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Nematic phase and phase separation near saturation field in frustrated ferromagnets

Hiroaki T. Ueda' and Tsutomu Momoi?
' Department of Physics, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
2Condensed Matter Theory Laboratory, RIKEN, Wako Saitama 351-0198, Japan
(Received 14 November 2011; revised manuscript received 21 February 2013; published 22 April 2013)

We study the effects of quantum fluctuations on the magnetic properties of quantum frustrated ferromagnets
in a magnetic field. It is shown that a nonclassical phase or a phase separation appears due to quantum
fluctuations below the saturation field in a parameter range close to the classical zero-field phase boundary
between ferromagnetic and antiferromagnetic phases, for the case that the classical antiferromagnetic state is not
an eigenstate of the quantum model. As an example to which this argument is applicable, we study the S = 1/2
Ji-J, Heisenberg model with ferromagnetic J; (J; < 0) on the bec lattice using a dilute Bose gas approach.
For —1.50097 < J,/J, < —1.389, magnons form f-wave two-magnon bound states, leading to a spin nematic
phase, and for —1.389 < J;/J> < —0.48, a canted coplanar antiferromagnetic phase appears accompanied with

a phase separation below the saturation field.
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I. INTRODUCTION

Magnetic frustration in spin systems induces energy com-
petition between different magnetic phases. In a strongly
competing regime, quantum fluctuations are expected to lift
the degeneracy inducing a novel quantum phase different
from the competing classical phases. It has been revealed
that quantum frustrated ferromagnets, in which ferromagnetic
(FM) and antiferromagnetic (AF) spin-exchange interactions
strongly compete, exhibit various exotic quantum phases.'™
Much attention has recently been paid to one of the quantum
phases, a spin nematic phase, which does not have any spin
vector order but exhibits a long-range order of rank-2 spin
tensors.

Recent theoretical studies revealed that spin nematic phases
existin § = 1/2 J;-J, Heisenberg models with ferromagnetic
J1 (J1 < 0) and competing antiferromagnetic J, (J, > 0) on
the one-dimensional zigzag chain and on the two-dimensional
square lattice. The Hamiltonian for the J;-J, Heisenberg
model is given by

H:JIZS,‘~SJ‘+J2ZS,"S]‘-FHZS,-Z, (1)
(i.J) (i)

where J; (J2) denotes the ferromagnetic nearest-neighbor
(antiferromagnetic next-nearest-neighbor) coupling and H is
an applied magnetic field. The appearance of a spin nematic
phase is most established in the S = 1/2 J;-J, zigzag chain. It
is theoretically shown that the spin nematic phase is stabilized
under high magnetic field in the range —2.72 < J;/J, < 0.1'%4
These theoretical works motivated recent active experimental
searches'®'? for spin nematic phases in the quasi-one-
dimensional J;-J> compoundl3’I4 LiCuVOy. On the square
lattice, both the numerical and analytical approaches® showed
the existence of the spin nematic phase around the classical
phase boundary (J,/J, = —2) between ferromagnetic and
collinear antiferromagnetic phases; below the saturation field,
the spin-nematic phase is firmly induced by the two-magnon
instability for the broad parameter range —2.5 < J/Jp <
—0.2,"5 though there is still debate about the stability of
the spin-nematic order at zero field.'®' There are various
compounds, e.g., BaCdVO(PO,),, which are adequate to
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consider as the square-lattice ferromagnetic J;-J> model.?%!
It is hence expected that the spin nematic phase appears in
these compounds, at least in a high-magnetic-field regime. '’
In addition to Jj-J, models, a spin nematic phase is also
found in a frustrated multiple-spin-exchange model on the
triangular lattice, which describes the magnetic properties of
thin films of solid *He.? This spin nematic phase also appears
in a parameter range close to the classical phase boundary
between ferromagnetic and antiferromagnetic phases.

In this paper, we study the effects of quantum fluctuations
in frustrated ferromagnets, especially in the parameter range
surrounding the classical boundary between ferromagnetic and
antiferromagnetic phases, exploring microscopic spin models
for spin nematic phases. In Sec. I, we analyze the quantum
fluctuations at the classical boundary between ferromagnetic
and antiferromagnetic phases in general spin models. This ar-
gument concludes that, if the classical antiferromagnetic state
is not an eigenstate of the quantum Hamiltonian, there must
appear quantum phenomena below the saturation field which
cannot be described with the one-magnon instability at the
saturation. This implies that a simple canted antiferromagnetic
phase is not a stable state of matter below the saturation in
the quantum frustrated magnets close to the ferromagnetic
phase boundary. This general argument would be useful to
find quantum phenomena such as spin nematic order and phase
separation in frustrated magnets.

As an example to which this argument is applicable, we
study the magnetic structure slightly below the saturation field
in the three-dimensional § = 1/2 J;-J, model on the bcc
lattice, in Secs. III and VI. This model has been extensively
studied for antiferromagnetic couplings J; and J, as one of
the minimal frustrated magnets.?>~2> Recent theoretical studies
concluded that in the antiferromagnetic case (J;, > 0) the
classically expected antiferromagnetic orders persist even in a
quantum case.”*>> However, for the ferromagnetic coupling
Ji <0, the argument in Sec. II assures the appearance of
a nonclassical behavior in a magnetization process. For a
quantitative study, we adopt the dilute-Bose gas approach
from the viewpoint of the magnon Bose-Einstein condensation
(BEC); the emergent magnetic order below the saturation field
can be viewed as a condensation of magnons. This approach
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has succeeded to explain various experimental results.?®’

Applying this approach, we found the appearance of a spin
nematic phase or a phase separation under high-magnetic field
in the J;-J, model on the bcc lattice. Section VII is devoted to
the conclusion.

II. GENERAL ANALYSIS

In this section, we first analyze a tendency for the ferro-
magnetic phase boundary to shift, which commonly occurs
in quantum frustrated ferromagnets. Magnetism in frustrated
ferromagnets depends on the energy balance in exchange
couplings: strong ferromagnetic couplings stabilize a fully
polarized ferromagnetic phase and strong antiferromagnetic
couplings induce an antiferromagnetic ordered phase. In the
classical system, the transition between the ferromagnetic
phase and the antiferromagnetic phase is usually first order.
In a quantum case, quantum fluctuations can give a competing
regime room to induce new quantum phenomena.

Let us start with an analysis of quantum fluctuations at the
classical boundary between ferromagnetic and antiferromag-
netic phases in zero field. In most of quantum systems, the clas-
sical antiferromagnetic state |AF; CL) is not an eigenstate of
the Heisenberg Hamiltonian, H|AF;CL) = E¢L|AF;CL) +
|ar), where E¢p, denotes the ground-state energy of the classical
antiferromagnetic state and |«) satisfies (AF; CL|w) = 0 and
(a|a) > 0, albeit the fully polarized ferromagnetic state
[FM; CL) is one of the eigenstates having the same energy
Ecp at the classical boundary, H|FM; CL) = E¢r|FM; CL).
In this case, the variational principle guarantees that the true
quantum ground state at the classical FM/AF phase boundary
has an energy lower than that of the ferromagnetic state,
Ecr. Therefore the zero-field boundary of the ferromagnetic
phase in the quantum model shifts backward from the classical
boundary into the classical ferromagnetic phase region.

The magnetization process in applied field must be com-
patible with this boundary shift. In the classical case, the
antiferromagnetic phase in a magnetic field is given by
canted antiferromagnetic states and this phase terminates at
the saturation field H = H,;. Even in quantum cases, the
saturation field defined by one-magnon flips is the same as the
classical value H.; and the condensation of single magnons
below this saturation field leads to the canted antiferromagnetic
state. As in the classical case, this saturation field H.; must
vanish at the classical FM/AF phase boundary. In quantum
systems, however, the true zero-field ground state is not
the ferromagnetic state as discussed above and hence the
true saturation field, which remains finite at the classical
zero-field boundary, vanishes at the quantum boundary to the
ferromagnetic phase. This concludes that the true saturation
field is not given by the single-magnon instability, which
induces the canted antiferromagnetic ordered phase; the canted
antiferromagnetic phase described with the single-magnon
BEC?° below the saturation field is veiled in the vicinity of
the classical FM/AF phase boundary by emergence of a new
quantum phase or a phase separation, as shown in Fig. 1.
An appealing alternative to the single-magnon BEC in applied
field is a BEC of bound multiple magnons.5~

This argument can be applied to the phase boundary
between the ferromagnetic and collinear antiferromagnetic
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FIG. 1. Schematic behaviors of magnetization curves in frus-
trated ferromagnets near the ferromagnetic/antiferromagnetic phase
boundary. The magnetization M, is given by —(1/N S) Z,N:l (Sf) and
H_; denotes the saturation field in the classical limit. The solid lines
represent the antiferromagnetic spin-ordered phases and the dashed
lines represent nontrivial quantum phases. If quantum fluctuation is
taken into account, a nontrivial quantum phase or a phase separation
must appear near the saturation field.

phases in the square-lattice J;-J, model’! and also to the
boundary between the ferromagnetic and nontrivially de-
generate paramagnetic phases in the multiple-spin-exchange
model on the triangular lattice.’?* In both cases, the classical
antiferromagnetic states are not eigenstates of the quantum
Hamiltonian at the classical phase boundary, and indeed, the
appearance of spin nematic®” and spin triatic (octupolar)®
phases, originated from bound-multiple-magnon BEC, was
theoretically proposed in the vicinity of the classical phase
boundary. Naturally, this general analysis is applicable to J;-J,
models on different lattices, even in three dimensions, where
the quantum fluctuation is believed to be weak. For example,
the J;-J> models on the bcc, the fcc, and the cubic lattices
satisfy the condition of this theorem. Regarding the fcc J;-J,
model, a recent numerical study by the exact diagonalization
method found a phase separation in the magnetization process
in a parameter range near the classical ferromagnetic and
collinear antiferromagnetic phase boundary.*

III. CLASSICAL PHASES IN THE BCC LATTICE

As one of the simplest models to which the general analysis
given in the previous section can be applied, we hereafter study
the J;-J, model on the bec lattice shown in Fig. 2, to concretely
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FIG. 2. (Color online) Three-dimensional body-centered cubic
(bee) lattices. The filled circles denote spins connected by Heisenberg
exchange interactions. The bcc lattice is bipartite when J, = 0 and
can be divided into two sublattices, which are distinguished by the
size of spheres. The lattice constant g is assumed to be 1.

understand what kind of phases appears under high magnetic
fields. Before studying a quantum case, we briefly review the
ground-state properties in the classical case in this section.

In the absence of external field H, one can easily find the
classical ground state by minimizing the Fourier transform of
the exchange interactions:

1
€@ =) 5Jijcoslg:(r; — )]
J

=4J, cos 4= cos 9 cos 4=
2 2 2

+ J2(cos gx + cos gy +cosq;) , 2)

where the summation is taken over all sites connected to site
i by the exchange J;;. At zero field, the following three types
of phases appear in the ground state: (i) a ferromagnetic phase
with the wave vector (0,0,0) for J; /J, < —3/2and J; < 0, (ii)
a Néel antiferromagnetic (NAF) phase with the wave vector
Q2n,2n,27) for Jy/J» > 3/2 and J; > 0, (iii) a collinear
antiferromagnetic (CAF) phase with the wave vector (7,7,7)
on each sublattice for —3/2 < J;/J, <3/2 and J, > 0, as
shown in Fig. 3. The classical phase diagram is given in Fig. 4.
The energies of three phases are, respectively, given by

Erm

W = 4.]1 + 3.]2, (321)
ENav 4y 43 (3b)
NS2 - 1 25

Ecar

NS = =3/, (o)

where N is the number of lattice sites and S denotes the length
of the classical spins.

As the classical collinear antiferromagnetic ground state
is not an eigenstate of the quantum model, the argument
in Sec. II concludes that the magnetization process in the
collinear antiferromagnetic phase near the boundary to the
ferromagnetic phase at J;/J, = —3/2 must show a nontrivial
quantum behavior in the quantum model. On the other hand,
at the ferromagnetic/NAF phase boundary (J; =0, J, < 0),
the classical NAF state is an eigenstate even in the quantum
model and hence quantum fluctuations are not important.

PHYSICAL REVIEW B 87, 144417 (2013)

FIG. 3. (Color online) Spin configurations for the three phases
(“FM,” “NAF” and “CAF”) on the bcc lattice. (a) FM represents
the fully polarized ferromagnetic phase. (b) In NAF, the spins
on each sublattice align ferromagnetically while two spins on the
different sublattices are antiparallel. (c) CAF is composed by two
antiferromagnetically ordered sublattices, which, as a whole, align in
a collinear manner.

The classical ground state of the collinear antiferromagnetic
phase has a nontrivial continuous degeneracy. To see this
degeneracy, let us divide the bcc lattice into two sublattices,
as shown in Fig. 2. In the collinear antiferromagnetic phase,
the spins form the antiferromagnetic structure with the wave
vector (,7,7) on each sublattice. The ground-state manifold
of this phase has extra continuous degeneracy—the angle
of spins between two sublattices can vary without changing
the energy. If quantum fluctuation is taken into account,
the spins align in a collinear manner because of “order by
disorder” mechanism.’>3 When the external field is applied
in the collinear antiferromagnetic phase, the spins gradually
point upward from the plane perpendicular to the external
field. There still remains this extra degeneracy in the spin
components perpendicular to the field even in the magne-
tization process of the classical model. In a quantum case,
the linear-spin-wave theory will predict the canted coplanar
antiferromagnetic spin state.

The magnetization curve can be obtained within the mean
field approximation, by replacing the spin vector operators
S; /S with a unit vectoru; = (uj‘,uiy,uf). Under the assumption
of two sublattice structure, the ground-state energy of the

Jildy =-3/2 3/2

> J1
NAF

FIG. 4. Phase diagram of the classical J;-J, model on the bcc
lattice. J2 + J7 = 1 on the circle. The spin configurations in each
phase are given in Fig. 3.
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FIG. 5. (Color online) Magnetization curves in the classical J;-J,
model on the bec lattice with ferromagnetic J; < 0 and antiferromag-
netic J, > 0. Magnetization M; is given by —(1/SN) ZIN(SIZ). The
saturation field H,, is given in Eq. (4).

canted antiferromagnetic phase is given by

mean
E 2

s = S + 6.1 (u3) + (uy)* = 1]

H .
+ (ufy + uf).
Numerically minimizing the energy with respect to u% and
u%, we obtain the magnetization process shown in Fig. 5. With
increasing external magnetic field, the magnetization increases
uniformly and saturates at the classical saturation field H,,

He = 25[€(0) — €minl, “

where €ni, denotes the minimum value of dispersion €(q).

IV. VARIOUS POSSIBLE PHASES FROM THE
SINGLE-MAGNON BEC

Since the classical ground state of the bcc Jj-J, model
has a large degree of degeneracy in the parameter range
=3/2 < Ji1/J» < 3/2,itis expected that quantum fluctuations
would single out a certain phase due to the mechanism of
“order by disorder.” Slightly below the saturation field, the
method of a dilute Bose gas® enables us to predict nonbiased
results of the nature of single-magnon BEC in a fully quantum
manner. In this section, we discuss the various possible phases
emerging from the single-magnon condensation (BEC) near
the saturation in the § = 1/2 bce J;-J, model in the range
=3/2 < J1/J» < 3/2.

In the hardcore boson language, the spin operators at site /
are written as’’

S =—1/2+ada, S =a, S =a Q)

near saturation, where @; denotes the annihilation operator of
a boson (magnon). The vacuum |2) of bosons, i.e., ¢;|Q2) =
0, corresponds to the saturated ferromagnetic state |Q2) =
®;l{);. In terms of these boson operators, the Hamiltonian
reads

+ 1
H= Z[w(q) — pnlagaq + N Z anquaL_qakakr, (6)
q

q.kK
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where
w=Hq—H, Vyq=2e(@+Ul
@)

The interaction U is the on-site hard-core potential, which is
set to infinity U — oo afterward. For —3/2 < J;/J, < 3/2,
the magnon dispersion €(q) takes its minimum €p,;, = —3J;
at two wave vectors £Q, where Q = (7r,7,7).

When the external field is lower than the saturation field
(H < H_ orequivalently > 0), BEC of magnons can occur
in two momenta:

w(‘l) = E(q) — €min »

{aq) = \/Npq exp(itq), (8)
(a_q) = /Np_qexp(if_q). ©)]

The induced spin-ordered phase is characterized by the wave
vectors Q and/or —Q.

The effective energy per site E/N of the dilute Bose gas is
determined by the interaction between the bosons condensed
at q = Q. In the dilute limit, the energy density E/N is
expanded with the density p+q up to quadratic terms in the
form

E Ty,, B
5= T(pQ + p2g) + [T2 + T3 cos 2(0g — 0-q)lper—q
— u(pqQ + p-q)- (10)
Here, we introduced the renormalized interaction I'; between
bosons with the same mode, I, between bosons with the
different modes, and I'; obtained from an umklapp scattering.

More explicitly, the renormalized interactions I', (u =
1,2,3) are exactly obtained by the scattering amplitude M
of two magnons. In the case of two magnons on the saturated
ferromagnetic state, M is exactly given by the ladder diagram
(shown in Fig. 6) in the form

M(AK;p,p)
=W+ Vopp
1 [&p  MAKpp ) Vyp + Vopp)
2] @ wK/2+p)+w(K/2—p")+ A —i0+’
(1D

where A is the total energy and K is the center-of-mass
momentum of two magnons. Using the scattering amplitude,
'), are given as

Iy = M(0,2Q;0,0)/2,
I's = M(0,2Q;0,q1)/2,

I, = M(0,0;Q,Q),
(12)

where q; = (0,0,27). We note that our expression is different
from the previous ones*®**3 but can be easily recast into them.
The scattering amplitude of this form is appropriate to study

K/2+p

Ki2+p' Ki2+p Ki2+p K/2+p

M(A K gz &+ |M(AKip )| b

K/2-p K2-p° KI2-p K2-p” K2-p

FIG. 6. Scattering amplitude M given by the ladder diagram.
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the bound state in terms of the Bethe-Salpeter equation;40 a

divergence of the M implies a stable bound state respecting
the permutation symmetry of bosons. We will review how to
solve Eq. (11) and how to obtain the properties of bound state
in Appendix B.

Before calculating these values concretely, let us discuss
the possible emergent phases depending on the values of I';.
The densities p+q of condensed bosons in the ground state are
obtained by minimizing the energy E/N. The phases 6.q are
pinned as g — 6_q = (m + 3)7 and mr with an integer m,
respectively, in the case that I'3 is positive and negative.

A. Canted coplanar antiferromagnetic phase

When the renormalized interactions satisfy the condition
I'y > I, —|I'3] > —TI';, the two modes condense simulta-
neously with the same density given by pg = p_q = p =
u/(1 + ', — |I'3]) in the ground state and hence

(a)) = \/ﬁ[ei(QRﬁ-@Q) —i—ei(_Q'R’J’_e’Q)]. (13)

In this case, the spin expectation values are given as

o L 6o — 6
<Sf> =73 + 4p cos® (Q'Rz + %)
B — 6 s
(Sli) = 2,/p cos <Q.Rl + %)e:ﬁo’

where we set 0 = (0 + 6_g)/2.Inthe case I'; > 0, the phases
Oq and 0_¢ are pinned as O — 6_q = (m + %)n. Setting m =
0, we thus obtain

(S7) = _% +2p, (S;) =2./pcos (Q'Rl + %)e:!:ie’
(15)

where the factor 2cos(Q-R;+ 7) =1 or —1 on the becc
lattice. The spin xy components have an antiferromagnetic
order which has the same sublattice structure as the classical
collinear antiferromagnetic state shown in Fig. 3(c).

B. Spin-supersolid phase

WhenI'y > I', — [I'3] > —I'; and I'; < 0, the two modes
condense simultaneously and the spin expectation values
satisfy Eq. (14). In contrast to the canted antiferromagnetic
phase, the negative I'; leads to g — 6_qg = mm. In the case
m = 0, the emergent phase has the following spin expectation
values:

(Si)==3. (=0 (16)
on A sublattice, defined in Fig. 2, and
(Sf)=—1+4p, (5)=2ypcos(QRPe™® (17)

on B sublattice. Here, A sublattice includes the site at R = 0.
For an odd integer m, A and B sublattices interchange. In
this phase, the density of boson ((S;)) oscillates, breaking the
translational symmetry spontaneously. Together with the spin
density wave, the spin xy component on B sublattice also has
an antiferromagnetic Néel order. Hence, this condensed phase
can be considered as a spin-supersolid phase.

PHYSICAL REVIEW B 87, 144417 (2013)

C. Chirality-breaking spiral phase

When I', — T3] > T’} > 0, a density difference between
two modes appears and the doubly-degenerate ground states
are given by pg = p’ = u/T'; and p_qg = 0, and vice versa.
When the magnons with the wave vector Q are condensed as

(ar) = /o' expli(QR; + bo)]. (18)
the spin expectation values are explicitly described as
(Si)= =3+ (S) =P cos(QR: +bq),
(87) = —V/p’ sin(Q-R; + ).

For the condensation with the wave vectors +Q, spin xy com-
ponents form a spiral structure as (Sly) /(S;) = Ftan(Q-R; +
0+q), in the direction of (1,41,%1), where the pitch angle of
spiral is /2. This phase spontaneously breaks the chiral
symmetry, so that a multiferroic behavior is expected to
occur. =43

19)

D. Phase separation

When one of the effective interactions is negative, I'j <
OorI'y + ', — T3] < 0, the low-energy bosons at q = +Q
attract each other, which makes magnon condensed states in
the low-density limit unstable. It is natural to expect a first-
order transition, or equivalently, phase separation between the
fully polarized state and a low-magnetization state.

When TI'y 4+ I', — |I'3] is negative, the form of energy
density E/N [see Eq. (10)] indicates that BEC of two modes
with an equal high density always has a lower energy than
other low-density states. In this case, if I's > 0 (I'; < 0), we
expect the occurrence of a phase separation between the fully
polarized state and a canted coplanar antiferromagnetic state
(spin-supersolid state) with a low magnetization, which is
accompanied with a magnetization jump below the saturation
field in the magnetization curve.

When I'; is negative and satisfies I'j < I'y — |I'3], the
energy density E/N [see Eq. (10)] indicates that BEC of a
single mode with a certain high density always has a lower
energy than other low-density states. In this case, we hence
expect the appearance of a phase separation between the fully
polarized state and a spiral state with a low magnetization,
accompanied by a magnetization jump.

So far, our argument based on Eq. (10) is restricted to
the magnon BEC that occurs in the single-particle channel.
However, the strong attraction can also induce formation
of magnon bound states, which lead to the BEC of bound
multimagnons. This possibility is examined in Sec. VI.

E. Degenerate case

When the renormalized interactions satisfy a special con-
dition, I'y = T, — |I'3] > 0, the ground state has an infinite
degeneracy, given by p = /"1, pg = p cos? 0y, and p—Q =
p sin? ; for arbitrary 6.

1. Caseof T3>0

In the case I'; > 0, the phases are pinned as 8g — 6_q =
/4. The spin expectation values in the degenerate ground
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states are given as

(57) = =5+ . (S1) = VBosQR+ b 60

y ) (20)
(S7) = —/psin(QR; + 6 — 6,),
for A sublattice and
(Sf)=—%+p. (S})=/Pcos(QR; + g + 6a). o

(S)) = —/p sin(Q-R; + g + 64).

for B sublattice. Hence 6, controls the relative angle in the
x-y plane between spins on A and B sublattices. In the
classical limit of S — oo, this infinite degeneracy is realized
as discussed in Appendix A.

2. CaseofT'3 <0
In the case I'; < 0, we have 6 — 6_q¢ = 0 and obtain

1
(SIZ) =3 + p[1 + sin 26, cos(2Q-R))],
(57) = v/2p cos <9d _ %) cos(QR, +6g),  (22)

(87) = v2psin (9 — %) sin(Q-R; + 6g).

Now, the spin-supersolid phase appears and the modulation of
the density ((S;)) depends on 6.

V. PHASE DIAGRAM OF THE SINGLE-MAGNON BEC

In this section, we determine the magnetic structures in the
high-magnetic-field regime of the S = 1/2 J;-J, model on the
bec lattice, in the parameter range —3/2 < J;/J, < 3/2 with
J> > 0. We only consider spin structures induced by single-
magnon BEC:s in this section. A possible bound magnon BEC
is also considered in Sec. VL.

Using the method described in Appendix B, we numerically
calculate the interactions I'; (u = 1,2,3). The results are
shown in Figs. 7, 8, and 9. From the energy comparison
described in the preceding section, we find that the following
three phases appear slightly below the saturation field:

(i) Canted coplanar antiferromagnetic phase: in the pa-
rameter range —0.48 < Jy/J> < 3/2, a canted coplanar

3000
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-40
15  -1.44 -1.39 -139-1 -05 0 05 1 15

/T, Ji/T,

FIG. 7. (Color online) Interaction I'; plotted as a function of
Ji/J, for J, > 0. T diverges at J,/J, = —1.389.

PHYSICAL REVIEW B 87, 144417 (2013)

0 60 T T T T T
I's

-500 50 -
-1000 40 -
-1500 30 -
-2000 20 -
-2500 10 | -
-3000 ! ! ! I

0
-15 -144 -139-139-1 -05 0 05 1 1.5
JilTs JilJ

FIG. 8. (Color online) Interaction I'; plotted as a function of
J1/Jp for J, > 0. T'; diverges at J;/J, = —1.389.

antiferromagnetic phase appears since the interactions satisfy
Fl > Fg — |F3| > —Fl and F3 > 0.

(i) Phase separation: in the range —1.389 < J;/J, <
—0.48, we obtain I'j <0 and hence a phase separation
is expected below the saturation field. The resulting phase
below the magnetization jump is plausibly the canted coplanar
antiferromagnetic phase since the interactions satisfy I'j —
(I', — |T'3]) > O in this parameter range. We do not exclude
the possibility of other nontrivial phases such as the spin
nematic phase appearing through a first-order transition. At
Ji/J» = —1.389, both T'; and I'; diverge, which implies the
appearance of bound states.

(iii) Spin supersolid phase: for —3/2 < J;/J, < —1.389,
we have I'y > I', — |I'3] > —I'; and I's < 0, which suggests
the appearance of a spin supersolid phase. However, in this
parameter range, we find that a two-magnon bound state
already has negative energy at the saturation field given by the
one-magnon flip. Condensation of stable two-magnon bound
states leads to a spin nematic phase. In the next section,
we take account of the possibility of this bound-two-magnon
BEC. It should be also noted that the negativeness of I'; also
requires caution. A stable two-magnon bound state results in
the appearance of a pole in the two-magnon propagator, which
changes the sign of interaction I'; when the energy level crosses
the pole. Hence the value of I'; is strongly influenced by the
presence of the pole in this parameter range.

23.04 ——1——1—1 0.7 .
23.02| Iy A o6l [y-(Tr| ) ===+ |
28T R . ]
22.98 4 05 ;
22.96 |- 4 04} i
22.94 1 osl |
22921 i
; 02+ i
229 - i
22.88 | 4 01F i
22.86 — 11 0 L et
-1.5  -1.44 -1.39 -139-1 05 0 05 1 15
T I

FIG. 9. (Color online) Effective interactions I'; 4+ I'; — |I'3]| and
I't — (I', — |I'3]) plotted as a function of J,/J, for J, > 0.
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VI. BOUND-MAGNON BEC

In sufficiently high fields, the magnon dispersion has a
gap on the fully polarized state. When two-magnon bound
states have lower energy than single magnons, the energy
gap of two-magnon bound states closes earlier than that of
single magnons, with decreasing magnetic field. Below the
saturation field, bound magnon pairs condense, forming a
spin nematic state.® The bound-magnon-condensed phases
have different properties from the single-magnon BEC. The
striking one is the absence of the transverse local magne-
tization, and instead the existence of the long-range order
in the quadratic channels (S;"S;) # 0 for a certain bond
(i,7), which corresponds to the spin nematic order.!:® The
existence of stable two-magnon-bound states gives rise to
divergence of the scattering amplitude of two magnons. In
this section, we mainly focus on the analysis of obtained
results. The detailed method for the calculations is given in
Appendix B.

To see the possibility of a bound magnon BEC, we study
the binding energy of two-magnon bound states. We find
that the minimum point of the energy dispersion —A g(K) of
bound magnon pairs always exists at K = Ko = (27,27,27).
From Eq. (B17), the binding energy Ap = Ap(Kp) is given
by solving

-1, (23)

1 / d3_p cos? Zx cos? 2 cos? &
73 w(Ko/2 +p) + w(Ko/2 —p) — Ap

where

o(Ko/2 +p) + w(Ko/2 — p)
8J1 + 2J>(3 + cos py + cos p, + cos p;)
(for Ji/J> < =3/2),
6J, — 2J5(cos p, + cos p, + cos p;)
(for Ji/J>» = =3/2).

(24)

The total bound-magnon energy is givenby Eg = —2u — Ag.

The obtained binding energy Ap and the critical external
field H, are, respectively, shown in Figs. 10 and 11. In the
range —3/2 < J;/J, < —1.389, the gap of the bound-magnon
pairs above the saturation closes earlier than that of the
single magnons with lowering the magnetic field. Hence a
spin-nematic phase appears below the saturation field, which
has a lower energy than the spin supersolid phase discussed in
Sec. V. Even in the range —1.50097 < J;/J, < —3/2, the

A2
0.010¢

0.008
0.006
0.004f

0.002f

: ‘ : : » J1/)2
-1.50 -1.48 -1.46 -1.44 -1.42 -1.40 -1.38

FIG. 10. (Color online) Binding energy Ap of magnon pairs
with the center-of-mass momentum Kq = (277,27,27). In the case
of positive A, the bound-magnon BEC is expected.
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0.010 4
/. nematic
(or 1st-order)

0.005 Al

/
/
4
h

. “ : : Jil2
1.504 1.502 1.500 1.498 1.496

FIG. 11. (Color online) Schematic phase diagram near the critical
external field H,.. For H > H_, the spins form the saturated ferromag-
netic state. The straight line (blue) denotes the critical field where the
gap of bound magnon pairs closes. The short dashed line and the
bold one (red) denotes the field where the single-magnon gap closes.
In particular, at the bold line, the phase separation occurs below the
saturation field. For —1.50097 < J,/J, < —1.389, the gap of the
bound magnon closes earlier than that of the single magnon, and
the spin nematic phase is expected to appear. “First order” corre-
sponds to the phase separation (magnetization jump). The vertical
dashed line is a schematic phase boundary between the bound magnon
BEC and the single magnon BEC.

ground state is not the classically expected ferromagnetic
phase in the absence of external field, since the reference
ferromagnetic state is destabilized by the fluctuation of the
bound-magnon pairs. The FM/nematic phase transition in
zero field may be first order due to a substantial differ-
ence in magnetization, similar to the case of the square
lattice.®

Here, we analyze the properties of the bound magnon
condensed phase. The wave function of the bound-magnon
pair is given by

> xko(P)Sy S, [FM) (25)
P
with
sin & sin %‘ sin &
XKy (P) (26)

o) + oKy —p)— Ap’

where |[FM) = ®;||); and we have omitted the normalization
constant. Note that we have translated the momentum p of
XKk, (P) by K¢ /2 in comparison with the definition in Appendix
B2 to see the symmetry of the bound state clearly. The
symmetry of this wave function y (p) corresponds to the space
symmetry of spin nematic order.® Hence the nematic order
parameter, which is dominant on the nearest-neighbor bonds,
has the f,,.-wave symmetry and oscillates with the wave
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vector K in the form

(S?S;tt(ex+e,.+ez)/2> = _<S;'_Sitl:(ex+ey—e:)/2) = <SI+ Si-‘:_t(ex—ey—ez)/Z)

= —(SfSiLex_eyﬂj) 1) = £/p2exp(i20),
(27)

where p, denotes the density of condensed two-magnon bound
states and 6 denotes the rotation angle of directors about z axis.

Finally, let us discuss the possibility of magnetization jump
below the saturation field, which we do not exclude from the
present analysis. Even if the magnetization jumps, we still
expect the appearance of the spin nematic phase below the
magnetization jump. It should be noted that the spin nematic
phase may seriously compete with a single magnon BEC phase
below the jump since the binding energy is extremely small. To
investigate the full magnetization curve, we also performed an
exact diagonalization analysis of finite size systems up to N =
36 spins. We found a signature of magnetization jump below
the saturation and the appearance of spin nematic phase below
the jump. This tendency toward the spin nematic ordering
continues down to zero magnetization, but it is difficult to
conclude the nature in the thermodynamic limit because of the
large size dependence in contrast to the small binding energy.
This issue is beyond the scope of the present paper.

VII. CONCLUSION

To summarize, we have discussed effects of quantum
fluctuations in quantum frustrated ferromagnets under high
magnetic field. In general, in the vicinity of the classical bound-
ary between ferromagnetic and antiferromagnetic phases, a
nonclassical phase or phase separation must appear, at least
in the high-magnetic-field regime near the saturation field, if
the classical antiferromagnetic state is not an eigenstate of the
quantum Hamiltonian. We stress that the phase separation can
occur even in the isotropic Heisenberg model and it is purely
a quantum phenomenon.

As a concrete model satisfying the above condition, we
study the S =1/2 J;-J, model on the bce lattice, using
a dilute-Bose-gas approach. The result is summarized in
Table I. We found that for —1.389 < J;/J, < —0.48, the
low-density single magnon condensed phase is not stable near
the saturation field and the phase separation occurs between a
low-magnetization phase and the fully polarized ferromagnetic
phase, accompanied with a magnetization jump. We also found
that for —1.50097 < J;/J, < —1.389 the bound magnon pairs
are stabilized, leading to a spin nematic phase. When the
density of magnons is higher than a certain amount, i.e., the
magnetization is low, the competition between the spin nematic

TABLE I. Phases appearing from single-magnon and bound-two-
magnon instabilities at the saturation field in the S = 1/2 bee J;-
J, model with J, > 0. For —1.50097 < J;/J, < —1.389, the two-
magnon bound state is stabilized, inducing a spin nematic phase.

Ji/ )2 Single magnon Bound magnon

—1.50097 ~ —1.389
—1.389 ~ —0.48
—048~15

. Spin nematic
Phase separation/canted AF
Canted AF
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phase and the single magnon BEC phase might be crucial, since
the binding energy is extremely small. It is beyond the scope
of our paper to determine which phase actually appears near
zero field.

Finally, let us comment on the possibility of the Efimov
effect. Recently, Nishida, Kato and Batista discussed that
the Efimov effect can be realized in quantum magnets when
the s-wave scattering length of magnons diverges.*’ As shown
in Fig. 7, the s-wave scattering length I'; diverges at J,/J, =
—1.389. Naively, in the Ji-J, model on the bce lattice the
Efimov effect is also expected in the fully polarized phase.
However, in our case, the stable bound state has an f-wave
symmetry, instead of the s-wave symmetry, which implies the
scattering is not simple. Hence the application of the Efimov’s
argument to our model may not be straightforward. This point
is also a remaining issue.
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APPENDIX A: LARGE S EXPANSION

In this appendix, we study an emergent phase near the
saturation field for the large S limit (classical limit). To

explicitly control S, we introduce the spin-wave Hamiltonian

using the Dyson-Maleev transformation:*++3

.
St = \/ZSa;L( ~ %) ST =25a, S =-S+ala.
(AD)

The Hamiltonian is given by

H = Z[ws(Q) - M‘x‘]alak
k

1
oo Y Vg kikoal @ ganae. (A2)

2N S
where
ws(q) = 2S[e(q) — €minl, (A3)
Vi(q: Ky ko) = 2e(q) — e(ky) — e(ky), (A4)

us = H.y — H, and H,; is given in Eq. (4). In first order in
S, the renormalized interactions I',, in Eq. (10) are given by
' =V(0;Q,Q) =8J; + 12J;, (ASa)
I =V(0;-Q,Q) + V(2Q; —Q.Q) = 24J,, (A5b)
' =V(2Q;Q,Q) = —8J; + 12J,. (A5c)

These interactions satisfy the conditions I'y = I', — |I'3]| and
I'; > 0 for the range —% < Ji/|a| £ % and J, > 0. Hence,
for the large S limit, the phase with infinite degeneracy
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described by Eq. (20) appears. The next-order correction in
1/S may remove this degeneracy.

The density of the condensed bosons near the saturation
field is given by

M A
ST H, '

P
= A6
S (A6)
The slop of the magnetization curve from the saturation field

can be understood from M, = —(Sf)/S =1 — p/S and given
by

dM, 1

) A7
dH H, (A7)
which is directly connected to M, = 0 at H = 0, as shown in
Fig. 5.

|

M(AK;p,p)=V(P —p)+V(-p —p) -

"

where the integral is taken for the region p{ , .
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APPENDIX B: FORMULATION TO TREAT
A BOUND STATE

In this appendix, we give a technical review for the
calculation of the scattering amplitude M(A,K;p,p’) of
two magnons. This amplitude M contains information about
ground-state properties of the single magnon BEC and also
information of two-magnon bound states; a stable bound state
is implied from a divergence of M, whose residue represents
the wave function of the bound state.*’

1. How to obtain M

First, let us briefly review how to obtain the scattering
amplitude M .3%3%3% The bosonic Hamiltonian is given by
Eq. (6). For J,/J; < —3/2, €min = €(Q1) = 4J; + 3J, with
Q; =(0,0,0) and, for J;/J> =2 —3/2, €min = €(Q2) = =32
with Q, = (m,7,m). The scattering amplitude is given by

1 [ &p" M(AK;p.p) [V —p")+ V(=p —p")]

2 ) 4n)P wE/2+p")+wE/2—p')+ A —i0F

€ (0,4s). This region laps the first Brillouin zone four times and the redundancy

, B

is accounted by 1/(47)>. In the following discussion, we abbreviate the arguments A and K in M and denote % Zp, as ().

Taking the summation over p’ in Eq. (B1), we obtain

1 d3pu

M(p.p") B2)

(M) =4U|:1 -

2] Gny oK/2+p) + o(K/2—p') + A —i0F }

where we have used (¢(p’)) = 0 and we have abbreviated p dependence of (M). Hence, taking the limit U — oo, we obtain

1 d3pn

M(p.p")

= 0. (B3)

2] @ny oK2+p)+oEK/2—p')+ A —i0F

Using this relation, we rewrite Eq. (B1) as

d*p”  M@p.ple@ —p")+e(=p —pI
M(p,p) = (M) + 2¢(p’ — p) + 2e(—p' — p) — et B4
(p.p) = (M) (P —p)+2(=p —p) /(47‘()3w(K/2+p”)+w(K/2—p”)+A—10+ (B4)
Now, the problem is reduced to solving Egs. (B3) and (B4) simultaneously, which are free from the infinitely large U.
Next, we expand M (p,p’) in the lattice harmonics. Since
. R N T e S ey
€@ —p)+e(—p —p) = 2J; ( cos Z TPy AP (PR Pt D e (TR
2 2 2 2
cptpe P DiEPL —pi+ Py + .
foos X TPy NP (P TPy TP TP Py P (T T YT P
2 2 2
+2J5(cos py cos p), + cos py cos pl, + cos p; cos p)), (B3)
we introduce
/ + / + / / + /, _ / .; _ / + ’
Mp.p) = (M) + Aycos i DTl g o PPy T Pe +A3COS%
_ ! + / + ’
+ A4 cos TP BT P + Ascos pl. + Ag cos p;. + A;cos pl, (B6)
where (M) and A; are functions of A, K, and p. We also introduce
T(p) = (1, cos Pxt Pyt pz, cos Pt Py~ pz, 0s Px =Pyt pz, 0s “Pet Pyt pz,cospx,cospy,cospZ . (BT
2 2 2 2
Using this expression, Eq. (B4) reduces to
8
dsp” 2J i 7—;(I)//) /! /
3 [Ai_l + - e ——M(p.p") — 41, Ti(p) |T:(p) =0, (BS)
@Ury oK/2+p") +woXK/2—-p")+ A

i=2
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where ;345 = 1 and eg 7.3 = 2. To satisfy Eq. (B8) for arbitrary p’, the coefficients of the trigonometric functions of p’ must be

0. For convenience, we define

3 " 17"
r = d’p T;(p")T;(p") ' (B9)
47y w(K/24+p") + o(K/2 —p") + A
Then, Egs. (B3) and (B4) are put together into
/2 T12/2 T13/2 T14/2 T15/2 T16/2 T17/2 T18/2 (M) 1
201t 14+2Jit2 2J113 2J114 2J1125 2J1126 2J1ty7 2J1128 Ay 4T>(p)
2031 20112 14201133 2JiT3 2J1135 2J 136 2J1137 2J1138 Az 4T5(p)
2.]1 T41 2.]1 T42 2.]1 T43 1+ 2.]1 T44 2]1 T45 2.]1 T46 2.]1 T47 2.]1 T48 A3 _ 4T4(p)
20it51 2Jits2 2J1153 20itss 14201155 2J17156 2J1t57 2J; 158 Ay | T | 4T5(p)
2ht61 2Dt 205763 205764 20165 1+2Dhts 200767 25768 As 4Ts(p)
2.]21'7] 2.]21’72 2.]21’73 2]21'74 2]21’75 2]21'76 1+ 2.]21'77 2.]21’78 A6 4T7(p)
20131 202182 25783 2J>784 2J>785 2J>786 2Dty 1+ 2Jp7s8 A7 4Ts(p)
(B10)

In the case K =K, = (27,27,27), we can simplify the above calculation. Since w(Ky/2 + p”) + o(Ky/2 — p’) =

1
Z

—2Jx(cos py + cos p + cos p!) — 2u, at p = 0, we use

!/

M@p=0,p) = (M) +4A, cos % cos Py cos % + As(cos p. + cos p_'v +cos pl). (B11)
Then, we obtain
3p" LT)(p") , o
[Al + | L _z 2P —M@O,p )—4J1]T2(p)
(4r)’ w(Ko/2 +p") + o(Ko/2 —p") + A
d3p// %Té(p//) :|
+ A + M©,p") — 4, |T;(p") =0, BI2
[ 2F ] Gy oKo2 10+ oKo2—p 1 AT OP) AR [TE) B2
where
T (p) = (1, 4 cos % cos % cos %, oS py + cos py + cos pz). (B13)

Eventually, M is understood by solving

(M) 1
Ll A | =144 (B14)
A, 4,
with
T1,/2 T(,/2 T13/2
L=\ Ji5,/2 1+4t)p/2  Jity)2 ., (B15)
20T} /3 20th/3  1+201th/3
&p" T,(0")T/(p")
T = L PP . (B16)
/ (@r) w(Ko/2+p") +o(Ko/2 —p")+ A

Due to the symmetry, we obtain |, = 7}, = 75, = 75, = 0.
Hence the divergence of M (or A;) appears when L, vanishes,
i.e., Ly = 0. As a result, the binding energy of two magnons
is given by solving Ly, = 1+ Ji15,/2 =0, i.e.,

3 2 Px o052 Py cog? L
1/dp COs” 5 cos™ 5 cos” 5

<p —1. (BI7)
7 w(Ko/2 +p) +o(Kp/2 —p)— A

We note that a bound state could be also stable if

dec [ Z EB) Zo
L3; L3

(B18)

However, we numerically confirmed that Eq. (B18) is never
satisfied for any J;/J,. Thus Eq. (B17) is the only condition
for the existence of two-magnon bound states.

2. Wave function of bound state

Next, let us discuss the wave function of the bound
magnon state. Since there is a detailed-review paper*’ of the
formulation to treat a bound state from the Bethe-Salpeter
equation, we only concentrate on the technical point related to
bound magnons on the fully saturated ferromagnetic phase.

The free two-body Green’s function in the ferromagnetic
state of the energy E and the center-of-mass momentum K is
written as

. N s(p—p)+d8(p+p)
iGP(EK;p.p) = iGS(E.K;p)

2 b
(B19)
where
2
iGY(E.K:p) = ’ —.
E—[o(K+p)+oX-—p)—2u]+i0
(B20)
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Ki2+p  Ki2+p' Ki2tp _ K/2+p’
@ EK: -
G (EK:pp)= + M
K2-p K2-p© K2-p K/2-p

FIG. 12. Two-magnon Green’s function on the fully polarized
ferromagnetic state.

In the interacting case, the two-body Green’s function shown
in Fig. 12 reads

iG(z)(E,K; p.p)
= iGY(EK;p,p) + LiGP(EK; p,p")
x [IM(A = —E — 2. K;p" )i Gy (E K p'p)

PHYSICAL REVIEW B 87, 144417 (2013)

where the summation over the repeated momentum is implied.
In what follows, we may abbreviate the arguments in M, G?,
and GE)Z) for convenience. The divergence of M(A = Apg,K)
leads to a divergence of the Green’s function that implies
the existence of a stable two-magnon bound state with the
dispersion Ap(K). The wave function yx(p) of the bound

state is understood from the residue:*°

1 Nt
~GPMGY _ xx(@)xx'(p) ,

(B21)
4 A—Ap A—Ap

where we assumed the limit A — Apg. Considering the wave
function xg(p) of the bound state at K = Ky = 27,27,27),
we obtain

1
, A—A 1 , , _
1, @)K, (@ =0) = = =2GIMGP| = 1GT®) | TEA — Ap)L™] 441 | $ GO, (B2
A—Ap A—Ap 4]2

where we have used Eq. (B14). Since the divergence of M (L") occurs due to Ly = O(A — Ag) — 0 and Ly; = Lj» = 0 for

i =1,3,(A — Ag)L~"is given by

(A= Ap) L asn, =

0 0 0
0 ¢ O], (B23)
0 0 0

where ¢; is a numerical constant, and the matrix elements of (1,1), (1,3), (3,1), (3,3) vanish in the limit (A — Ag) — 0. Hence

the wave function is given by

XKk, (P) o G§ (240 — A p(Ko),Ko; p) cos % COS — COS —.

Py Pz
B24
> > (B24)
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