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We use spin density functional theory ab initio calculations to theoretically explore the possibility of achieving
useful gate control over exchange coupling between cobalt clusters placed on a graphene sheet. By applying an
electric field across supercells, we demonstrate that the exchange interaction is strongly dependent on gate voltage,
and find that it is also sensitive to the relative sublattice registration of the cobalt clusters. We use our results
to discuss strategies for achieving strong and reproducible magnetoelectric effects in graphene/transition-metal
hybrid systems.
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I. INTRODUCTION

Graphene1,2 is an atomically thin two-dimensional gapless
semiconductor in which the carrier density can be varied
over a broad range, from ∼−1013 cm−2 to ∼+1013 cm−2

by gating, and is a remarkably good conductor at high
carrier densities. Graphene/transition-metal hybrid systems
are attractive for spintronics because carbon spin-orbit in-
teractions are particularly weak3,4 in flat honeycomb-lattice
arrays, because magnetic transition element clusters5–7 form
readily on graphene surfaces, and because of potentially
attractive properties8,9 of interfaces between graphene and
magnetic transition metals. For example, ultrathin transition-
metal layers on graphene are predicted10,11 to have extremely
large magnetic anisotropy energies. For these reasons, there
has recently been considerable interest12–16 in the magnetic and
electronic properties of transition-metal adatoms and clusters
placed on a two-dimensional graphene sheet.

In this paper, we theoretically explore the possibility that the
exchange coupling between separate magnetic metal clusters
on graphene can be altered electrically by gating. Since
arrays of magnetic clusters can be realized on graphene by
using a graphene/substrate moiré pattern17 as a template,
and the magnetic clusters hybridize relatively strongly with
graphene’s valence and conduction band orbitals, we anticipate
gate-dependent exchange coupling between the clusters which
should lead to gate-dependent magnetoresistance18,19 effects
that are strong at room temperature. The goal of this work
is to identify strategies for achieving strong, reproducible
magnetoelectric effects in graphene/transition-metal hybrid
systems.

There is already a substantial theoretical literature20–28

on Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions be-
tween local moments coupled to graphene π bands. It has been
recognized,22 for example, that when graphene is undoped,
the RKKY interaction is ferromagnetic (FM) for magnetic
moments coupled to π electrons on the same graphene
sublattice and antiferromagnetic (AFM) for moments coupled
to π electrons on different sublattices. The RKKY interaction
decays as r−3 at large distance r because of the suppressed
density of states at the Dirac point of graphene.22,23,26,28

At finite carrier density, the RKKY coupling has spatial
oscillations with period π/kF on top of an envelope which
decays as r−2. Most existing studies of the RKKY interactions

in graphene have assumed magnetic moments due to pointlike
impurities that are associated with a particular honeycomb
lattice site and have purely phenomenological interactions.
These models are realized approximately in systems with mag-
netic moments due to hydrogenation29 or carbon vacancies,30

although these defects significantly modify the carbon sp2

bonds and hence the structural and electronic properties of
graphene. Moments due to adsorbed magnetic transition-metal
atoms do not distort the graphene bands as strongly, but
these adatoms have small migration barriers31 due to weak
adsorption energies.13 However, the transition-metal clusters
on graphene on which we focus are relatively immobile, and
can be large enough to exceed the super paramagnetic limit.
These larger magnetic objects therefore have more potential for
spintronics applications. We attempt to realistically describe
the magnitude of cobalt cluster moments, their magnetic
anisotropy energies (MAE), the exchange coupling between
the clusters and graphene, and finally the graphene-mediated
magnetic exchange energies between separated clusters.

We use first-principles supercell electronic-structure cal-
culations based on spin density functional theory (SDFT) to
investigate not only the RKKY coupling between magnetic
cobalt clusters deposited on graphene, but also its dependence
on external electric fields due to gating. We choose cobalt
because its bulk lattice constant is very close to that of
graphene, and because thin cobalt films down to two or
three atomic layers have been found to have perpendicular
magnetic anisotropy,7 which is preferable for spintronic
applications. First, by calculating the electronic structure of
a two-atomic-layer-thick cobalt film on graphene, we find that
there is considerable charge transfer from cobalt to graphene.
Hybridization between the cobalt film and graphene leads
to sublattice and spin-dependent shifts in graphene π -band
energies from which we are able to extract the essential
kinetic-exchange (i.e., exchange due to hybridization between
orbitals having different energies) parameters. Then, we di-
rectly calculate the exchange interaction between two parallel
two-atomic-layer-thick cobalt ribbons placed on graphene. For
the geometries we have been able to consider, we find that the
exchange interactions have a typical size ∼10−4 eV per cobalt
atom, comparable to the MAE of bulk cobalt (4 × 10−5 eV)
(Ref. 32) and thin films of cobalt on graphene,7 but smaller than
anisotropy energies which can be achieved in asymmetrical
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FIG. 1. (Color online) (a) Top and side views of the supercell (with a 3 × 3 repetition in the xy plane for illustration purposes). The larger
balls represent cobalt atoms and the smaller balls C atoms. (b) Two-dimensional Kohn-Sham quasiparticle band structure of the Co-graphene
hybrid system neglecting spin-orbit interactions. The blue lines illustrate the majority-spin bands and the red lines the minority-spin bands. The
blue and red dots indicate the strength of carbon pz orbital character in the majority- and minority-spin states. (c) Model graphene projected
band structure calculated using Eq. (2). The model parameter values [Eq. (6)] are obtained by fitting to the DFT results listed in Table I.

clusters.33,34 We also find that the exchange interactions tend
to change sign when a cobalt cluster changes its sublattice
registration, and that the exchange interactions can be modified
by gate voltages.

In Sec. II, we briefly describe the methods that we use
for these computations. For the sake of definiteness, we
have focused our attention on cobalt clusters that are two
atomic layers thick and arranged in a ribbon geometry. In
Sec. III, we describe our results for the electronic structure
of a bulk two-layer-thick film of cobalt on graphene. We find
that hybridization between the magnetic cluster and graphene
leads to sublattice- and spin-dependent shifts in graphene
π -band energies. In Sec. IV, we summarize our results for the
dependence of total energy on the relative spin orientations
of separated clusters. We are able to understand our main
findings using an approximate approach which treats the
cobalt-graphene interaction perturbatively. Finally, in Sec. V,
we present our results for the gate-voltage dependence of
these exchange interactions. We find that gate fields can
produce sizable changes in exchange interactions, in some
cases changing their signs and substantially reducing their
sublattice registration dependence. In Sec. VI, we summarize
our findings and discuss some possible directions for future
research.

II. METHODS

The density functional theory (DFT) calculations reported
in this work were performed using the projector-augmented-
wave35 (PAW) method as implemented in the Vienna ab initio
simulation package (VASP).36–38 The Perdew-Burke-Ernzerhof
generalized gradient approximation39 (PBE-GGA) was used
for the exchange-correlation energy functional. To calculate
the electronic band structure of an infinite graphene sheet fully

covered by a two-atomic-layer-thick cobalt film [Fig. 1(a)],
we used a 20-Å-thick vacuum region between neighboring
supercells in the ẑ (perpendicular to the graphene plane)
direction. We fixed the lattice constant at the experimental
value for graphene (2.46 Å) since the (0001) surface of bulk
hcp cobalt has a small lattice mismatch (<2%). All atoms
in the supercell were allowed to relax until the Hellmann-
Feynman force on each atom was smaller than 0.001 eV/Å. A
plane-wave energy cutoff of 400 eV and a 33 × 33 × 1 k-point
mesh were used for structure relaxation and total-energy
calculations. Denser k-point meshes (up to 79 × 79 × 1) and
a larger cutoff of 500 eV were used to check accuracy and to
perform MAE calculations.

To study the indirect exchange coupling between remote
cobalt clusters on graphene, we constructed a supercell with
two parallel cobalt ribbons that are two atomic layers thick
and three atoms wide, oriented along the zigzag direction
of graphene (Fig. 2). The supercell used in this case is
25 × 1 with the same 20-Å vacuum layer in the ẑ direction.
These ribbon calculations used a 1 × 49 × 1 k-point mesh.
The lattice parameters of the cobalt ribbons were taken from
the infinite two-dimensional (2D) slab calculations mentioned
above without further relaxation. (We checked the influence
of relaxation for several cases and did not find qualitative
modification relative to the results reported below.) The ex-
change coupling between the cobalt ribbons was estimated by
calculating the total-energy difference between spin-parallel
(FM) and spin-antiparallel (AFM) configurations:

�E = EFM − EAFM. (1)

With this convention, a positive �E corresponds to antiferro-
magnetic exchange between the ribbons.

An external electric field across the supercells in the ẑ

direction was realized by adding a saw-tooth-like external

144410-2



GATE-TUNABLE EXCHANGE COUPLING BETWEEN COBALT . . . PHYSICAL REVIEW B 87, 144410 (2013)

FIG. 2. (Color online) Top and side views of the supercell (repeated by four times in the ŷ direction for illustration purposes) used to
calculate the magnetic coupling between two parallel cobalt ribbons (larger blue balls) placed on a graphene sheet (smaller yellow balls).

potential to the total-energy functional.40 We have applied
electric fields of different size in the same supercell as in Fig. 2.
In this case, the external field can produce only charge transfer
between the two cobalt ribbons and graphene. A more realistic
representation of gating action on the graphene/transition-
metal hybrid system can be achieved by adding a bilayer
Cu slab to the supercell as in Fig. 11. The copper acts as a
charge reservoir and also screens the part of graphene directly
below the cobalt ribbons from external fields. A more detailed
discussion of some issues involved in using VASP to simulate
gates is provided in Appendix B.

III. KINETIC-EXCHANGE COUPLING BETWEEN
COBALT OVERLAYERS AND GRAPHENE π BANDS

A. Ab initio spin density functional theory

As illustrated in Fig. 1(a), we have calculated the total
energies of bilayer cobalt films adsorbed on graphene with
different registries and have found that the most stable
geometry is that with the C atoms in one sublattice of graphene
located directly below bottom-layer cobalt atoms, i.e., at atop
sites, and the C atoms in the other sublattice below the top-layer
cobalt atoms, i.e., at hcp sites. The optimal separation between
the cobalt overlayer and graphene is about 2.21 Å. After
adsorption on graphene, the magnetic moments on the cobalt
atoms in the first layer (adjacent to graphene) decrease from
1.710μB per cobalt atom, which is close to the bulk value, to
1.560μB per cobalt atom. Meanwhile, the C atoms in sublattice
A (adjacent to cobalt atoms) obtain a per-atom magnetic
moment of 0.043μB, antiparallel to the magnetization of the
cobalt overlayer, whereas the C atoms in sublattice B acquire
a moment of 0.041μB per atom and parallel to the cobalt
moments. Therefore, the overall magnetization direction of
graphene is opposite to that of the cobalt film. We have
also calculated the magnetocrystalline part of the MAE by
evaluating the total-energy difference, including spin-orbit
coupling, between configurations with all moments along the ẑ

direction (out of plane) and along the x̂ direction (in plane). The
system is found to have perpendicular magnetic anisotropy,7

with a MAE of ∼0.09 meV per cobalt atom, which is larger
than that of bulk hcp cobalt (∼0.04 meV), but still the same
order of magnitude.

The spin-resolved Kohn-Sham band structure of the Co-
graphene hybrid system is shown in Fig. 1(b). The graphene
bands are spin split and the Dirac points at the K point are

gapped because of the relatively strong interaction with the
cobalt overlayer, in agreement with previous results.41–43 It is
nevertheless clear from the position of the Fermi level that
graphene is n doped, i.e., electrons are transferred from cobalt
to graphene.42 The graphene majority-spin Dirac point is easily
identified in the two-dimensional bands, but its minority-spin
counterpart is so strongly hybridized with cobalt d orbitals
that it is less easily identified. The Dirac point is at a higher
energy for graphene majority-spin bands than for minority-
spin bands, indicating an overall antiferromagnetic coupling
between the cobalt overlayer and graphene. This conclusion
is also in agreement with the antiparallel orientations of the
graphene and cobalt magnetizations mentioned above.

B. Kinetic-exchange model

Our electronic-structure calculations can be qualitatively
described using a simple model for graphene coupled to a
cobalt overlayer in which hybridization and charge-transfer
effects shift the energies of both majority and minority spins
on both graphene sublattices:

H = h̄vF k · τ + μ − h0,zτz − hz,0Sz − hz,zSzτz. (2)

In Eq. (2), the first term on the right-hand side is the usual
Dirac Hamiltonian for hopping on a honeycomb lattice with
velocity vF ∼ 106 m/s and wave vectors measured relative to
the Brillouin-zone corners. μ is the onsite energy averaged over
the two sublattices of graphene, i.e., the sublattice-symmetric
part of the site energy. The last three terms characterize
the sublattice- and spin-dependent modifications made to the
graphene π bands by the cobalt overlayer. Here, τz = ±1
distinguishes A (under the atop site) and B (under the hcp
site) sublattices, and Sz = ± 1

2 labels spin. More specifically,
h0,z characterizes the sublattice-antisymmetric site energy,
hz,0 and hz,z measure the sublattice-symmetric and sublattice-
antisymmetric kinetic-exchange coupling between cobalt and
graphene spins. The parameters of this model can be identified
by fitting to the energies of the bands that have the largest
π -band character at the Brillouin-zone corner (K) points,
which are summarized in Table I. H is diagonal when k = 0
and its four eigenvalues

μ − h0,z − 1
2hz,0 − 1

2hz,z, μ − h0,z + 1
2hz,0 + 1

2hz,z,
(3)

μ + h0,z − 1
2hz,0 + 1

2hz,z, μ + h0,z + 1
2hz,0 − 1

2hz,z
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TABLE I. Orbital character of the bands in Fig. 1(b) at the K

point of the 2D Brillouin zone. Only those having strong carbon pz

characters are listed. A and B correspond to the two sublattices of
graphene, as shown in Fig. 1(a).

Band No. Energy (eV) C pz character Co d character

1 1.006 A↓: 0.069 3z2 − r2↓: 0.671

2 −0.151 B↓: 0.319 xz,yz↓: 0.098
x2 − y2,xy↓: 0.099

3 −0.328 A↑: 0.297 3z2 − r2↑: 0.368

4 −0.703 B↑: 0.439 xz,yz↑: 0.059
x2 − y2,xy↑: 0.016

5 −1.307 A↓: 0.341 3z2 − r2↓: 0.019
6 −1.754 A↑: 0.191 3z2 − r2↑: 0.303

7 −1.965 B↓: 0.185 xz,yz↓: 0.19
x2 − y2,xy↓: 0.054

8 −3.048 B↑: 0.055 xz,yz↑: 0.206
x2 − y2,xy↑: 0.166

correspond to the four eigenvectors

|A↑〉,|A↓〉,|B↑〉,|B↓〉. (4)

The four Kohn-Sham bands with the strongest carbon pz

character at the K point of Brillouin zone are bands 2, 3, 4,
and 5 in Table I. By fitting Eq. (3) to the SDFT band energies,
we can obtain the values of the parameters:

μ = −0.622 eV, h0,z = 0.195 eV,
(5)

hz,0 = −0.214 eV, hz,z = −0.766 eV.

The model band structure calculated with these parameters is
plotted in Fig. 1(c).

Several comments are in order:
(i) The chemical potential μ specifies the energy shift

averaged over spin and sublattice, which is negative because
electrons are transferred to graphene, in agreement with our
previous discussion.

(ii) The value of h0,z is positive because the A sublattice is
more strongly influenced by the cobalt overlayer than the B
sublattice, which is expected since the A sublattice is directly
below the cobalt atoms at the interface.

(iii) The value of hz,0 measures the kinetic-exchange cou-
pling between cobalt and graphene spins averaged over
sublattices. Its negative sign means the sublattice-averaged
magnetic coupling is AFM, also in agreement with our
observations in the previous section.

(iv) The spin- and sublattice-dependent term hz,z reflects
the property that the majority spin is higher in energy on the
A sublattice, whereas the minority spin is higher in energy
on the B sublattice. In other words, the Co-graphene exchange
coupling is AFM on the A sublattice but FM on the B sublattice.
To understand this property, we refer to Table I, which lists
the orbital characters of the bands having strong carbon pz

character at the K point of Brillouin zone. These include the
four intrinsic graphene π bands as well as the cobalt d bands
that hybridize with them. By focusing on the third column of
Table I, we first identify bands No. 2, 3, 4, and 5 as graphene
π bands because of their much stronger carbon pz character
than the others. Bands 1, 6, 7, 8 are therefore identified as Co

d bands. Column 4 of Table I lists for each band the local d

character on the bottom Co layer. This information indicates
how the d orbitals of these Co atoms hybridize with the carbon
pz orbitals. For example, it can be seen that spin splitting on
the A sublattice is because of hybridization mainly with the
d3z2−r2

orbitals of cobalt (bands 1 and 6), whose minority spin
states are higher in energy than majority spin states and above
the Fermi level. The higher energy of the carbon majority
spin states on the A sublattice can therefore be understood
as the result of level repulsion from cobalt d3z2−r2

orbitals
with the same spin. The same argument also applies for the
B sublattice, whose pz orbitals mainly hybridize with the dxz,
dyz, dxy , and dx2−y2

orbitals of cobalt because of symmetry.
However, both of the two cobalt d bands (bands 7 and 8)
with these characters are below the Fermi energy and the π

bands at the K point, with the minority-spin band higher in
energy. Therefore, level repulsion in this case results in the
higher energy of the minority-spin states of graphene, i.e., in
ferromagnetic coupling.

(v) hz,z is much larger than hz,0 because the kinetic-
exchange interaction between the cobalt overlayer and the
graphene is strongly dependent on sublattice. We will see
later that this property will translate to a strong dependence
of the graphene-mediated exchange interaction between two
cobalt clusters on their relative registries with respect to the
sublattices of a continuous graphene sheet.

IV. MAGNETIC COUPLING BETWEEN COBALT
CLUSTERS ON NEUTRAL GRAPHENE

In this section, we will investigate the magnetic coupling
between cobalt clusters on neutral graphene sheets which are
mediated mainly by their mutual influence on the graphene π

bands. First, we employ SDFT to study a relatively small sys-
tem with parallel quasi-1D cobalt ribbons placed on graphene
(Fig. 2) and separated by ∼1 nm. Then, we will calculate
the RKKY coupling in graphene perturbatively using the the
model developed above to compare with the SDFT calculation
results. This comparison informs perturbative estimates of
coupling which can not be directly addressed using ab initio
tools.

A. Electronic structure

In Fig. 3(a), we show the electrostatic potential (ionic
potential plus Hartree potential from electrons) profile within
the graphene sheet for the system in Fig. 2. In equilibrium,
the chemical potential will shift relative to the bands by the
opposite amount. Therefore, Fig. 3(a), with a sign change and
up to a constant, can be viewed as a plot of Fermi energy
relative to the Dirac point. One can see that there is a large
positive shift of chemical potential in the region directly below
the two cobalt ribbons, meaning the graphene is strongly n

doped at these positions. The π -band electron barrier height
between cobalt-covered and bare graphene regions is therefore
about 0.5 eV, close to the 0.622-eV separation between the
chemical potential and the Dirac point found earlier for the
infinite 2D Co/graphene hybrid system. The barrier is smaller
in the present case because separations between neighboring
cobalt ribbons are not large enough for the pristine neutral

144410-4



GATE-TUNABLE EXCHANGE COUPLING BETWEEN COBALT . . . PHYSICAL REVIEW B 87, 144410 (2013)

FIG. 3. (Color online) (a) Electrostatic potential variation in adsorbed cobalt ribbons. (b)–(d) Density of states projected to the pz orbitals
of three carbon atoms whose positions are indicated by the black arrows. Black lines: graphene with adsorbed cobalt ribbons; red lines: bare
graphene. The negative PDOS axis plots minority-band values while the positive axis plots majority-band values.

graphene value. This barrier can potentially decrease magnetic
coupling between remote graphene clusters by localizing
electronic states more strongly in the vicinity of one particular
cluster.

In Figs. 3(b)–3(d), we plot partial density of states (PDOS)
functions projected to the pz orbitals of carbon atoms at
different points in the structure. At all three sites, the PDOS
Dirac-point minima are shifted to lower energy, indicating
n-type doping over the entire graphene sheet. The magnitude of
the Dirac-point shift decreases as one goes further away from
the cobalt ribbons, as expected. One feature worth mentioning
in the PDOS plots is the appearance of resonant features that
are absent in pristine graphene. These features can be identified
as confinement effects in the zigzag-ribbon-like uncovered

graphene regions between the cobalt ribbons. We see later that
although these modifications to the linear DOS of graphene
do not greatly influence the form of the π -band-mediated
magnetic coupling, they do play a role in the dependence of
the charge transfer to graphene on gate field.

B. Exchange coupling

We next study the exchange coupling between the two
cobalt ribbons in Fig. 2. In Fig. 4, we plot the spin density
versus position within the graphene sheet for the case of
two ferromagnetically aligned cobalt ribbons. In the region
below the cobalt ribbons, the spin polarizations are opposite
for the two sublattices of graphene, as in the case of complete

FIG. 4. (Color online) Color scale plot of spin polarization as a function of position within the graphene plane, in the region between two
cobalt ribbons with parallel spin orientations. The vertical axis in this figure is on position along the ribbon direction which has atomic scale
periodicity. The positive and negative spin densities (in arbitrary units) are concentrated on carbon atoms on opposite sublattices. The black
dots indicate the positions of C atoms.
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FIG. 5. (Color online) Magnetic coupling (per supercell, which
has 10 Co atoms) between two cobalt ribbons as a function of ribbon
separation. The interaction strength is the total-energy difference
between parallel and antiparallel spin-alignment configurations.
Black squares (red dots) correspond to configurations in which the
cobalt atoms in the bottom layers of the two cobalt ribbons are directly
above the same (different) sublattice(s) of graphene.

two-layer cobalt coverage. This property is maintained in the
uncovered portion of the graphene sheet. Opposite spin
polarizations on the two sublattices suggest that the graphene-
mediated interaction will be strongly sublattice dependent.
This behavior is common in systems with bipartite lattices.22,23

In Fig. 5, we plot SDFT results for magnetic coupling
between cobalt ribbons for different edge-to-edge separations
between the ribbons and different registries with respect to the
sublattices of the continuous graphene sheet. We first note that
although both cobalt ribbons have the same atop-hcp registry
with graphene, the first-layer cobalt atom is sometimes atop an
A site carbon atom and sometimes atop a B site carbon atom.
The configurations of atop(A)-hcp(B) and atop(B)-hcp(A)
are degenerate for an individual cobalt ribbon, but magnetic
coupling energies can change if one ribbon changes registry
and the other does not. The strong oscillation between FM
and AFM coupling in Fig. 5 is due to precisely this effect.
From now on, we refer to the geometry in which the two
cobalt ribbons have the same registry or different registries,
respectively, as geometry AA and geometry AB.

From Fig. 5, we see that the strength of the magnetic cou-
pling is about 1.3 meV per supercell for the AA configuration
for separations between 8 and 17 Å. This exchange coupling
is about 0.13 meV when normalized per cobalt atom, which
is much larger than the 0.04 meV MAE of bulk hcp cobalt
and somewhat larger than the MAE of a two-layer cobalt film
on graphene (0.09 meV). (We have also calculated the MAE
of a single cobalt ribbon on graphene as in the present setup
and the value is 0.08 meV per cobalt atom, with the easy axis
along the ribbon direction.) The similar strength of the MAE
and the exchange coupling means that interribbon magnetic
interactions can have a substantial influence on the magnetic
configuration of cluster arrays. RKKY-type oscillations in the
coupling are expected to have period ∼π/kF , with kF the
Fermi wave vector. In the present system, the Fermi energy
EF is about 0.4 eV on average in the part of graphene

between the two cobalt ribbons, corresponding to a period
of ∼5 nm. Therefore, it is not surprising that we do not
see RKKY-type oscillations in these calculations. The small
coupling at distances below 5 Å may be due to competition
between direct exchange coupling and graphene-mediated
coupling between the two cobalt ribbons. It is not clear why
there is strong variation in the exchange coupling strength for
the AB configuration. One guess is that it is due to structural
details at the boundaries of the zigzag-ribbon-like graphene
region between the two cobalt ribbons.

It is important for potential applications to understand how
these exchange couplings will change with the size of the
cobalt clusters. Due to computational power limitations, we
consider only two cases. First, we increase the width of the
two cobalt ribbons from 3 to 4 atoms, so that there are 14
cobalt atoms in a supercell. In the second case, we add one
more layer of cobalt atoms to the 4-atom-wide ribbons in
case 1, so that the number of total cobalt atoms increases to 18.
The per-cobalt magnetic coupling is 0.10 and 0.099 meV for
the two cases. In both cases, the per-atom coupling strength is
smaller than the 0.13-meV value obtained at the original cluster
size. Therefore, one can expect the total exchange coupling
to increase sublinearly with cluster size. There are several
reasons why this finding is expected. First, as we mentioned
previously, there is a large chemical potential barrier at the
cluster edge, which will weaken the influence of cobalt atoms
deeper inside the clusters. Second, when the cluster size is
comparable to or larger than the oscillation period of the
RKKY interaction, contributions from different parts of the
cluster interfere destructively, as we see in the next section.
Finally, since the largest contribution to the kinetic-exchange
interaction between cobalt clusters and graphene is from the
cobalt atoms closest to graphene, adding more layers of cobalt
to the clusters is expected to be less effective in increasing the
magnetic coupling.

C. Qualitative theory of exchange coupling

In this section, we will use conventional perturbation
theory and the model defined by Eq. (2) to calculate the
RKKY coupling between magnetic clusters on graphene, and
compare the result with our SDFT results. Similar calculations
for the RKKY interaction in graphene have been performed
previously,20–28 but mainly for the case of pointlike magnetic
impurities. Here, we will explicitly include the size and
shape of magnetic clusters. When combined with the essential
kinetic-exchange parameters obtained from first principles,
the formalism developed in this section can be a useful tool
for extrapolations to system sizes beyond the range which is
covered by SDFT calculations.

For a graphene sheet that is partially covered by two distinct
magnetic clusters 1 and 2, Eq. (2) becomes

H = H0 + H1 + H2 = h̄vF k̂ · τ + D1(r)V1 + D2(r)V2, (6)

where D1(2)(r) = 1 at positions covered by cluster 1 (2) and
zero otherwise, and V1(2) = μ1(2) − h0,zτz,1(2) − hz,0Sz,1(2) −
hz,zSz,1(2)τz,1(2). The RKKY interaction is evaluated by calcu-
lating the contribution to the total energy at second order in
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the perturbation H1 + H2:

�E(2) = g
∑
ss ′

∫
d2k

(2π )2

∫
d2k′

(2π )2
fsk(1 − fs ′k′)

× |〈sk|(H1 + H2)|s ′k′〉|2
Esk − Es ′k′

, (7)

where g = 2 is the valley degeneracy, s = ±1 is the band in-
dex, and fsk is the Fermi distribution function {1 + exp[(Esk −
μ)/kBT ]}−1. In keeping with the continuum model we are
using to describe the graphene π bands, we neglect intervalley
transitions which add an anisotropic and rapid modulation to
the spatial dependence of the RKKY interaction.27,28

The eigenfunctions of H0 are

〈r|sk〉 = 1√
2

(
e−iθk

s

)
eik·r ≡ Fske

ik·r , (8)

where θk = arctan(ky/kx). H1(2) can be written as a Fourier
integral

H1(2)(r) =
∫

d2q
(2π )2

eiq·rDq,1(2)V1(2) (9)

in which Dq,1(2) is the Fourier transform of D1(2)(r). Therefore,
Eq. (7) becomes

�E(2) = 1

2
g

∑
ss ′

∫
d2k

(2π )2

∫
d2q

(2π )2
(fsk − fs ′k+q)

× |F †
s ′k+q(Dq,1V1 + Dq,2V2)Fsk|2

Esk − Es ′k+q
. (10)

By substituting Eq. (8) and the spin-dependent terms in V1(2)

into |F †
s ′k+q(Dq,1V1 + Dq,2V2)Fsk|2, and keeping only the

cross terms between Dq,1V1 and Dq,2V2, we obtain

|F †
s ′k+q(Dq,1V1 + Dq,2V2)Fsk|2
= (D∗

q,1Dq,2 + c.c.)
{

1
2h2

z,0[1 + ss ′ cos(θk − θk+q)]

+ 1
2h2

z,z[1 − ss ′ cos(θk − θk+q)]τz,1τz,2
}
Sz,1Sz,2, (11)

in which the first term in the curly brackets is sublattice
independent and the second term is sublattice dependent. Here,
τz,1(2) are ±1 depending on which graphene sublattices the
clusters are directly above. For conciseness, we set Sz,1Sz,2 →
1
4 from now on. Note that the cross terms between hz,0 and
hz,z vanish because unperturbed graphene has spatial inversion
symmetry, and τz changes sign under spatial inversion. Using
the values of hz,0 and hz,z obtained previously, the factor
multiplying the sublattice-dependent term is ∼10 times larger
than the factor which multiplies the sublattice-independent
term. Therefore, the RKKY interaction between cobalt clusters
should be strongly dependent on their registration with respect
to the sublattices of graphene, agreeing with our observation
from the SDFT results.

The integration over k and the summation over bands
in Eq. (10) can be performed explicitly at T = 0 K. (We
summarize calculation details in Appendix A.) The RKKY

energy, written as an integral over q, is

�E
(2)
RKKY

= gh2
z,0

16h̄vF

∫
d2q

(2π )2
(D∗

q,1Dq,2 + c.c.)�z,0(q)

+ gh2
z,z

16h̄vF

∫
d2q

(2π )2
(D∗

q,1Dq,2 + c.c.)�z,z(q)τz,1τz,2,

(12)

where

�z,0(q) = −q

8
− kF

π
+ kF

2π

×
[√

1 −
(

2kF

q

)2

+ q

2kF

arcsin
2kF

q

]
�(q − 2kF )

+ q

8
�(2kF − q), (13)

�z,z(q) = q

4
− � + kF

π
− q

2π
arcsin

2kF

q
�(q − 2kF )

− q

4
�(2kF − q), (14)

�(x) is the Heaviside step function, and � is the Dirac
model’s ultraviolet cutoff. Note that both �z,0(q) and its first
derivative are continuous at q = 2kF . In contrast, �z,z(q)
has a discontinuous first derivative at q = 2kF , similar to the
behavior of two-dimensional electron gas. Therefore, one can
expect that the contribution to the RKKY interaction from
the sublattice-independent part will have a faster decay with
distance than that from the sublattice-dependent part.23

Graphene’s RKKY interaction can be obtained by setting
D1(r) = δ(r) and D2(r) = δ(r − R). The kF R � 1 limit is

JRKKY(R) =
(

gh2
z,0

128πh̄vF

− gh2
z,z

64πh̄vF

τz,1τz,2

)
1

R3
(15)

when graphene is undoped, and

JRKKY(R) = − gh2
z,zkF

16π2h̄vF

sin(2kF R)

R2
τz,1τz,2 (16)

when graphene is doped. When carriers are present, the
dominant contribution is the sublattice-dependent part, which
is oscillatory in space and decays as R−2. When graphene
is undoped, the oscillatory term vanishes because of the kF

prefactor, and the leading-order terms monotonically decay
as R−3. We note that by setting τz,1 = ±τz,2, and hz,z = hz,0,
Eqs. (15) and (16) can be converted to RKKY interactions
between two pointlike magnetic impurities located on the same
(different) sublattice(s) of graphene, which agree with former
studies.20–28

Next, we use Eq. (12) to calculate the RKKY-type in-
teraction between two cobalt ribbons on graphene with the
same geometry as in our SDFT calculations. The distribution
functions for this case are

D1(r) = �

(
x + w + d

2

)
�

(
−x − d

2

)
,

(17)

D2(r) = �

(
−x + w + d

2

)
�

(
x − d

2

)
,
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where d is the distance between the inner edges of the two
ribbons, and w is the width of the two ribbons. Their Fourier
transforms are

Dq,1 = i

qx

[
eiqx

d
2 − eiqx ( d

2 +w)
]
2πδ(qy),

(18)
Dq,2 = i

qx

[
e−iqx ( d

2 +w) − e−iqx
d
2
]
2πδ(qy).

Therefore,

D∗
q,1Dq,2 + c.c. = 2

q2
x

{2 cos[qx(d + w)] − cos(qxd)

− cos[qx(d + 2w)]}2πLδ(qy). (19)

In deriving the above equation, we have used the relation

δ2(qy) = δ(0)δ(qy) = L

2π
δ(qy), (20)

where L is the length of the system in the y direction. We
can then carry out the integration in Eq. (12) numerically.
Following, we will compare the results from this model
calculations to the SDFT results. Note that the interaction
energy in SDFT is the difference between spin-parallel and
spin-antiparallel configurations of the two cobalt ribbons.
Therefore, the model results below are all double ERKKY in
Eq. (12).

Figure 6 shows the magnetic coupling from our model
for the AA geometry, which corresponds to τz,1τz,2 = 1 in

FIG. 6. (Color online) (a) Model results for RKKY-type coupling
between cobalt ribbons. EF = 0.4 eV, h̄vF = 5.96 eV Å, L = 2.46 Å,
w = 8.51 Å. (b) Same as (a) but with EF increasing linearly as d

decreases.

Eq. (12). One can see that the order of magnitude agrees
very well with the SDFT results in Fig. 5, and the trend
with changing separation is also well reproduced. We have
chosen EF to be 0.4 eV, which is the average of the graphene
chemical potential under the cobalt ribbons (∼0.6 eV) and
that in the center between the two cobalt ribbons (∼0.2 eV).
The agreement would be improved if we used the fact that
the doping level of the graphene region between the two
cobalt ribbons increases as the two ribbons approach to each
other. In Fig. 6(b), we assumed simple linear dependence
of EF with d and the agreement with Fig. 5 is remarkably
improved. We note here that there is some arbitrariness in
determining the width of the cobalt ribbons w since there
is no sharp boundary of the portion of the graphene region
which interacts with the cobalt ribbon. Here, we chose w

to be four unit cells of graphene to account for the residue
influence at the edges of the cobalt ribbons, although in a
pure geometrical sense the cobalt ribbon amounts to three unit
cells of graphene. w may be treated as a fitting parameter in
applications of our approximate theory. The magnetic coupling
for the AB geometry [τz,1τz,2 = −1 in Eq. (12)], which we did
not show in Fig. 6, can be obtained simply by subtracting
the sublattice-dependent part from the sublattice-independent
part. As we mentioned before, the anomalous oscillation of

FIG. 7. (Color online) (a) RKKY coupling between cobalt rib-
bons at large separations, for several carrier densities. (b) RKKY
coupling divided by ribbon width w for several widths. w is expressed
in terms of the number of graphene unit cells along the zigzag
direction across the cobalt ribbon. w is fixed at 4 in (a) and EF

is fixed at 0.4 eV in (b).
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FIG. 8. (Color online) Charge density difference (in an x-z plane) between a system subjected to a 0.2 V/Å electric field along the −ẑ

direction, and a system with no electric field. Positive and negative values (in arbitrary units) correspond to accumulation and depletion of
charge, respectively. The black dots (triangles) indicate the positions of C (Co) atoms in the plane.

magnetic coupling for the AB geometry in Fig. 5 probably has
a structural origin that is not captured by this simple model.

Knowing that our model can capture the essential physics
of the graphene-mediated magnetic coupling between cobalt
clusters relatively well, we can now explore the large separa-
tion limit which can not be easily addressed by first-principles
methods. First, in Fig. 7(a), we plot the magnetic coupling for
the AA geometry versus ribbon separation for several carrier
densities. One can now see the spatial oscillation between
AFM and FM interactions which appears only beyond the
separation range covered in Fig. 5. From the figure, we see
that not only the periodicity, but also the amplitude of the
oscillation, depends on the doping level. This behavior is
consistent with the asymptotic RKKY interaction (16).

In Fig. 7(b), we plot magnetic coupling divided by ribbon
width w, which is proportional to the magnetic coupling per
cobalt atom. It is interesting to see that when w is very large (24
graphene unit cells in the zigzag direction, equivalent to about
50 Å), the magnetic coupling is strongly suppressed. This
behavior can be understood by considering the destructive
superposition between different parts of the ribbon, when
the scale of the clusters is close to the oscillation period. In
addition, since the period of the RKKY oscillation increases
with decreasing kF , the coupling for the same large clusters
will be less suppressed as the graphene is less doped, which
we have also verified. Figure 7(b) also confirms our discussion
on the effectiveness of increasing the magnetic coupling by
preparing larger clusters. Therefore, a general criterion for
real applications is that the linear size of the clusters should be
around or below π

2kF
, which is half of the RKKY period.

V. GATE CONTROL OF EXCHANGE COUPLING

Since the RKKY coupling in graphene has a strong
dependence on the Fermi energy [Eq. (16) and Fig. 7],
which in turn can be altered by electric gates, we expect
that the magnetic coupling between cobalt clusters can be
conveniently tuned by gating. In this section, we will study the
change of the magnetic coupling between cobalt ribbons on
graphene with external electric fields. We have relegated some

general remarks on how to simulate electric gates in supercell
calculations to Appendix B.

A. Freestanding Co-graphene in an electric field

By directly applying an electric field along the ẑ direction
in the supercell of Fig. 2, we can change the Fermi energy in
the graphene by transferring electrons from the cobalt ribbons
to graphene and vice versa. In Fig. 8, we show the charge
transfer within the supercell after applying a 0.2 V/Å electric
field along the −ẑ direction. It can be seen that electrons
are transferred from graphene to Co, and that an out-of-plane
polarization is induced in the graphene sheet itself. The amount
of charge transferred from the graphene plane decreases as one
moves away from the cobalt ribbons, in agreement with the
electrostatic potential profile shown in Fig. 3(a). In this way,
one decreases the graphene carrier density not only in the bare
regions of graphene, but also in the regions covered by the
cobalt ribbons.

One question which may be raised at this point is whether or
not the exchange coupling between cobalt and graphene will be
influenced by the electric field. To this end, we have calculated
the spin polarization in a graphene sheet fully covered by a
two-layer cobalt film [Fig. 1(a)] under electric fields up to
0.8 V/Å and did not find a significant change. Therefore, the
field dependence of the exchange coupling between graphene
and cobalt is not an issue in the range of electric fields
considered here.

Next, we study the field dependence of the magnetic
coupling between the two cobalt ribbons at specific separations
between them. In Fig. 9(a), we plot magnetic coupling versus
electric field for two cobalt ribbons separated by ∼15 Å, and
different registries with the graphene sublattices. One can see
that both the sign and magnitude of the magnetic coupling can
be tuned by electric fields. It is also interesting to notice that for
both the AA and AB configurations, the coupling has a similar
sublinear dependence on electric field. Using the simple model
explained in the previous section, we found that the coupling
changes almost linearly with EF from EF = 0.2 to 0.4 eV,
which is roughly the range of EF shift produced by the
electric fields in our DFT calculations [Fig. 9(b)]. Therefore,

144410-9



CHEN, NIU, ZHANG, AND MACDONALD PHYSICAL REVIEW B 87, 144410 (2013)

FIG. 9. (Color online) (a) Dependence of magnetic coupling
between two cobalt ribbons on external electric field at two different
separations. Blue squares (red dots) correspond to the configuration
that the two cobalt wires sit above the same (different) graphene
sublattice(s), with a separation of 15.0 Å (14.3 Å). A negative value of
field strength means that the field is along the −ẑ direction. (b) Density
of states (spin up plus spin down) projected to the pz orbital of a C
atom in the center of the supercell for several different external electric
field strengths and the AA configuration in (a). The inset blows up
the details around EF .

the nonlinearity should come from the field dependence of
the Fermi energy of graphene. In equilibrium, the external
potential difference between cobalt and graphene (eEd where
d is the spatial separation) should be balanced by the electric
potential due to charge redistribution and the Fermi energy
shift of graphene (i.e., the quantum capacitance of graphene).
This screening physics can be described crudely using a simple
parallel plate capacitor model:

ed dE = edcEF dEF

C
+ dEF , (21)

where c is the proportionality constant for the linear de-
pendence of graphene DOS on EF , and c = gvgs

2π(h̄vF )2 =
0.018 eV−2 Å−2 in pure graphene, C/d is the geometric
capacitance of the graphene/cobalt bilayer, and dE and dEF

are electric field and Fermi energy differentials. The solution
of this differential equation is

EF =
√

2e2cd2CE + C2 + 2ecd const − C

ecd
, (22)

FIG. 10. (Color online) (a) Magnetic coupling between two
cobalt ribbons in the AA configuration vs separation, under different
electric fields. (b) Results obtained using the model in Sec. IV C.

which explains the slower-than-linear dependence of EF on
E. Of course, this argument relies on the assumption that the
density of states of graphene around EF is linear in energy. By
looking at Fig. 9(b), one can see that this assumption is actually
reasonable, although the effective value of c may be different
from that in pure graphene due to the confinement-induced
resonances.

Finally, in Fig. 10(a), we plot magnetic coupling versus the
separation between the two cobalt ribbons for several electric
field strengths. The corresponding result from the model in
Sec. IV C is plotted in Fig. 10(b). Reasonable agreement for
the E = −0.4 V/Å case is obtained by taking EF = 0.36 eV,
which means this extremely large electric field is only able to
shift EF by 0.04 eV on average. The small number is partly due
to the incomplete coverage of the cobalt ribbons on graphene,
which decreases the effective capacitance, but mostly due to
the small vertical separation between the two systems, which
makes graphene’s quantum capacitance effect dominant. It is
clear that an external electric field does not adequately model
the influence of a remote gate. In the next section, we will
use an alternative supercell to better simulate a realistic gating
geometry, and find that this tactic brings additional benefits.

B. Co/graphene with a Cu slab mimicking a gate electrode

Figure 11 shows an alternative supercell which simulates
electric gating more realistically. A two-atomic-layer-thick
slab of Cu is inserted in the supercell, at a distance of about 4 Å
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FIG. 11. (Color online) Top and side views of the supercell with a bilayer Cu slab (gray balls) mimicking a backgate. The supercell is
repeated four times in the ŷ direction for visualization purposes.

from the graphene sheet. Because of its high density of states,
the Cu slab will act as an electron reservoir, just like a real
gate electrode. We apply the electric field on the cobalt side
of the graphene sheet and place the Cu slab on the other side
of the sheet. Electrons are then transferred to or from the bare
regions of graphene from the Cu slab, depending on the sign
of the electric field. The part of graphene sheet that is directly
below the cobalt ribbons is shielded from the the electric field
by cobalt-layer screening. Consequently, complications due to
field-dependent graphene cobalt coupling are mitigated. Our
calculations were motivated by the expectation that adding
carriers to the uncovered portion of the graphene sheet would
reduce the potential barrier at the cobalt ribbon edges and in
this way enhance magnetic coupling.

In Fig. 12, we show PDOS for different C atoms in the
graphene sheet when no external magnetic field is applied. By
comparing with Fig. 3, one can see that the PDOS is changed
mainly by a shift of ∼0.1 eV towards higher energies, which
means that graphene is less n doped. This result may seem
counterintuitive since graphene is also n doped on Cu, and Cu
has an even smaller work function than that of Co. However,
the direction of charge transfer when separation exceeds the
range of direct chemical interaction is determined by relative
work functions. Because Cu has a larger work function than

graphene, it p dopes graphene when chemically isolated.42

The p doping by Cu enables us to explore a doping range of
graphene that can not be easily reached by directly applying
an electric field to the freestanding Co-graphene system as in
the previous section.

Figure 13(a) shows the charge transfer after applying a
0.2 V/Å electric field along the −ẑ direction. One can see
that electrons are indeed transferred from the Cu slab to the
graphene and cobalt system. The part of graphene directly
below the cobalt ribbons has almost no charge transfer,
whereas the bare regions of graphene are electron doped. The
overall effect is essentially the same as would be produced by
gating action from a planar electrode separated vertically by
a distance smaller than the graphene ribbon width. From the
electrostatic potential plot in Fig. 13(b), the potential barriers
in graphene due to the cobalt ribbons are indeed reduced
after applying the field (∼0.03 eV by aligning the potential
at the cental region). The change is small because much of
the external field is screened by the cobalt ribbons and the Cu
slab. This is a limit set by our supercell size, and is therefore
an artifact of our calculation procedures, but can not be easily
circumvented. Screening of the gate field due by metal clusters
on graphene will, however, be important experimentally when
the distance to the gate is larger than the cluster separation.

FIG. 12. (Color online) (a)–(c) Density of states projected to the pz orbitals of three carbon atoms, for the supercell with a Cu slab. Black
lines: graphene with the cobalt ribbons on top and the Cu slab below; red lines: bare graphene.
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FIG. 13. (Color online) (a) Charge density difference between the systems subjected to a 0.2 V/Å electric field along the −ẑ direction, and
no electric field. Positive and negative values (in arbitrary units) mean accumulation and depletion of charge, respectively. Black dots, triangles,
and squares indicate the positions of C, Co, and Cu atoms in the plane, respectively. (b) Relative electrostatic potential as defined in Fig. 3(a),
for systems subjected to a −0.2 V/Å electric field (red lines) and zero electric field (black lines), respectively.

Because of the different charge-transfer behavior in the
present supercell compared to that without the Cu slab, the
field dependence of the magnetic coupling [Fig. 14(a)] is
changed. Without applying the electric field, the magnetic
coupling is reduced because of the lower carrier density in the
graphene between the two cobalt ribbons, as we have discussed
previously. However, when a 0.2 V/Å field is applied along
the −ẑ direction, the coupling-separation curve is changed
by reduced barrier heights. Namely, when the barrier height
is lower, the increase in the average doping in-between the
two cobalt ribbons when they get closer will be less dramatic.
Since the coupling is roughly proportional to kF , the shape
of the coupling-distance curve should be more tilted to the
left. The scenario is consistent with the model explained in
Sec. IV C.

On the other hand, when a 0.2 V/Å field is applied along
the z direction, the coupling-distance curve is relatively smooth
below 13 Å, a behavior which we are able to reproduce using
our model. A large shift of the curve appears at around 14 Å.
A tentative explanation is the following: When the distance
between the two cobalt ribbons is large, the central graphene
region between them is nearly neutral. [In Fig. 14(b), we show
the PDOS of a carbon atom at the central region between the
two cobalt ribbons, and it is seen that the DOS is almost linear
with energy.] Therefore, Eq. (22) also applies, according to
which the change of EF with field will be more pronounced
when EF is small. This effect, together with the fact that
graphene will be more exposed to the external field as the two
cobalt ribbons move away from each other, will likely lead to
a sudden change of magnetic coupling at a certain separation.

VI. DISCUSSION AND CONCLUSIONS

In this study, we have demonstrated that cobalt magnetic
clusters on graphene can have relatively strong gate-voltage-
dependent exchange interactions, and that these interactions
are sensitive to the relative sublattice registration of cobalt
clusters with respect to a monolithic graphene honeycomb.
Although we have focused on cobalt clusters, the combined
SDFT and phenomenological modeling approach used here
can be straightforwardly applied to other systems, e.g., Ni
clusters on graphene. We have carried out some similar calcul-
ations for Ni clusters, and find they have weaker exchange
coupling with graphene than Co clusters. Thus, cobalt has the
distinct advantages of having both large exchange coupling
and a good lattice match with graphene.

In Figs. 3 and 12, we have seen that resonances in the
density of states appear due to the quantum well and edge
states of the zigzag-ribbon-like uncovered graphene segments
in our supercell calculations. Although these density-of-
states resonances do not have overwhelming importance for
exchange interactions in the parameter range we were able
to explore in this work, the phenomena may be interesting in
their own right. For example, it is known that ideal graphene
zigzag ribbons have spin-polarized edge states,44–53 but that
graphene ribbons with impurity-free edges are very difficult,
if not entirely impossible, to fabricate experimentally.52 The
study of spin-polarized graphene edge states, resulting from
parallel magnetic ribbons deposited on graphene, may be an
alternative route to realizing the potentially interesting edge
physics of graphene nanoribbons.
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FIG. 14. (Color online) (a) Magnetic coupling vs separation
between cobalt ribbons in the AA configuration, for several electric
fields. Fields are in units of V/Å. (b) Density of states projected to the
pz orbital of a C atom in the center of the supercell, with and without
external electric fields, for the AA configuration and the separation
of 17.1 Å. The inset blows up details around EF .

Our study addressed only the case of atop-hcp registry
of the cobalt clusters with respect to graphene. This is the
structure assumed by large 2D cobalt films on graphene. Given
the strong sublattice registration dependence of this interface
structure, we anticipate similar sensitivity to other structural
modifications. We conclude that for any nanoparticle assembly
method, precise control of the interface structure, at least
in the first atomic layers, will be a crucial issue if repro-
ducible exchange interactions are desired. In particular, cobalt
nanoparticles prepared using wet chemistry methods54–57 are
not likely to have consistent interface structures, and are
therefore likely to have highly variable interactions. Here,
we note that some authors have concluded theoretically7,43

that the atop-fcc interface between graphene and Co(0001) is
energetically slightly preferred to atop-hcp. The difference
relative to our calculations could be due to a cobalt film
thickness dependence of the preferred registry, or even due
to differences in the exchange-correlation potentials used
in the DFT calculations. Nevertheless, we found that the
graphene-Co exchange coupling for the atop-fcc configuration
does not differ qualitatively from the atop-hcp configuration,
which is expected since the dominant contribution to the

exchange coupling between the Co clusters and graphene is
from the atop surface Co atoms. The structural arrangement of
the first row of magnetic atoms is, however, crucial.

From our calculations, we can identify several key pa-
rameters that will influence the experimental realization of
interesting magnetoresistance and magnetoelectric devices in
graphene/magnetic-metal hybrid systems. Ideally, we would
like to be able to substantially alter the magnetic configuration
of a cluster array by changing a gate voltage. For this to
happen, the intercluster exchange coupling should be strongly
gate voltage dependent and the same order of magnitude as
the MAE. For clusters of fixed shape, we can expect that the
per-atom MAE (∼10−4 eV) should be roughly cluster-size
independent. The per-atom exchange coupling depends on
cluster size, inter cluster distance, and gate voltages. We can
conclude that per-atom exchange coupling will be comparable
to the MAE only for relatively small cluster sizes, and for
relatively small intercluster distances. A reasonable bound for
the intercluster distance is the period of the RKKY oscillation
π/kF , which is on the order of a few nm for graphene
with a large carrier density. The cluster size also must be
smaller than this number to avoid destructive superposition
of coupling from different parts of a cluster. Therefore, the
system size considered in our SDFT calculations is actually
close to the ideal scale for strong effects. This length scale
is obviously difficult to achieve, and will lead to magnetic
and magnetoelectric hysteresis only below ∼100 K. As we
mentioned in the Introduction, graphene moiré patterns on
metal substrates provide one attractive strategy to achieve
patterning on this length scale. These systems would have
the disadvantage, however, that there would be no control
over the relative sublattice registration between different cobalt
clusters. Another strategy is to grow large domain graphene
sheets on cobalt thin films and then etch away the metal
connecting different regions. In this case, it should be possible
to maintain control over relative sublattice registration, but
reaching the required length scales would be challenging.

It is interesting to compare the related case of interactions
between magnetic clusters mediated by topological insulator
surface states.4,58 In both cases, the 2D metallic states are
described by a Dirac model. The main differences in the
topological insulator case are that graphene’s sublattice degree
of freedom is absent and that spin-orbit interactions are strong.
Both differences point to potential advantages of the topolog-
ical insulator structures. The strong spin-orbit interactions at
the TI surface will lead to strong magnetic anisotropies both
in the energies of individual magnetic clusters,59 and in their
interactions,58 which will assist hysteresis at smaller cluster
sizes. Most importantly, the absence of a sublattice degree
of freedom should make it easier to control the magnetic
interactions between clusters.

In summary, we have described a survey of graphene-
mediated exchange coupling between cobalt magnetic clusters
and of its tunability via electric gates. Our analysis is based
on ab initio SDFT calculations interpreted using approxi-
mate models. By fitting SDFT calculations of the electronic
structure of a 2D thin film of cobalt deposited on a single-
layer graphene sheet to a phenomenological kinetic-exchange
model, we have identified the relevant kinetic-exchange
coupling parameters. From these parameters, we were able to
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establish that the exchange coupling between cobalt clusters
is strongly sublattice registration dependent. We then directly
calculated the magnetic coupling between two infinite long
cobalt ribbons on graphene using SDFT, and found that their
coupling is of the same order as the magnetic anisotropy
energy of the cobalt ribbons. As expected, the coupling
is found to change dramatically as one changes the relative
registries of the two cobalt ribbons with the graphene sub-
lattices. We also identified the large potential barrier at the
edge of the cobalt ribbons, which may influence the magnetic
coupling in a variety of ways. To explore the behaviors of
the magnetic coupling in a much larger parameter range,
we constructed a phenomenological theory of the magnetic
coupling using the simple Dirac Hamiltonian of graphene and
the kinetic-exchange parameter we had obtained from the 2D
calculations. The RKKY coupling given by this theory agrees
well with the DFT results for the same system. We found that
the magnitude of the coupling depends on the Fermi energy of
graphene, and that the coupling per cobalt atom will actually be
very small when the cluster size is very large. By applying an
electric field inside the supercell in our SDFT calculations, we
found that the electric field can lead to a considerable change
in both magnitude and sign of the magnetic coupling between
cobalt ribbons. The coupling changes faster with field when
graphene is less doped, which was explained as a capacitance
effect. We were also able to use the phenomenological theory to
capture these behaviors. To better simulate the realistic gating
configuration, we put a Cu slab in the supercell mimicking
a backgate, which also suppresses the potential barrier at
the edge of the cobalt ribbons. We found that the change of
coupling with field becomes more sensitive to the separation
between the two ribbons, which is a consequence of the
reduced potential barriers.
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APPENDIX A: RKKY COUPLING OF GRAPHENE FROM
THE CONTINUOUS DIRAC MODEL

We start from calculating the integral in Eq. (10), taking the
sublattice-dependent term as example:

�E
(2)
τS = h2

z,z

16h̄vF

∑
ss ′

∫
d2q

(2π )2
(D∗

q,1Dq,2 + c.c.)
∫

d2k
(2π )2

× (fsk − fs ′k+q)
1 − ss ′ cos(θk − θk+q)

s|k| − s ′|k + q| τz,1τz,2.

(A1)

We first consider the situation of T = 0 K and EF at the Dirac
point. Define

�0
z,z(q) =

∑
ss ′

∫
d2k

(2π )2

(
f 0

sk − f 0
s ′k+q

)1 − ss ′ cos(θk − θk+q)

s|k| − s ′|k + q| ,

(A2)

where f 0
sk = 1

2 (1 − s). To evaluate this integral, we will have
to calculate �0

z,z(q) at finite freqency ω:

�0
z,z(ω,q) ≡

∑
ss ′

∫
d2k

(2π )2

(
f 0

sk − f 0
s ′k+q

)

× 1 − ss ′ cos(θk − θk+q)

s|k| − s ′|k + q| + ω + iδ

= −
∑

α

∫
dk dθ

(2π )2
αk

1 + k+q cos θ

|k+q|
ω + α(k + |k + q|) + iδ

,

(A3)

where δ is a small real number, α = ±1, and then take the
limit of ω → 0.60 The result is

�0
z,z(q) = q

4
− �, (A4)

where � is a cutoff. Similarly, for the sublattice-independent
part, we got

�0
z,0(q) = −q

8
, (A5)

which agrees with previous results.23,60,61

Next, we consider the doped case. Still, take the sublattice-
dependent part as example, and let

��z,z(q)

=
∑
ss ′

∫
d2k

(2π )2
(f̃sk − f̃s ′k+q)

1 − ss ′ cos(θk − θk+q)

s|k| − s ′|k + q|

= 2
∑
ss ′

∫
d2k

(2π )2
f̃sk

1 − ss ′ cos(θk − θk+q)

s|k| − s ′|k + q|

= 4
∫

dk dθ

(2π )2
f +

k

k cos θ

q + 2k cos θ
, (A6)

where f̃sk = fsk − f 0
sk, and f +

k = f1(E1k) + f1(E1k + 2μ).
The integral can be done straightforwardly. The result is

��z,z(q) = kF

π
− q

2π
arcsin

2kF

q
�(q − 2kF )

− q

4
�(2kF − q). (A7)

For the sublattice-independent part, after similar calculations,
we got

��z,0(q) = −kF

π
+ kF

2π

[√
1 −

(
2kF

q

)2

+ q

2kF

arcsin
2kF

q

]

×�(q − 2kF ) + q

8
�(2kF − q). (A8)

Next, we study the behavior of the graphene RKKY
interaction between two point defects, namely, the RKKY
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range function. The distribution function is now D1(r) = δ(r)
and D2(r) = δ(r − R), and

D∗
q,1Dq,2 + D∗

q,2Dq,1 = 2 cos(q · R). (A9)

First, we consider the sublattice-independent part. When
graphene is undoped, i.e., kF = 0, �z,0(q) = − q

8 [Eq. (A5)].
Therefore, we have

Jz,0(R) = − gh2
z,0

16h̄vF

∫
d2q

(2π )2

q cos(q · R)

4

= − gh2
z,0

16h̄vF

∫
dq

2π

q2

4
J0(qR), (A10)

where J0 is the zeroth-order Bessel function. To evaluate this
integral, we refer to the formula28∫ ∞

0
xn−1e−pxJν(cx)dx

= (−1)n−1c−ν ∂n−1

∂pn−1

(
√

p2 + c2 − p)ν√
p2 + c2

. (A11)

The result is

Jz,0(R) = gh2
z,0

128πh̄vF

1

R3
. (A12)

Therefore, at zero doping the sublattice-independent part
corresponds to an antiferromagnetic interaction, and goes like
R−3 at large R.

The situation is a little complicated when graphene is
doped. Since �z,0(q) is not singular at q = 2kF , the asymptotic
behavior of Jz,0(R) at large R should be largely determined by
the value of �z,0(q) at small q. However, �z,0(q) = 0 when
q < 2kF [Eqs. (A5) and (A8)]. Therefore, we can argue that
Jz,0(R) in the doped case is a superposition of two terms with
similar magnitude. However, one term (corresponding to the
kF = 0 contribution) decays monotonically as R−3 without
oscillation, while the other term will be oscillating with the
periodicity related to kF since there will be singularity at q =
2kF in the higher-order derivatives of �z,0(q). Therefore, the
long-range behavior of Jz,0(R) should still be approximately
proportional to R−3, and modulated with some oscillation.

Finally, we turn to the sublattice-dependent part Jz,z(R):

Jz,z(R) = gh2
z,z

16h̄vF

∫
dq

2π
2q�z,z(q)J0(qR)τz,1τz,2. (A13)

Note that

�z,z(q) = q

4
− � − kF

π
− q

2π
arcsin

2kF

q
�(q − 2kF )

− q

4
�(2kF − q)

= q

4

(
1 − 2

π
arcsin

2kF

q

)
�(q − 2kF ), (A14)

where we have dropped the constant terms since their Fourier
transform will just be δ functions centered at R = 0. The result
of the integral is expressed in terms of the Meijer G function:

− gh2
z,z

16h̄vF

1

π
3
2 R3

G
3,0
2,4

(
1,1

0, 3
2 , 3

2 , 1
2

∣∣∣∣ (kF R)2

)
. (A15)

FIG. 15. (Color online) Meijer G function in Eq. (A15) and its
asymptotic formula in Eq. (A16).

The asymptotic behavior of Meijer G functions at large
argument can be found, e.g., in Ref. 62. We finally obtain
the asymptotic form of Eq. (A15) at kF R � 1:

− gh2
z,z

16h̄vF

1

π2R3

[
3

4
cos(2kF R) + kF R sin(2kF R)

]
. (A16)

The asymptotic expression of the Meijer G function turns
out to work very well (Fig. 15). So, the sublattice-dependent
contribution to the RKKY interaction has an oscillating form
with the period π/kF , and the leading-order term decays
as R−2, similar to the behavior of two-dimensional electron
gas.23,27

We can finally write the expression for the RKKY range
function in graphene at kF R � 1 by keeping only the leading-
order term:

JRKKY(R) = − gh2
z,zkF

16π2h̄vF

sin(2kF R)

R2
τz,1τz,2 (doped),

(A17)

JRKKY(R) = gh2
z,0

128πh̄vF

1

R3
− gh2

z,z

64πh̄vF

1

R3
τz,1τz,2 (undoped).

(A18)

APPENDIX B: SIMULATING GATES IN SUPERCELL
CALCULATIONS

In this Appendix, we briefly discuss some of the chal-
lenges in realistically simulating gates using VASP supercell
calculations. For this purpose, it is natural to assume a
slab geometry.63,64 An external potential in the supercell
can be modeled straightforwardly by adding its interaction
energy with electrons and ions to the Kohn-Sham energy
functional. However, because the potential corresponding to a
homogeneous electric field is unbounded in space, to recover
the periodic boundary condition of the supercells one needs
to compensate the potential difference between neighboring
supercells. The usual scheme to do this is to add a fictitious
dipole layer in the vacuum, at the boundary of the supercell.40

The size of the dipole should be determined self-consistently
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in the minimization process of the Kohn-Sham functional, so
that the dipole layer will compensate the jump of the total
potential rather than that of the external potential alone. The
dipole layer must be homogeneous laterally, so that it will not
induce artificial fields applied to the system of interest inside
the supercell. As a result, shifting the system in the supercell
as a whole towards or away from the dipole layer should in
principle have no impact on the properties of the system itself.
In other words, the external field in the supercell is like that
from two gates at plus and minus infinity, respectively.

This feature is not desirable when one would like to simulate
a circumstance in which a laterally inhomogeneous system,
like our graphene sheets partially covered by cobalt ribbons,
that is close to a gate. The surface of a real gate is an equipo-
tential surface, so that charge will redistribute on it when the
gate is close to a system that is laterally inhomogeneous. One
strategy to simulate such an equipotential boundary condition
is to place a real metal slab inside the supercell. However,
attention must be paid to another difference between supercell

DFT calculations and real gates, i.e., that all subsystems share
the same chemical potential in the former case. This is a result
of energy minimization in solving the Kohn-Sham equation
by taking the whole supercell as one system. Consequently,
spatially separated parts in the supercell act as if they were all
electrically shorted. We have utilized this property in Sec. V B.
In the slab geometry we considered here, anything between
two metal slabs (provided that they are thick enough) will be
screened from external fields. Therefore, the best choice to
simulate a real gate close to a system is to shift the system
close to one boundary of the supercell, and put the metal slab
at the opposite boundary from the system. We have tried this
geometry using the supercells considered in this paper and
found it indeed works well. The geometry, however, will not
do better than the supercells used in the main text, in terms of
simulating cases with large shifts in graphene Fermi energy.
This is because the charge redistribution on the metal slab will
actually decrease the field felt by the regions of graphene not
covered by cobalt ribbons.
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