41 K, 50 K,
61 K, and 77 K. The initial stage of magnetization relaxation
can be fitted by Eq. (7) describing the flux flow in the vicinity
of the edges (Fig. 6, solid curves). This is in agreement with
the observed small reduction of the overall magnetic moment
during the measurement. The obtained effective viscosity
strongly depends on temperature, ranging between η ∼ 100
and 0.1 Ns/m2 as the temperature is increased from 30 K
to 77 K, see inset of Fig. 6. The extracted value η(77 K) =
0.19 Ns/m2 is consistent with the value η = 0.12 Ns/m2

measured independently at the same temperature by studying
the spatiotemporal change of the magnetization profile in
a bulk YBCO sample in the flux-flow regime.29 Taking
η ∝ eU/kT and neglecting the temperature dependence of the
effective activation energy U as well as of the prefactor, we
find U ≈ 360 K in accordance with the previous results.21

Magnetic moment relaxation in small YBCO monocrystal
(1 × 1 × 0.02 mm) is shown in Fig. 7.18 The data can be
fitted with the effective viscous drag coefficients η = 0.27 and
0.04 Ns/m2 at temperatures of 85 K and 87 K, respectively.
The decrease of η in such a narrow temperature range may be
due to the proximity of the critical temperature (Tc ≈ 88 K)
where fluctuations are pronounced. In addition, the sharp
change in the relaxation rate observed at 87 K and t ≈ 30 min
suggests that the flux flow is inhomogeneous and made of
large domains which, upon depinning, abruptly increase the
magnetic moment relaxation rate.

In conclusion, we have studied vortex dynamics in type-
II superconductors in the initial time interval before the
flux creep sets in. We have used a simple phenomenolog-
ical (hydrodynamic) model of nonlinear diffusion of mass-
less vortices where pinning of the flux lines by material

FIG. 7. Experimental data18 (◦) for magnetic moment relaxation
in YBCO monocrystal at temperatures of 85 K and 87 K (top to
bottom), fitted to Eq. (7) with τ̃ = 3.8 × 103 min and τ̃ = 570 min,
respectively (solid curves). The corresponding drag coefficients are
η = 0.27 and 0.04 Ns/m2. The sample has a square geometry of
1 × 1 × 0.02 mm, and the initial magnetic induction is B0 = 0.1 mT.

inhomogeneities, interaction with other vortices and the
surface, and the Bardeen-Stephen dissipation in the vortex
core are described by an effective viscous drag coefficient,
η. After switching off the external magnetic field, the vortex
dynamics exhibits two distinct regimes before the creep sets in
with logarithmic in time decay of remanent magnetization. In
the beginning, the flux flow is localized near the edges and is
independent of the sample size. At later times, this regime is
followed by a slower flux flow involving the bulk of the sample.
We find that magnetic moment relaxation in these regimes
can be accurately approximated by m(t) = m0(1 − √

t/τ̃ ) for
t 	 τ̃ and m(t) = m0(1 + t/τ )−1 for t � τ , where geometry-
dependent τ̃ and τ are proportional to η.

We have analyzed available experimental data on early
stages of magnetization relaxation after the magnetic field is
instantaneously removed. We obtained quantitative agreement
for both conventional and high-temperature superconductors,
albeit with η exceeding the Bardeen-Stephen value η0 by many
orders of magnitude. Huge enhancement of η with respect
to η0, as well as its exponential temperature dependence,
indicates a strong influence of pinning and thermally assisted
depinning of vortices on flux diffusion. We argue that early
stages of magnetization relaxation can be modeled as a flux
flow with an effective drag coefficient. This allows for a simple
experimental determination of the bulk vortex viscosity, which
cannot be accessed by the surface impedance measurements.
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