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We present a theory of the spin Hall magnetoresistance (SMR) in multilayers made from an insulating
ferromagnet F, such as yttrium iron garnet (YIG), and a normal metal N with spin-orbit interactions, such as
platinum (Pt). The SMR is induced by the simultaneous action of spin Hall and inverse spin Hall effects and
therefore a nonequilibrium proximity phenomenon. We compute the SMR in F|N and F|N|F layered systems,
treating N by spin-diffusion theory with quantum mechanical boundary conditions at the interfaces in terms of
the spin-mixing conductance. Our results explain the experimentally observed spin Hall magnetoresistance in
N|F bilayers. For F|N|F spin valves we predict an enhanced SMR amplitude when magnetizations are collinear.
The SMR and the spin-transfer torques in these trilayers can be controlled by the magnetic configuration.
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I. INTRODUCTION

Spin currents are a central theme in spintronics since they
are intimately associated with the manipulation and transport
of spins in small structures and devices.1,2 Spin currents
can be generated by means of the spin Hall effect (SHE)
and detected by the inverse spin Hall effect (ISHE).3 Of
special interest are multilayers made of normal metals (N)
and ferromagnets (F). When an electric current flows through
N, an SHE spin current flows towards the interfaces, where
it can be absorbed as a spin-transfer torque (STT) on the
ferromagnet. This STT affects the magnetization damping4

or even switches the magnetization.5,6 The ISHE can be
used to detect spin currents pumped by the magnetization
dynamics excited by microwaves7–10 or temperature gradients
(spin Seebeck effect).11,12

Recently, magnetic insulators have attracted the attention
of the spintronics community. Yttrium iron garnets (YIG), a
class of ferrimagnetic insulators with a large band gap, are
interesting because of their very low magnetization damping.
Their magnetization can be activated thermally to generate the
spin Seebeck effect in YIG|Pt bilayers.13,14 By means of the
SHE, spin waves can be electrically excited in YIG via a Pt
contact, and, via the ISHE, subsequently detected electrically
in another Pt contact.15 Spin transport at an N|F interface
is governed by the complex spin-mixing conductance G↑↓.16

The prediction of a large real part of G↑↓ for interfaces of YIG
with simple metals by first-principles calculations17 has been
confirmed by experiments.18

Magnetoresistance (MR) is the property of a material
to change the value of its electrical resistance under an
external magnetic field. In normal metals its origin is the
Lorentz force.19 The dependence of the resistance on the angle
between current and magnetization in metallic ferromagnets is
called anisotropic magnetoresistance (AMR). The transverse
component of the AMR is also called the planar Hall effect

(PHE), i.e., the transverse (Hall) voltage found in ferromagnets
when the magnetization is rotated in the plane of the film.20,21

Both effects are symmetric with respect to magnetization
reversal, which distinguishes them from the anomalous Hall
effect (AHE) for magnetizations normal to the film, which
changes sign under magnetization reversal.22 The physical
origin of AMR, PHE, and AHE is the spin-orbit interaction, in
contrast to the giant magnetoresistance (GMR), which reflects
the change in resistance that accompanies the magnetic-field-
induced magnetic configuration in magnetic multilayers.23

Here we propose a theory for a recently discovered
magnetoresistance effect in Pt|YIG bilayer systems.14,24–26

This MR is remarkable since YIG is a very good electric
insulator such that a charge current can only flow in Pt. We
explain this unusual magnetoresistance not in terms of an
equilibrium static magnetic proximity polarization in Pt,24 but
rather in terms of a nonequilibrium proximity effect caused by
the simultaneous action of the SHE and ISHE and therefore
call it spin Hall magnetoresistance (SMR). This effect scales
like the square of the spin Hall angle and is modulated by
the magnetization direction in YIG via the spin transfer at the
N|F interface. Our explanation is similar to the Hanle-effect-
induced magnetoresistance in the two-dimensional electron
gas proposed by Dyakonov.27 Here we present the details of
our theory, which is based on the spin-diffusion approximation
in the N layer in the presence of spin-orbit interactions28 and
quantum mechanical boundary conditions at the interface in
terms of the spin-mixing conductance.16,17 We also address
F|N|F spin valves with electric currents applied parallel to
the interface(s) with the additional degree of freedom of the
relative angle between the two magnetization directions.

This paper is organized as follows. We present the model,
i.e., spin diffusion with proper boundary conditions, in
Sec. II. In Sec. III, we consider an N|F bilayer as shown in
Fig. 1(a). We obtain spin accumulation, spin currents, and
finally the measured charge currents that are compared with
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FIG. 1. (Color online) (a) N|F bilayer and (b) F|N|F trilayer
systems considered here, where F is a ferromagnetic insulator and
N a normal metal.

the experimental SMR. We also find and discuss that the
imaginary part of the spin-mixing conductance generates an
AHE. F|N|F [Fig. 1(b)] spin valves are investigated in Sec. IV,
which show an enhanced SMR for spacers thinner than the
spin-flip diffusion length. We summarize the results and give
conclusions in Sec. V.

II. TRANSPORT THEORY IN METALS IN CONTACT
WITH A MAGNETIC INSULATOR

The spin current density in the nonrelativistic limit

←→
js = en〈�v ⊗ �σ + �σ ⊗ �v〉/2 = ( �jsx, �jsy, �jsz)

T = ( �jx
s , �jy

s , �jz
s

)
(1)

is a second-order tensor (in units of the charge current density
�jc = en 〈�v〉), where e = |e| is the electron charge, n is the
density of the electrons, �v is the velocity operator, �σ is the
vector of Pauli spin matrices, and 〈· · · 〉 denotes an expectation
value. The row vectors �jsi = en〈�vσ i + σ i �v〉/2 in Eq. (1) are
the spin current densities polarized in the ı̂ direction, while the
column vectors �j j

s = en〈vj �σ + �σvj 〉/2 denote the spin current
densities with polarization �σ flowing in the ĵ direction. Ohm’s
law for metals with spin-orbit interactions can be summarized
by the relation between thermodynamic driving forces and
currents that reflects Onsager’s reciprocity by the symmetry of
the response matrix:28

⎛
⎜⎜⎜⎝

�jc

�jsx

�jsy

�jsz

⎞
⎟⎟⎟⎠ = σ

⎛
⎜⎜⎝

1 θSHx̂× θSHŷ× θSHẑ×
θSHx̂× 1 0 0
θSHŷ× 0 1 0
θSHẑ× 0 0 1

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎝

−�∇μ0/e

−�∇μsx/(2e)

−�∇μsy/(2e)

−�∇μsz/(2e)

⎞
⎟⎟⎟⎠ , (2)

where �μs = (μsx,μsy,μsz)T − μ01̂ is the spin accumulation,
i.e., the spin-dependent chemical potential relative to the
charge chemical potential μ0, σ is the electric conductivity, θSH

is the spin Hall angle, and “×” denotes the vector cross product
operating on the gradients of the spin-dependent chemical
potentials. The spin Hall effect is represented by the lower
nondiagonal elements that generate the spin currents in the
presence of an applied electric field, in the following chosen
to be in the x̂ direction �E = Exx̂ = −x̂∂xμ0/e. The inverse
spin Hall effect is governed by elements above the diagonal
that connect the gradients of the spin accumulations to the
charge current density.

The spin accumulation �μs is obtained from the spin-
diffusion equation in the normal metal

∇2 �μs = �μs

λ2
, (3)

where the spin-diffusion length λ = √
Dτsf is expressed

in terms of the charge diffusion constant D and spin-flip
relaxation time τsf .29 For films with thickness dN in the ẑ

direction,

�μs (z) = �Ae−z/λ + �Bez/λ, (4)

where the constant column vectors �A and �B are determined by
the boundary conditions at the interfaces.

According to Eq. (2), the spin current in N consists of
diffusion and spin Hall drift contributions. Since we are
considering a system homogeneous in the x-y plane, we focus
on the spin current density flowing in the ẑ direction

�jz
s (z) = − σ

2e
∂z �μs − jSH

s0 ŷ, (5)

where jSH
s0 = θSHσEx is the bare spin Hall current, i.e., the

spin current generated directly by the SHE.
The boundary conditions require that �jz

s (z) is continuous at
the interfaces z = dN and z = 0. The spin current at a vacuum
(V) interface vanishes, �j (V)

s = 0. The spin current density �j (F)
s

at a magnetic interface is governed by the spin accumulation
and spin-mixing conductance:16

e �j (F)
s (m̂) = Grm̂ × (m̂ × �μs) + Gi (m̂ × �μs) , (6)

where m̂ = (mx,my,mz)T is a unit vector along the magnetiza-
tion and G↑↓ = Gr + iGi the complex spin-mixing interface
conductance per unit area. The imaginary part Gi can be
interpreted as an effective exchange field acting on the spin
accumulation. A positive current in Eq. (6) corresponds to up
spins flowing from F towards N. Since F is an insulator, this
spin current density is proportional to the spin transfer torque
acting on the ferromagnet

�τSTT = − h̄

2e
m̂ × (

m̂ × �j (F)
s

) = h̄

2e
�j (F)
s . (7)

With these boundary conditions we determine the coeffi-
cients �A and �B, which leads to the spin accumulation

�μs = 2eλ

σ

[
−(

jSH
s0 ŷ + �jz

s (dN )
)

cosh
z

λ

+ (
jSH
s0 ŷ + �j (F)

s (m̂)
)

cosh
z − dN

λ

]/
sinh

dN

λ
, (8)
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where �jz
s (dN ) = 0 for F(m̂)|N|V bilayers and �jz

s (dN ) =
−�j (F)

s (m̂′) for F(m̂)|N|F(m̂′) spin valves.

III. N|F BILAYERS

In the bilayer the spin accumulation (8) is

�μs(z) = −ŷμ0
s

sinh 2z−dN

2λ

sinh dN

2λ

+ �j (F)
s (m̂)

2eλ

σ

cosh z−dN

λ

sinh dN

λ

, (9)

where μ0
s ≡ |�μs(0)| = (2eλ/σ )jSH

s0 tanh [dN/ (2λ)] is the spin
accumulation at the interface in the absence of spin transfer,
i.e., when G↑↓ = 0.

Using Eq. (6), the spin accumulation at z = 0 becomes

�μs(0) = ŷμ0
s + 2λ

σ
[Gr{m̂[m̂ · �μs(0)] − �μs(0)}

+Gim̂ × �μs(0)] coth
dN

λ
. (10)

With

m̂ · �μs(0) = myμ
0
s , (11)

m̂ × �μs(0) = μ0
s

σ m̂ × ŷ + m̂my2λGi coth dN

λ

σ + 2λGr coth dN

λ

− �μs(0)
2λGi coth dN

λ

σ + 2λGr coth dN

λ

, (12)

�μs(0) = ŷμ0
s

1 + 2λ
σ

Gr coth dN

λ(
1 + 2λ

σ
Gr coth dN

λ

)2 + (
2λ
σ

Gi coth dN

λ

)2 + m̂myμ
0
s

2λ
σ

Gr coth dN

λ

(
1 + 2λ

σ
Gr coth dN

λ

) + (
2λ
σ

Gi coth dN

λ

)2

(
1 + 2λ

σ
Gr coth dN

λ

)2 + (
2λ
σ

Gi coth dN

λ

)2

+ (m̂ × ŷ) μ0
s

2λ
σ

Gi coth dN

λ(
1 + 2λ

σ
Gr coth dN

λ

)2 + (
2λ
σ

Gi coth dN

λ

)2 , (13)

the spin current through the F|N interface reads

�j (F)
s = μ0

s

e
m̂ × (m̂ × ŷ) σ Re

G↑↓
σ + 2λG↑↓ coth dN

λ

+ μ0
s

e
(m̂ × ŷ) σ Im

G↑↓
σ + 2λG↑↓ coth dN

λ

. (14)

The spin accumulation

�μs(z)

μ0
s

= −ŷ
sinh 2z−dN

2λ

sinh dN

2λ

+ [m̂ × (m̂ × ŷ) Re + (m̂ × ŷ) Im]
2λG↑↓

σ + 2λG↑↓ coth dN

λ

cosh z−dN

λ

sinh dN

λ

(15)

then leads to the distributed spin current in N

�jz
s (z)

jSH
s0

= ŷ
cosh 2z−dN

2λ
− cosh dN

2λ

cosh dN

2λ

− [m̂ × (m̂ × ŷ) Re + (m̂ × ŷ) Im]
2λG↑↓ tanh dN

2λ

σ + 2λG↑↓ coth dN

λ

sinh z−dN

λ

sinh dN

λ

. (16)

The ISHE drives a charge current in the x-y plane by the diffusion spin current component flowing along the ẑ direction. The
total longitudinal (along x̂) and transverse or Hall (along ŷ) charge currents become

jc,long(z)

j 0
c

= 1 + θ2
SH

[
cosh 2z−dN

2λ

cosh dN

2λ

+ (
1 − m2

y

)
Re

2λG↑↓ tanh dN

2λ

σ + 2λG↑↓ coth dN

λ

sinh z−dN

λ

sinh dN

λ

]
, (17)

jc,trans(z)

j 0
c

= θ2
SH(mxmy Re −mz Im)

2λG↑↓ tanh dN

2λ

σ + 2λG↑↓ coth dN

λ

sinh z−dN

λ

sinh dN

λ

, (18)

where j 0
c = σEx is the charge current driven by the external

electric field.
The charge current vector is the observable in the experi-

ment that is usually expressed in terms of the longitudinal and
transverse (Hall) resistivities. Averaging the electric currents
over the film thickness z and expanding the longitudinal
resistivity governed by the current in the (x) direction of the
applied field to leading order in θ2

SH, we obtain

ρlong = σ−1
long =

(
jc,long

Ex

)−1

≈ ρ + 	ρ0 + 	ρ1
(
1 − m2

y

)
,

(19)

ρtrans = −σtrans

σ 2
long

≈ −jc,trans/Ex

σ 2
= 	ρ1mxmy + 	ρ2mz,

(20)

where

	ρ0

ρ
= −θ2

SH
2λ

dN

tanh
dN

2λ
, (21)

	ρ1

ρ
= θ2

SH
λ

dN

Re
2λG↑↓ tanh2 dN

2λ

σ + 2λG↑↓ coth dN

λ

, (22)

	ρ2

ρ
= −θ2

SH
λ

dN

Im
2λG↑↓ tanh2 dN

2λ

σ + 2λG↑↓ coth dN

λ

, (23)

and ρ = σ−1 is the intrinsic electric resistivity of the bulk
normal metal. 	ρ0 < 0 seems to imply that the resistivity is
reduced by the spin-orbit interaction. However, this is an effect
of the order of θ2

SH that becomes relevant only when dN is
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sufficiently small. The spin-orbit interaction also generates
spin-flip scattering that increases the resistance to leading
order according to Matthiesen’s rule. We see that 	ρ1 (caused
mainly by Gr ) contributes to the conductance modulation
that depends on the in-plane component of the magnetization,
while 	ρ2 (caused mainly by Gi) contributes only when there
is a magnetization component normal to the plane (AHE), as
discussed below.

A. Limit of Gi = Im G↑↓ � Re G↑↓ = Gr

According to first-principles calculations,17 |Gi | is at least
one order of magnitude smaller than Gr for YIG, so Gi = 0
appears to be a good first approximation. In this limit,
we plot normalized components of spin accumulation (μsx

and μsy) and spin current (jsx = �jz
s · x̂ and jsy = �jz

s · ŷ) as
functions of z for different magnetizations in Fig. 2. When
the magnetization of F is along ŷ, the spin current at the N|F
interface (z = 0) vanishes just as for the vacuum interface. By
rotating the magnetization from ŷ to x̂, the spin current at the
N|F interface and the torque on the magnetization is activated,
while the spin accumulation is dissipated correspondingly. We
note that the x components of both spin accumulation and spin
current vanish when the magnetization is along x̂ and ŷ, and
reach a maximum value for m̂ = (x̂ + ŷ)/

√
2.

For Gi = 0 the observable transport properties reduce to

ρlong ≈ ρ + 	ρ0 + 	ρ1
(
1 − m2

y

)
, (24)

ρtrans ≈ 	ρ1mxmy, (25)

where

	ρ0

ρ
= −θ2

SH
2λ

dN

tanh
dN

2λ
, (26)

	ρ1

ρ
= θ2

SH
λ

dN

2λGr tanh2 dN

2λ

σ + 2λGr coth dN

λ

. (27)

Equations (24) and (25) fully explain the magnetization
dependence of SMR in Ref. 25, while Eq. (27) shows that
an SMR exists only when the spin-mixing conductance does
not vanish. Since results do not depend on the z component of
magnetization, the AHE analogue vanishes in our model when
Gi = 0.

B. Gr � σ/ (2λ)

Here we discuss the limit in which the spin current
transverse to m̂ is completely absorbed as an STT without
reflection. This ideal situation is actually not so far from
reality for the recently found large Gr between YIG and noble
metals.17,18 The spin current at the interface is then

�j (F)
s

jSH
s0

Gr�σ/(2λ)= m̂ × (m̂ × ŷ) tanh
dN

λ
tanh

dN

2λ
, (28)

and the maximum magnetoresistance for the bilayer is

	ρ1

ρ
= θ2

SH
λ

dN

tanh
dN

λ
tanh2 dN

2λ
. (29)

In Sec. III E we test this limit with available parameters from
experiments.

FIG. 2. (Color online) Normalized μsx , μsy , jsx , and jsy as functions of z for magnetizations (a) m̂ = ŷ, (b) m̂ = (x̂ + ŷ) /
√

2, and
(c) m̂ = x̂ for a sample with dN = 12 nm. We adopt the transport parameters ρ = 8.6 × 10−7 
 m, λ = 1.5 nm, and Gr = 5 × 1014 
−1 m−2.
For magnetizations m̂ = ŷ and m̂ = x̂, both μsx and jsx vanish.
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C. λ/dN � 1

When the spin-diffusion length is much larger than the
thickness of N,

�μs(z)

μ0
s

λ/dN�1= m̂ × (m̂ × ŷ) − ŷ
2z − dN

dN

,

while spin current and magnetoresistance vanish. We can
interpret this as multiple scattering of the spin current at the
interfaces; the ISHE has both positive and negative charge
current contributions that cancel each other.

D. Spin Hall AHE

Recent measurements in YIG|Pt display a small AHE-like
signal on top of the ordinary Hall effect, i.e., a transverse
voltage when the magnetization is normal to the film.31

As mentioned above, an imaginary part of the spin-mixing
conductance Gi can cause a spin Hall AHE (SHAHE).

The component of the spin accumulation μsx

μsx(z)

μ0
s

= 2λ

σ

cosh z−dN

λ

sinh dN

λ

[mxmy Re −mz Im]

× σG↑↓
σ + 2λG↑↓ coth dN

λ

(30)

contains a contribution that scales with mz and contributes a
charge current in the transverse (ŷ) direction

j
(SHAHE)
c,trans (z)

j 0
c

= −2λθ2
SHmz

sinh z−dN

λ

sinh dN

λ

Im
G↑↓ tanh dN

2λ

σ + 2λG↑↓ coth dN

λ

.

(31)

The transverse resistivity due to this current is

ρ
(SHAHE)
trans ≈ −j

(SHAHE)
c,trans /Ex

σ 2
= −	ρ2mz, (32)

where

	ρ2

ρ
≈ 2λ2θ2

SH

dN

σGi tanh2 dN

2λ(
σ + 2λGr coth dN

λ

)2 + (
2λGi coth dN

λ

)2

≈ 2λ2θ2
SH

dN

σGi tanh2 dN

2λ(
σ + 2λGr coth dN

λ

)2 .

E. Comparison with experiments

There are controversies about the values of the material
parameters relevant for our theory, i.e., the spin-mixing
conductance G↑↓ of the N|F interface, as well as spin-flip
diffusion length λ and spin Hall angle θSH in the normal metal.

Experimentally, Burrows et al.18 found for an Au|YIG
interface with G0 = e2/h,

G
exp
r

G0
= 5.2 × 1018 m−2; Gexp

r = 2 × 1014 
−1 m−2 . (33)

On the theory side, the spin-mixing conductance from scatter-
ing theory for an insulator reads16

G↑↓
G0

= NSh −
∑

n

r∗
n↑rn↓ = NSh −

∑
n

ei(δn↓−δn↑), (34)

where rn↑(↓) = eiδn↑(↓) is the reflection coefficient of an electron
in the quantum channel n on a unit area at the N|F interface
with unit modulus and phase δn↑(↓) for the majority (minority)
spin, and NSh is the number of transport channels (per unit
area) at the Fermi energy, i.e., NSh is the Sharvin conductance
(for one spin). Therefore

Gr

G0
� 2NSh;

|Gi |
G0

� NSh. (35)

Jia et al.17 computed Eq. (34) for a Ag|YIG interface by
first principles. The average of different crystal interfaces

G(0)
r = 2.3 × 1014 
−1 m−2 , (36)

is quite close to the Sharvin conductance of silver (NShG0 ≈
4.5 × 1014 
−1 m−2).

For comparison with experiment we have to include the
Schep drift correction:32

1

G̃r/G0
= 1

G
(0)
r

/
G0

− 1

2NSh
, (37)

which leads to

G̃r ≈ 3.1 × 1014 
−1 m−2 . (38)

One should note that the mixing conductance of the Pt|YIG
interface can then be estimated to be G̃r ≈ 1015 
−1 m−2 since
the Pt conduction electron density and Sharvin conductance
are higher than those of noble metals.

Using parameters ρ = σ−1 = 8.6 × 10−7 
 m, dN =
12 nm, and λ = 1.5 nm,30 we see that the absorbed transverse
spin currents with Gr = G̃r and Gr = Gmax

r obtained from
above for a Ag|YIG interface are 44% and 70% of the value
for a perfect spin sink Gr → ∞, respectively. For a Pt|YIG
interface this value should be even larger.

In order to compare our results with the observed SMR,
we have to fill in or fit the parameters. The values of the
spin-diffusion length and the spin Hall angle differ widely.30

In Fig. 3 we plot the SMR for three fixed values of Gr . We
observe that the experiments can be explained by a sensible
set of transport parameters (Gr ,λ,θSH) that somewhat differ for
the two representative samples reported in Ref. 25. Generally,
the SMR increases with a larger value of Gr but decreases
when λ is getting longer. These features are in agreement
with the discussion of the simple limits above. Sample 1 in
Ref. 25 has a larger resistivity but a smaller SMR (ratio),
implying a smaller spin Hall angle and/or smaller spin-
diffusion length. When we fix the spin Hall angle θSH = 0.06
and the spin-mixing conductance Gr = 5 × 1014 
−1 m−2, the
corresponding estimated spin-diffusion lengths of samples 1
and 2 are λ1 ≈ 1.5 nm and λ2 ≈ 3.5 nm, respectively.

Finally we discuss the AHE equivalent (SHAHE). From
experiments 	ρ2/ρ ≈ 1.5 × 10−5 for ρ = 4.1 × 10−7 
 m
and dN = 7 nm.31 Choosing θSH = 0.05, λ = 1.5 nm, and
Gr = 5 × 1014 
−1 m−2, we would need a Gi = 6.2 ×
1013 
−1 m−2 to explain experiments, a number that is
supported by first-principles calculations.17

IV. SPIN VALVES

In this section we discuss F(m̂)| N|F(m̂′) spin valves fabri-
cated from magnetic insulators with magnetization directions
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FIG. 3. (Color online) Calculated 	ρ1/ρ as a function of λ for different spin Hall angles θSH with (a) Gr = 1 × 1014 
−1 m−2, (b)
Gr = 5 × 1014 
−1 m−2, (c) Gr = 10 × 1014 
−1 m−2, and (d) the ideal limit Gr � σ/(2λ). The Pt layers are 12 nm thick with resistivity
8.6 × 10−7 
 m (sample 1, solid curve) and 7 nm thick with resistivity 4.1 × 10−7 
 m (sample 2, dashed curve). Experimental results are
shown as horizontal lines for comparison (Ref. 25).

m̂ and m̂′. The general angle dependence for independent
rotations of m̂ and m̂′ is straightforward but tedious. We discuss
in the following two representative configurations in which
the two magnetizations are parallel and perpendicular to each
other. We disregard in the following the effective field due
to Gi such that the parallel and antiparallel configurations
m̂ = ±m̂′ are equivalent. Moreover, we limit the discussion to
the simple case of two identical F|N and N|F interfaces, i.e.,
the spin-mixing conductances at both interfaces are the same.

A. Parallel configuration (m̂ · m̂′ = ±1)

When the magnetizations are aligned in parallel or an-
tiparallel configuration, the boundary condition �j (z)

s (dN ) =
−�j (F)

s applies. We proceed as in Sec. III to obtain the spin
accumulation

�μs

μ0
s

= −
[
ŷ + m̂ × (m̂ × ŷ)

2λGr tanh dN

2λ

σ + 2λGr tanh dN

2λ

]
sinh 2z−dN

2λ

sinh dN

2λ

,

(39)

and the spin current

�jz
s

jSH
s0

= ŷ

(
cosh 2z−dN

2λ

cosh dN

2λ

− 1

)
+ m̂ × (m̂ × ŷ)

× 2λGr tanh dN

2λ

σ + 2λGr tanh dN

2λ

cosh 2z−dN

2λ

cosh dN

2λ

.

The spin currents at the bottom and top of N are absorbed as
STTs and read

�jz
s (0)

jSH
s0

=
�jz
s (dN )

jSH
s0

= m̂ × (m̂ × ŷ)
2λGr tanh dN

2λ

σ + 2λGr tanh dN

2λ

, (40)

leading to opposite STTs at the bottom (�τ (B)
STT) and top (�τ (T)

STT)
ferromagnets

�τ (B)
STT = h̄

2e
�j (z)
s (0) = −�τ (T)

STT (41)

since �j (F)
s (m̂) = �jz

s (0) = �jz
s (dN ) = −�j (F)

s (m̂′).
The longitudinal and transverse (Hall) charge currents

are

jc,long

j 0
c

= 1 + θ2
SH

[
1 − (

1 − m2
y

) 2λGr tanh dN

2λ

σ + 2λGr tanh dN

2λ

]

× cosh 2z−dN

2λ

cosh dN

2λ

, (42)

jc,trans

j 0
c

= −θ2
SHmxmy

2λGr tanh dN

2λ

σ + 2λGr tanh dN

2λ

cosh 2z−dN

2λ

cosh dN

2λ

(43)

and the longitudinal and transverse resistivities read

ρlong = ρ + 	ρ0 + 	ρ1
(
1 − m2

y

)
, (44)

ρtrans = 	ρ1mxmy, (45)
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FIG. 4. Calculated 	ρ1/(ρθ2
SH) in an F|N|F spin valve as a

function of spin-diffusion length λ with dN = 12 nm, Gr = 5 ×
1014 
−1 m−2, and ρ = 8.6 × 10−7 
 m chosen from sample 1 in
Ref. 25. 	ρ1/(ρθ2

SH) in an N|F bilayer is plotted as a dotted line for
comparison.

where
	ρ0

ρ
= −θ2

SH
2λ

dN

tanh
dN

2λ
, (46)

	ρ1

ρ
= θ2

SH

dN

4λ2Gr tanh2 dN

2λ

σ + 2λGr tanh dN

2λ

. (47)

Figure 4 shows 	ρ1/(ρθ2
SH) with respect to the spin-diffusion

length in an F|N|F spin valve with parallel magnetization
configuration. Compared to N|F bilayers, the SMR in spin
valves is larger and does not vanish in the limit of long
spin-diffusion lengths.

B. Limit λ/dN � 1

The spin accumulation for weak spin flip reads

�μs

μ0
s

λ/dN�1= −
[
ŷ + dNGr

σ + dNGr

m̂ × (m̂ × ŷ)

]
2z − dN

dN

, (48)

leading to the spin current

�jz
s

jSH
s0

λ/dN�1= dNGr

σ + dNGr

m̂ × (m̂ × ŷ) . (49)

In contrast to the bilayer, we find a finite SMR in this limit for
spin valves:

jc,long

j 0
c

λ/dN �1= 1 + θ2
SH

[
1 − dNGr

σ + dNGr

(
1 − m2

y

)]
Gr�σ/dN= 1 + θ2

SHm2
y, (50)

jc,trans

j 0
c

λ/dN �1= −θ2
SH

dNGr

σ + dNGr

mxmy
Gr�σ/dN= −θ2

SHmxmy

(51)

or
	ρ0

ρ
= −θ2

SH, (52)

	ρ1

ρ
= θ2

SH
dNGr

σ + dNGr

Gr�σ/dN= θ2
SH. (53)

Here we find the maximum achievable SMR effects in metals
with spin Hall angle θSH by taking the limit of perfect spin

current absorption. Clearly this requires spin valves with
sufficiently thin spacer layers. We interpret these results in
terms of spin angular momentum conservation: The finite
SMR is achieved by using the ferromagnet as a spin sink that
suppresses the back flow of spins and the ISHE. This process
requires a source of angular momentum, which in bilayers can
only be the lattice of the normal metal. Consequently, the SMR
is suppressed in the F|N system when spin flip is not allowed.
In spin valves, however, the second ferromagnet layer can act
as a spin current source, thereby allowing a finite SMR even
in the absence of spin-flip scattering.

C. Perpendicular configuration (m̂ · m̂′ = 0)

We may consider two in-plane magnetizations m̂ =
(cos α, sin α,0) and m̂′ = (− sin α, cos α,0), which are per-
pendicular to each other. When α = 0, the first layer maximally
absorbs the SHE spin current, while m̂′ is completely reflect-
ing, just as the vacuum interface in the bilayer. For general α,

μsx(z)

μ0
s

= 2λGr

σ + 2λGr coth dN

λ

×
(

cosh z−dN

λ

sinh dN

λ

+ cosh z
λ

sinh dN

λ

)
cos α sin α, (54)

μsy(z)

μ0
s

= − sinh 2z−dN

2λ

sinh dN

2λ

− 2λGr

σ + 2λGr coth dN

λ

×
(

cosh z−dN

λ

sinh dN

λ

cos2 α − cosh z
λ

sinh dN

λ

sin2 α

)
, (55)

μsz(z) = 0, (56)
which leads to the components of spin current normal to the
interfaces

jsx(z)

jSH
s0

= − 2λGr tanh dN

2λ

σ + 2λGr coth dN

λ

×
(

sinh z−dN

λ

sinh dN

λ

+ sinh z
λ

sinh dN

λ

)
cos α sin α, (57)

jsy(z)

jSH
s0

= cosh 2z−dN

2λ
− cosh dN

2λ

cosh dN

2λ

+ 2λGr tanh dN

2λ

σ + 2λGr coth dN

λ

×
(

sinh z−dN

λ

sinh dN

λ

cos2 α − sinh z
λ

sinh dN

λ

sin2 α

)
. (58)

The total current is the sum of those from the two ferromagnets
at the top and bottom; in contrast to the parallel m̂ = ±m̂′
configuration, they do not feel each other. We can extend the
discussion from the previous section: The second F can be
a spin current source, and we can switch this source on by
rotating the magnetization from perpendicular to (anti)parallel
configuration.

The longitudinal and transverse electric currents read

jc,long(z)

j 0
c

= 1 + θ2
SH

cosh 2z−dN

2λ

cosh dN

2λ

+ θ2
SH

2λGr tanh dN

2λ

σ + 2λGr coth dN

λ

×
(

sinh z−dN

λ

sinh dN

λ

cos2 α − sinh z
λ

sinh dN

λ

sin2 α

)
, (59)
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FIG. 5. (Color online) The ratio β(α) which characterize how �τ (B)
STT

changes with respect to the relative orientation between m̂ and m̂′. We
adopt the transport parameters dN = 12 nm, ρ = 8.6 × 10−7 
 m,
and Gr = 5 × 1014 
−1m−2.

jc,trans(z)

j 0
c

= θ2
SH

2λGr tanh dN

2λ

σ + 2λGr coth dN

λ

×
(

sinh z−dN

λ

sinh dN

λ

+ sinh z
λ

sinh dN

λ

)
cos α sin α. (60)

Since the angle-dependent contributions vanish upon integra-
tion over z, there is no magnetoresistance in the perpendicular
configuration.

D. Controlling the spin-transfer torque

Like the SMR, the STT at the N|F interface depends on
the relative orientation between m̂ and m̂′, too. We may
pin m̂ = x̂ and observe how the STT at the bottom magnet,
�τ (B)

STT(m̂,m̂′), changes with rotating m̂′ = x̂ cos α + ŷ sin α.
Figure 5 displays the ratio β defined as

β(α) ≡
∣∣�τ (B)

STT(x̂,x̂) − �τ (B)
STT(x̂,x̂ cos α + ŷ sin α)

∣∣∣∣�τ (B)
STT(x̂,x̂)

∣∣ , (61)

as a function of α for some spin-diffusion lengths. Only when
λ � dN , β remains constant under rotation of m̂′. A larger

spin-mixing conductance and smaller dN enhances the SMR
as well as angle dependence of β. This modification of the
STT should lead to complex dynamics of the spin valve in
the presence of an applied current and will be the subject of a
subsequent study.

V. SUMMARY

We developed a theory for the SMR in N|F and F|N|F
systems that takes into account the spin-orbit coupling in N as
well as the spin transfer at the N|F interface(s). In a N|F bilayer
system, the SMR requires spin flip in N and spin transfer at
the N|F interface. Our results explain the SMR measured in
Ref. 25 both qualitatively and quantitatively with transport
parameters that are consistent with other experiments. The
degrees of spin accumulation in N that can be controlled by the
magnetization direction is found to be very significant. In the
presence of an imaginary part of the spin-mixing conductance
Gi we predicted an AHE-like signal (SHAHE). Such a signal
was observed in Ref. 31 and can be explained with values of Gi

that agree with first-principles calculations.17 We furthermore
analyzed F|N|F spin valves for parallel and perpendicular
magnetization configurations. A maximal SMR ∼ θ2

SH is
found for a collinear magnetization configuration in the
limit that the spin-diffusion length is much larger than the
thickness of the normal spacer. The SMR vanishes when
rotating the two magnetizations into a fixed perpendicular
constellation. The SMR torques under applied currents in N are
expected to lead to magnetization dynamics of N|F and F|N|F
structures.
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