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Quantum dynamics of vortices in mesoscopic magnetic disks
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A model of quantum depinning of magnetic vortex cores from line defects in a disk geometry and under
the application of an in-plane magnetic field has been developed within the framework of the Caldeira-Leggett

theory. The corresponding instanton solutions are computed for several values of the magnetic field. Expressions
for the crossover temperature 7, and for the depinning rate I'(7T") are obtained. Fitting of the theory parameters

to experimental data is presented.
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I. INTRODUCTION

Quantum tunneling of mesoscopic solid-state objects
has been intensively studied in the past. Examples include
single domain particles,' domain walls in magnets,*°
magnetic clusters,”® flux lines in type-II superconductors,”!°
and normal-superconducting interfaces in type-I super-
conductors.'"!2 It is well known that micron-size circular
disks made of soft ferromagnetic materials exhibit the vortex
state as the ground state of the system for a wide variety of
diameters and thicknesses.'*>"'® This essentially nonuniform
magnetic configuration is characterized by the curling of
the magnetization in the plane of the disk, leaving virtually
no magnetic “charges.”!”!® The very weak uncompensated
magnetic moment of the disk sticks out of a small area
confined to the vortex core (VC). The diameter of the core is
comparable to the material exchange length and has a weak
dependence on the dot thickness.'®!” Because of the strong
exchange interaction among the out-of-plane spins in the VC,
it behaves as an independent entity of mesoscopic size.

Recent experimental works have reported that the dynamics
of the VC can be affected by the presence of structural defects
in the sample.?>~>* This is indicative of the elastic nature of the
VC line, whose finite elasticity is provided by the exchange
interaction.”* In Ref. 22 nonthermal magnetic relaxations
under the application of an in-plane magnetic field are reported
below T =9 K. It is attributed to the macroscopic quantum
tunneling of the elastic VC line through pinning barriers when
relaxing towards its equilibrium position. In such range of low
temperatures only the softest dynamical mode can be activated,
which corresponds to the gyrotropic motion of the vortex state.
It consists of the spiral-like precessional motion of the VC as
a whole?>~?° and can also be viewed as the uniform precession
of the magnetic moment of the disk due to the vortex. The
gyrotropic mode is intrinsically distinct from conventional spin
wave excitations: In the latter case, it is worth noting that the
VC has a significant influence on the form of spin-wave mode
eigenfunctions in thin disks**3! and in disks with moderate
aspect ratio.*?-3

The aim of this paper is to study the mechanism of quantum
tunneling of the elastic VC line through a pinning barrier
during the gyrotropic motion. We focus our attention on
line defects, which can be originated for instance by linear
dislocations along the disk symmetry axis. This case may
be relevant to experiments performed in Ref. 22 since linear
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defects provide the maximum pinning and, therefore, the VC
line in the equilibrium state is likely to align locally with
these defects. Such a situation would be similar to pinning
of domain walls by interfaces and grain boundaries. Thus,
we are considering the depinning of a small segment of the
VC line from a line defect. The problem of quantum and
thermal depinning of a massive elastic string trapped in a linear
defect and subject to a small driving force was considered by
Skvortsov.* The problem studied here is different as it involves
gyrotropic motion of a massless vortex that is equivalent to
the motion of a trapped charged string in a magnetic field.**
We study this problem with account of Caldeira-Leggett type
dissipation.

The paper is structured as follows. In Sec. II the Lagrangian
formalism of the generalized Thiele equation is presented and
Caldeira-Leggett theory is applied to obtain the depinning
rate. The imaginary-time dynamical equation for instantons
is derived in Sec. III and numerical solutions are computed.
In Sec. IV the crossover temperature between the quantum
and thermal regime is obtained. Discussion and fitting of the
theory parameters (which is related to the pinning potential)
to experimental data are provided in Sec. V. Final conclusions
are included in this section.

II. ELASTIC THIELE LAGRANGIAN FORMALISM
AND DEPINNING RATE

In this paper we restrict ourselves to a circular disk geome-
try and to an applied in-plane magnetic field configuration. The
VC line is pinned by the line defect going in the Z direction
(symmetry axis of the disk) at the center of thi: disk. The vortex
line shall be described by the vector field X = (x,y), where
x(t,z) and y(t,z) are coordinates of the center of the VC in the
XY plane. The dependence on the Z coordinate emerges from
the elastic nature of this magnetic structure. Figure 1 shows
a sketch of the vortex line deformation due to pinning and its
gyroscopic motion.

The softest dynamical mode of the VC, and hence of the
whole vortex, originates from gyroscopic motion and it is

described by the generalized Thiele equation:?*

X(1,2) x g + 3,11, + Vzo = 0, (1)

where the dot means time derivative. The gyrovector density>°
PG = pcé, is responsible for the gyroscopic motion of the VC
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FIG. 1. (Color online) Vortex state and depinning via nucleation
of the part of the VC line in a circular disk made of soft ferromagnetic
material.

and its modulus is given by pg = 2w pn,M;/y, where M is
the saturation magnetization, y is the gyromagnetic ratio, p =
=+1 is the polarization of the VC, and n, = =1 is the chirality
of the magnetlzatlon of the disk. The potential energy densuy
a)(X 0 X) _splits into the sum of two contributions, a)l(X)
and a)z(a X ). The latter is the elastic energy term, w,(9,X) =
1A(8X /32)?, which is provided by the exchange interaction.
The elastic constant is given by A = 2w AIn(R/Ay), where
R is the radius of the disk, A is the exchange stiffness
constant, and Ay = /A/M? is the exchange length of the
ferromagnetic material. Finally, H = —dw/8(0; X ) = —A0; X
is the generalized momentum den51ty with respect to Z.
Consequently, the generalized Thiele equation becomes

X(t,2) X pg — 202X (1,2) + Vzw = 0. )

Let L be the thickness of the circular disk. The Lagrangian
corresponding to the above equation is given by>*

. L .
E[t,X,X,azX]zf dz{X - A,, —o(X.0.X)}, (3)
0

where A oc = PGYey is the gyrovector potential in a conve-
nient gauge.’” The VC is a mesoscopic object consisting
of many degrees of freedom. Quantum depinning of such
object must be considered within semiclassical method of
Caldeira-Leggett theory: The depinning rate at a temperature
T,T(T)= A(T)exp[—B(T)], is obtained by performing the
imaginary-time path integral®®

[ ot [ piyye [%f drﬁg} )

over X = X (t,z) trajectories, which are periodic in T with

period 71/ kpT. Notice that T = it is the imaginary time and

L is the Euclidean version of Eq. (3). That is,
Lelt.X:. X090 X+

L .
= / dz {—i X, - A,oc + a)(erath)}- (5)
0
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The energy density wl(ij) splits into the sum of three
terms: The first one, wxy(X;), represents the sum of the
magnetostatic and exchange contributions in the z cross
section, whose dependence on the vortex core coordinates is
wxy(X ) ~ X2 for small displacements.”* The second term,

a)dep(X ), represents the pinning energy density associated
with the line defect. Recent experimental works have reported
an even quartic dependence of pinning potentials on the VC
coordinates for small displacements in permalloy rings.>
Consequently, it is legitimate to take the following functional
dependence for the sum of both terms:

(@xy + 0aep)(Xo) = Jic (x2 4 y2) = §Bpalxe,ye),  (6)
where («,B) are the parameters of our model and p4(x,y)
is a linear combination of monomials of degree four on
variables x and y. The 1ast term is the Zeeman energy density,
which is given by** wz(X;) = —u[2 x Hyl - X, with o =
(27 /3)M;n, R, for small displacements. The latter correspond
to the application of a weak in-plane magnetic field H;,. In
what follows, Hin = —Hé, is applied along the ¥ direction.

The simple dependence ps(x;,y;) = x? keeps the main
features of the pmmng potential (see Sec. V). We also neglect
the elastic term 5 . The assumptions made regarding
the structure of the potentlal can affect the values of factors
of order unity but should not change our conclusions as to the
magnitude of the effects studied in the paper. From all these
considerations, the Lagrangian (5) becomes

K
hx: + =x;
/Lx—i—zxt

2
» B a4 A fOx

- — . @

+2yf 4T+2<82>} (7

Finally, Gaussian integration over y, reduces Eq. (4) to

/ D{x}exp[%1 f erE,eff} ®)
with

L 1 2
EE,EH[‘[thaxT’aZ'xT] - f dz {_ <p_G)
0 2 K

. L
»CE[TvXanvath] == / dZ {_ipGyrxr -
0

Within the framework of the Caldeira-Leggett theory,*
dissipation is taken into account by adding a term

. 2
n dzyg dr/ de 1[)Cz(f,z) X (11,2)] (10)
(t—1)?

to the action of Eq. (8). The dissipative constant 7 is related
to the damping of the magnetic vortex core®® and Ref. 26
shows that n ~3a;16|pg|, with oy being the Gilbert
damping parameter. Introducing dimensionless variables

T = (k/v2lpc )T, 7 = (k/21)'?z, and u = (2B/k)"*x,, the
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depinning exponent becomes

|/0G|N - - 1-2 l N2
—ZFL,B /dz%dr[zu +2(u) + V(u,h)

n _[u(®.,2) - u(fl,z)]z]
_ d , 11
+2ﬁn|pgl ./I; o (T —11)? (b

where the prime means derivative with respect to z, V (u,h) =
—hu +u®* —u*/4 is the normalized energy potential, and
h=228/k3uH. Let ug(h) be the relative minimum of
V for a fixed value of h. We rescale the energy poten-
tial V(u,h) — V(u,h) := V(uo(h) + u,h) — V(uo(h),h) and
the variable u — uo(h) + u so that we obtain V(u,h) = u>
(1 = Jug(m)] — uo(u — gu?).

B(T,h) =

III. INSTANTONS OF THE DISSIPATIVE 1 + 1 MODEL

Quantum depinning of the VCline is given by the evaluation
of the depinning exponent (11) at the instanton solution of the
Euler-Lagrange equations of motion of the 1+ 1 field theory
described by Eq. (11). This gives

i+u"—[2- 3u6(h)]u + 3up(Wu® + u®
V2 n _u(7,2) —u(@,2)

_XE T g BRI g (12
7 el G0

with boundary conditions

u(—2/2,2) =u(2/2,7) z€R, (13)
max u(%,7) =u(0,7) 7z eR,
Te[-9/2,9/2]

that must be periodic on the imaginary time 7 with the period

Q= (k/ \/§|,og D /kpT). This equation cannot be solved
analytically, so we must proceed by means of numerical
methods. Notice that in the computation of instantons we can
safely extend the integration over Z in Eq. (11) on the the whole
set of real numbers.

A. Zero temperature

In this case we apply the 2D Fourier transform
A 1 = J= = =\ i (wT+07)
i(w,0) = — dt dz u(t,?)e ' (14)
2 R2

to Eq. (12) and obtain

1
@? + 02 + V2|oln/|pg| + 2 — 3ud(h)

3ug(h
x ( ) [ 1os d6yier 00w — 1.6 — 61)
2 R2

i(w,0) =

+ x f a2 d*6 ii(ws,6,)
R4

(2m)?

x f(w; — w2,01 — O)li(w — wy,0 —91)>, (15)
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which is an integral equation for #i. The depinning expo-
nent (11) in the Fourier space becomes

loG VKA
MmB

3 o> +60% o 7n
x| (1- —uz(h)> + + ——]
[( 27" 2 V2 1pal

_ uo(h)
2 R4

B(T =0,h) = { / dodb i(w,0)i(—w, —0)
R2

d*& d*60(w,,6))i(w).6,)

1

X d(—w; — wy, —0) — 02) — @np

X/ 43 d*60(w;,0,)i(w2,0,)i(ws,03)
Rﬁ
X 12(—0)1 —wy — w3, —91 — 92 — 93)} (16)

The zero-temperature instanton is computed using an
algorithm that is a field-theory extension of the algorithm
introduced in Refs. 41 and 42 for the problem of dissipative
quantum tunneling of a particle: To begin with, we introduce
the operator

O(h,a,i(w,0),h)
1
@? + 02 + V2|wln/|pg| + 2 — 3ud(h)

X ()»/ d(x)l d@lﬁ(a)l,el)ﬁ(w — (1)1,9 — 91)
]RZ
+a / d2& d*6 ii(ws,0:)i(w) — wa,60; — 63)
]RA

X i@ — 1.0 — 91)), (17)

which generalizes the integral operator from Eq. (15). Notice
that the equation of motion for the instanton in the Fourier
space becomes ii(w,0) = OQBug(h)/2m,1/2n)*,i(w,0),h).
Second, it is important to point out the scaling property of this
operator because it will be used in the computation of Eq. (16):
Given any triplet (Lo, a,io(w,0)) satisfying the identity (15),
so will any other triplet (11,1, (w,0)) provided that

ii(w,0) = xito(w,0), (18)
)"1 = )"O/Xv (19)
ar = /%%, (20)

where x is a constant. This means that if we are able to find a
solution (1,1, (w,0)) for arbitrary parameters (A1, ), then
we can obtain the solution corresponding to the pair (Ag,xp)
simply by rescaling i1} (w,0) by a factor x = A;/A¢ as long as
(M /20)? = ai/ay is verified.
The algorithm consists of the following steps:

(1) Start with an initial (Ag,oq,lg(w,0)).

(2) Letiij(w,0) = O(rg,a,lig(w,0),h). -

(3) Calculate Ay = o/ x2a1 = oo/ x>, where x = i1,(0)/
10(0).

(4) Find 122(0),9) = O(A] ,0 ,ﬁl(w,Q),h).
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(5) Repeat steps (2)—(4) until the successive difference
satisfies a preset convergence criterion.

The output is the triplet (A,,,&;,, i, (w,0)). The final step con-
sists of rescaling I, to obtain the solution corresponding to the
pair (A,a) = Bug(h)/2m,1/(2m)?): From the scaling property
we know that the rescaling rules of the A and « terms of Eq. (15)
are different. Thus, to obtain an accurate approximation of
the instanton solution we have split #i(w,0) into the sum of
two functions #;(w,0) and #i>(w,0) in the above algorithm,
and calculated their next iteration by means of the A term,
respectively the o term of the operator (17). Finally, we rescale
iy by a factor 2w, /3uo(h) and @, by a factor 27 ,/a,. The
depinning rate is calculated evaluating Eq. (16) at this solution.

B. Nonzero temperature

In the T # O case, taking into account the finite periodicity
on T we consider a solution of the type

w(t,2) =) un(De " @
nez
with w, = 2wn/Q for all n € Z. Introducing this functional
dependence into Eq. (12) and applying a 1D Fourier transform
we obtain
1

i,(0) =
w2 + 62 + V2w, 0/ 1pc| + 2 — 3ud(h)

3ug(h) / . N 1
E do i, (0)i,—,0 — 0)) + —
,—27_[ o R 1 p( 1) p( 1) 27

x Y| d% 1,02y (01 — O2)itn—p—g (0 — 01) .
RZ

p.qeZ

(22)

which is an integral equation for the set {ii,},cz of Fourier
coefficients. The depinning exponent (11) in the Fourier space
becomes

B(T > 0,h)
_ |G |VKA A
-l {ij /R 46 i1,(60)it_n(—0)

3 w? 40>  |w, 7n
x 1——u2(h)>+ . + — —}
|:< 270 2 V2 lpcl

ug(h) / 2n oy
- > d*01, (01t (6
NP (01t (6)

1 -
i nem(—0) — 0)) — — 4264, (0
Xy (=01 — 02) 8]12/% itn(61)

n,m,leZ

X U (02)0(03)0 —p—p—1(—01 — 02 — 93)} Q. (23)

The numerical algorithm is analogous to the one used in the
zero-temperature case, but taking into account the rescaling of
{i}} pez by a factor /27 A, /3uo(h) and {3} ez by a factor
V2ma, in the last step of the calculations.

Figure 2 shows the normalized action B(T)=
nB/|pc |x/a)B(T) as a function of Q2 at different values of
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FIG. 2. (Color online) Temperature dependence of the depinning
rate: normalized action (28/|pc|vVkA)B(T) versus Q2 at different
values of the parameter /.

the parameter 4. In the simulations we have taken the standard
value a1 = 0.008 for bulk pf:rmalloy.26

IV. CROSSOVER TEMPERATURE

The crossover temperature determines the transition from
thermal to quantum tunneling relaxation regimes. It can
be computed by means of theory of phase transitions:*
Above T., the instanton solution minimizing Eq. (11) is
a T-independent function u(7,Z,h) = iip(zZ,h), whereas just
below T, the instanton solution can be split into the sum of i
and a small perturbation depending on 7,

2
u(t,z,h) = io(Z,h) + i:(z,h) cos (Ef> . 24)
The depinning exponent (11) is proportional to

/ dz B i), 25)
R

where @ is the spatial action density. Introducing the expan-
sion (24) into Eq. (11) we obtain the following expansion:

O(Z; i1y, it)) = [%(%)2 + V(ﬁo,h)} Q

+ %(ﬁg)z + Aiis + 04) (26)

with
Q T T o
A= —V"(idg,h) + = + —=——. 27
4 Q  V2lpgl
If A >0 the only pair (it,i}) minimizing & is i; = 0.
The crossover temperature is then defined by the equation
minzcr A = 0, that is
Q. n? n
— min V" (lg,h) + — + ——— =
4 zeR Q ﬁ loG|

The equation of motion for a T-independent instanton is

ity — [2 — 3ug(h)]io + Suo(h)ag + iy = 0 (29)

0. (28)
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FIG. 3. (Color online) Field dependence of the dimensionless
crossover temperature 6. = (4wkp|pg|/hk)T,. Inset: Sketch of the
potential V(u,h = 0.1).

with boundary conditions ity — 0 at |Z| — oo and i1¢(0,h) =
—2ug(h) + V4 — 2u(2)(h) = w(h), which is the width of the
potential. Consequently,

min V" (iio(Z,h),h)
zeR

= ,h
uoe[() w(h)] (Lt() )

— . P _ L

N ﬁoe%}u?(h)] {[2 3M0(h)] 6”0(]1)140 3140}

= —10 + 3ud(h) + 6ug(h)y/f (h) 30

with f(h) =4 — 2u(2)(h). Solving the quadratic equation for 7,
given by Eq. (28) we obtain the crossover temperature

hik

To(h) = ————
4kglpg]

2
x|:\/8+3f(h)—12u0(h) 0 +__L]

/OG loG|
(€29

Figure 3 shows the dependence of the dimensionless crossover
temperature 6. = (4wkg|pc|/hk)T, on the generalized mag-
netic field 4.

V. DISCUSSION AND PARAMETER FITTING

For a given value of the generalized field %, in Fig. 2
we clearly distinguish two regimes in the dependence of the
normalized action on £2: Above 2.(h) the normalized action
tends to a constant value, whereas below it the normalized
action is linear with . Notice that the transition from the
linear to the constant regime is smooth (that is, of second-order
type). Above T, the depinning rate becomes

lpg|v Ak

B(T > T..h) = T

dz [ (0>2+V<uo,h)}
(32)
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with iy being the 7-independent instanton. By means of
Eq. (29) this expression can be rewritten as*®

w(h)
B(T > T,.h) = 'p‘;;‘gm [2ff \/V(ﬁo,h)} Q
(33)

and, consequently, the slope of the normalized action B()

is equal to 22 fow(h) diig+/V (iig,h), which can be evaluated
analytically. At all values of the generalized field h, the
numerical slope calculated from Fig. 2 coincides with the
analytical one within the numerical error of our simulations.
This is indicative of the robustness of our algorithm.

Quantum effects reported in Ref. 22 can be understood
as being plausibly due to the depinning from line defects
present in the disk. The size of the defects needs to exceed
the nucleation length in order to pin the VC, but not to be as
long as the thickness of the disk. Pinning of extended parts
of the VC line by line defects would be justified by the fact
that linear defects provide the strongest pinning so that the
VC line, or at least some segments of it, would naturally fall
into such traps. Consequently, we can test out our model on
the experimental results obtained in Ref. 22. The crossover
temperature is relevant to the roughness of the fine-scale
potential landscape due to linear defects at the bottom of the
potential well created by the external and dipolar fields. Above
T, vortices diffuse in this potential by thermal activation,
whereas below T, they diffuse by quantum tunneling. This
must determine the temperature dependence (independence)
of the magnetic viscosity. T, is, therefore, the measure of the
fine-scale barriers due to linear defects. It can be measured
experimentally and help to extract the width of the pinning
potential.

Now we proceed to obtain estimates of the model pa-
rameters (k,B) by fitting our model to experimental data:
Figure 4 shows new magnetic relaxation measurements of
permalloy disks in the vortex state from the remnant state to
equilibrium (zero magnetization). The radius of these disks is
R =0.75 um and their thickness is L = 95 nm [Fig. 4(a)]
and L =60 nm [Fig. 4(b)]. A concise description of the
experimental setup and sample preparation can be found
in Ref. 22. Notice that for both samples the magnetization
depends logarithmically on time during the relaxation process.

Magnetic viscosity of these relaxation measurements is
computed by means of the formula®

1 oM

S(T) = —— ,
() My dlInt

(34)

where M, is the initial magnetization point. That is, the
viscosity at zero field is obtained computing the slopes of
the normalized magnetization curves. Figure 5 shows the
magnetic viscosity as a function of temperature for both
samples. Below 7, = 6 K, magnetic viscosity reaches a plateau
with nonzero value. Above T,, magnetic viscosity increases
up to a certain temperature, from which it decreases again.
The existence of the plateau is the evidence of underbarrier
quantum tunneling phenomena. The increase of viscosity with
temperature above the crossover temperature is due to thermal
activation over the pinning barriers. Finally, the drop of the
magnetic viscosity is in agreement with the loss of magnetic
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FIG. 4. (Color online) Relaxation measurements of magnetic
vortices from the remnant state to equilibrium for samples (L,R) =
(95,750) nm (a) and (L, R) = (60,750) nm (b).

irreversibility in our systems.??> On the other hand, the fact that
the crossover temperature 7, is independent of the thickness
of the disks upholds our hypothesis that just a small portion of
the VC line takes part in the tunneling process via an elastic
deformation.

Notice that the depinning rate should not exceed 30—40 in
order for the tunneling to occur on a reasonable time scale. The
estimates of the parameters («, 8) are obtained fitting Egs. (31)
and (16) to the values 7, ~ 6 K, respectively B(T =0,
h =0)~30 at zero field. Considering the experimental
values A = 1.3 x 107! J/m and M; = 7.5 x 10° A/m for
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FIG. 5. (Color online) Magnetic viscosity versus temperature for
both samples. The arrows point towards the nonzero value of the
plateaus.

permalloy, we obtain
k~59x%x10"T/m*, B~69x107I/m’, (35)

from which we can determine the width of the quartic potential,
w = +/2k/B ~ 0.13 nm. This value is compatible with the
width of the potential provided by a linear dislocation.

In conclusion, we have studied quantum escape from a line
defect of the VC line in a disk made of a soft ferromagnetic
material. In the case of permalloy disks, experimental results
let us conclude that the depinning process occurs in steps of
about 0.13 nm, which corresponds to the width of the energy
potential.
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