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Motivated by recent experiments on chemically synthesized magnetic molecular chains, we investigate the
lowest-lying energy band of short spin-s antiferromagnetic Heisenberg chains focusing on effects of open
boundaries. By numerical diagonalization we find that the Landé pattern in the energy levels, i.e., E(S) ∝ S(S + 1)
for total spin S, known from, e.g., ring-shaped nanomagnets, can be recovered in odd-membered chains, while
strong deviations are found for the lowest excitations in chains with an even number of sites. This particular
even-odd effect in the short Heisenberg chains cannot be explained by simple effective Hamiltonians and
symmetry arguments. We go beyond these approaches, taking into account quantum fluctuations by means of a
path-integral description and the valence bond basis, but the resulting quantum edge-spin picture which is known
to work well for long chains does not agree with the numerical results for short chains and cannot explain the
even-odd effect. Instead, by analyzing also the classical chain model, we show that spatial fluctuations dominate
the physical behavior in short chains, with length N � eπs , for any spin s. Such short chains are found to display
a unique behavior, which is not related to the thermodynamic limit and cannot be described well by theories
developed for this regime.
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I. INTRODUCTION

The antiferromagnetic Heisenberg model is the appropriate
starting point to understand magnetism in a large variety
of different materials where strong electron correlations
are important. Within its context, the quantum nature of
magnetism reveals itself, leading to a vast array of fascinating
phenomena. Accordingly, this model has been the topic of
numerous experimental and theoretical works in different com-
binations of magnetic lattices and spin magnitudes. Indeed,
many interesting theoretical concepts have been developed
specifically for the antiferromagnetic Heisenberg model in
the thermodynamic limit,1–3 including spin waves, effective
Hamiltonians, quantum field theories, and hydrodynamic
methods. However, as will be shown in this paper most of these
methods fail when describing finite (but possibly large) clusters
of spins, which show a unique behavior that strongly depends
on the boundary conditions and topology and therefore form a
separate class of magnetic materials.

The properties of the antiferromagnetic Heisenberg model
on small clusters such as dimers, trimers, and tetramers,
which are relatively simple to understand, were mainly of
relevance to chemists, as the Heisenberg exchange describes
magnetic interactions between metal ions in polynuclear metal
complexes very well,4 and also allowed the investigation of the
origin of the fundamental magnetic interactions.5 However,
the advances in the synthesis of metal complexes during the
last 15 years have produced nanosized magnetic molecules
with up to a few dozen of magnetic metal ions interacting
with each other via Heisenberg exchange, creating the new
class of molecular nanomagnets.6,7 Molecular nanomagnets
belong to the mesoscopic regime, and their magnetism can

be considerably more complex than in few-membered metal
clusters and possess a quantum many-body character, yet they
may not contain enough spin centers to be appropriately de-
scribed by the methods and techniques developed for extended
systems. Apart from synthetic chemistry, artificial engineering
of quantum spin clusters has also emerged in recent years.8–10

Here, clusters of magnetic ions have been fabricated directly
on insulating surfaces, and their magnetic properties were
measured with scanning tunneling microscopy.

Nanosized spin clusters are ideal to study basic questions
of quantum mechanics in mesoscopic systems, such as the
efficiency of different metal centers or topologies towards a
desired magnetic property, or the transition from the quantum
to the classical regime for larger ion spins.5,11 They also
provide an ideal testing ground for the validity of different
theoretical models. In this paper, we consider the antiferro-
magnetic Heisenberg model with a small number of spins of
magnitude s placed along a chain of length N with open ends,

H = J

N−1∑
i=1

si · si+1, (1)

where si denotes a spin-s operator on site i and J > 0 for
antiferromagnetic interactions. We will show that despite the
apparent simplicity of the model, the detailed aspects of the
spectrum are highly nontrivial.

The model for an infinite chain or one-dimensional antifer-
romagnetic Heisenberg chain (AFHC) has attracted enormous
interest, especially after Haldane’s conjecture of a fundamental
difference between integer and half-integer spin chains, which
is by now well established.12–14 Finite but long chains have
also received significant attention, but mainly for connecting
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numerical results to the thermodynamic limit via scaling15

or for understanding boundary,16 impurity,17 and doping
effects.18 On the other hand, very little has been done for short
chains with s > 1

2 , in which the Haldane gap is always smaller
than the finite-size excitation energy, and the difference
between integer and half-integer spins is thus expected to
become irrelevant.

Short AFHCs have recently become accessible experimen-
tally, e.g., through the synthesis of molecular Cr3+ (s = 3

2 )
modified wheels and horseshoes.19–25 Two Fe3+ containing
ring molecules were also studied, which magnetically repre-
sent s = 5

2 chains of lengths N = 7 and 17.26,27 Magnetic and
inelastic neutron scattering measurements on the Cr6 and Cr7

horseshoes (s = 3
2 , N = 6 and 7) have provided a detailed view

on the magnetic excitation spectrum of these clusters,19,20 and
pointed to systematic differences between chains with even
and odd number of spins. The expected even-odd effects were
found, such as total spin S = 0 and s in the ground state
for even and odd N , respectively, which can obviously be
associated with the interplay of the open boundary conditions
and the symmetry requirements. However, a more subtle but
striking difference in the energy spectrum has also been
noted in addition, which we here refer to as the even-odd
effect.

This even-odd effect manifests itself in the lowest-energy
band as a function of total spin S, which depending on the
context is known as the tower of states, quasidegenerate joint
states, or the L band.28–31 In this band, the energies are
expected to increase as E(S) ∝ S(S + 1), and for bipartite spin
systems it is generally possible to use a simplified model, the
HAB Hamiltonian, to describe it. The HAB model has been very
successfully applied to even-membered antiferromagnetic
Heisenberg rings (odd-membered rings will not be considered
in this work),31 and experimentally confirmed in fine detail
for the Cr8, CsFe8, and Fe18 molecular wheels.32–34 Further
examples are the Mn-[3 × 3] grid and the Fe30 Keplerate
molecules.35–39 For short chains with open ends, however, the
E(S) ∝ S(S + 1) approximation of the L band appears to work
very well for odd chains, while for even chains it surprisingly
fails in the low-energy sector.

We here explore alternative approaches to extract the essen-
tial physics of the AFHC model for short chains. In particular,
we carefully reanalyze the HAB model, and compare numerical
diagonalization results for Eq. (1) with the predictions of field
theoretical approaches, the classical AFHC, and parent valence
bond Hamiltonians. These approaches differ in their treatment
of the quantum and spatial fluctuations and allow us to get
insight into the roles played by them.

As main results, we will demonstrate that the edge-spin
picture, which has been firmly established for long chains for
s = 1 (Refs. 40–43) and higher s,15,44,45 and was conjectured
to stay robust up to very small N ,15,45 is not consistent with our
exact numerical data, justifying our distinction into short and
long chains. Furthermore, for spins s � 3

2 , the even-odd effect
has converged already closely to the classical behavior, yet
quantum fluctuations are still noticeable. We finally conclude
that short AFHCs possess simultaneously a classical and a
quantum character, blurring the limit between classical and
quantum behavior.

The paper is organized as follows: In Sec. II, the even-odd
effect is introduced, and the HAB model is analyzed in Sec. III.
Section IV deals with the predictions of the O(3) nonlinear
σ model, which originates in a path-integral representation.
Section V goes away from semiclassical descriptions to in-
vestigate quantum mechanical effects on the extreme quantum
s = 1

2 case. The classical limit of the AFHC is investigated in
Sec. VI, and spin density and correlation effects in Sec. VII.
The valence bond model description of the AFHC is analyzed
in Sec. VIII and, finally, Secs. IX and X present a summary
and the conclusions. The Appendixes that then follow include
relevant information on various topics of the main text.

The terms quantum and spatial fluctuations used frequently
in the following mean the corrections in a 1/s expansion
(quantum fluctuations) and the deviations from a homoge-
neous spin density (spatial fluctuations), respectively. Within
the context of the O(3) nonlinear σ model discussed in
Sec. IV, they are associated with the terms (∂τ n)2 and (∂xn)2

in Eq. (17).

II. EVEN-ODD EFFECT

The different symmetry properties between even- and
odd-membered AFHCs naturally generate differences in the
magnetic properties, which show up in various quantities
giving rise to various “even-odd” effects. The most obvious
difference is in the ground state, which has total spin Sg = 0
for even and Sg = s for odd chains due to the residual spin,
as can be inferred from the classical antiferromagnetic spin
configuration in the ground state, or the theorem of Lieb
and Mattis.46 Pronounced differences are also present, for
example, in the spin density and spin correlation functions (see
Sec. VII), which are, however, largely dictated by symmetry
and boundary considerations.

The even-odd effect observed in this paper is related to
pronounced deviations from an approximate E(S) ∝ S(S + 1)
energy dependence, and through this is associated to the
HAB model, or more generally the L- and E-band picture
of the excitations in not too large bipartite spin clusters
(the E band collectively denotes the next-higher-lying rota-
tional bands).5,7 In this section, we define and characterize
the even-odd effect. The HAB model and the L- and E-band
picture will be described and reanalyzed in more detail in the
following section.

The Hamiltonian of Eq. (1) is SU(2) invariant and the
eigenstates are organized as multiplets of 2S + 1 degenerate
states according to S. We focus on the lowest spin multiplet
in each S sector, i.e., the L band. Starting from the ground
state, the energies of the lowest spin multiplets increase
approximately as S(S + 1) (consistent with the Lieb-Mattis
ordering of energies46). They thus fall approximately on a
straight line in an energy versus S(S + 1) plot, which is
the L band. The ground-state spin will be denoted by Sg ,
and that of the state with maximal spin or ferromagnetic
state by Sf = Ns. The region in the energy spectrum with
small (large) values of S will be called the antiferromagnetic
(ferromagnetic) region. Energy values are always presented
with respect to the ground-state energy. The eigenvalues and
eigenstates of Eq. (1) have been calculated by full exact,
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FIG. 1. (Color online) Energy spectra of antiferromagnetic Heisenberg chains as function of S(S + 1) for (a) N = 6, s = 3
2 , (b) N = 7,

s = 3
2 , (c) N = 6, s = 3, and (d) N = 7, s = 3. Panels (a) and (b) show the full spectrum, while (c) and (d) the low-lying spectrum. In panels

(a) and (b), the solid lines indicate the slopes gAF (red line), gF (green line), and the prediction of the HAB model (blue line), which establishes
also an upper bound for the minimal states in each S sector. The L band is clearly visible in all panels; in panels (c) and (d), it is emphasized
together with the E band by the thick underlying bars.

subspace iteration and/or Lanczos diagonalization, with the
Hamiltonian matrix represented in the product space or by
irreducible tensor operators,4 and spatial symmetry was also
used47,48 (see Appendix A for more details).

For illustration, Fig. 1 shows spectra of AFHCs with N = 6
and 7 for both s = 3

2 and 3. While it is clearly possible to iden-
tify the L band, there are systematic deviations. In particular,
for N = 6 the L band is no longer well approximated by
an S(S + 1) dependence for small S. In contrast, for N = 7
the S(S + 1) behavior is surprisingly well obeyed. Depending
on the viewpoint, the question hence arises as to why the
L band deviates from the S(S + 1) behavior so strongly in
the even chain, or why is it so well realized in the odd
chain.

In order to characterize the differences between even and
odd N , we consider the (normalized) slope of the L band in
the E versus S(S + 1) representation as a function of S:

g(S) = 2

�AB

E(S) − E(S − 1)

2S
(2)

with S � Sg , which is the discretized version of g(S) =
2

�AB
∂E/∂[S(S + 1)]. The slope is normalized with the quantity

�AB/2, which is given for even and odd chains and rings (for

comparison) as

even chain: �AB = 4J (N − 1)

N2
,

odd chain: �AB = 4J

N + 1
, (3)

even ring: �AB = 4J

N
.

The normalization allows us to directly compare with the
predictions of the HAB model, for which g(S) = 1 (see
Sec. III). It is noted that the difference of �AB for the even ring
and the chains is of order O(1/N2), while that for the even and
odd chain is of order O(1/N3), and that the slope emphasizes
differences in the antiferromagnetic region.

Experimentally, the energies E(S) are directly connected
to the low-temperature magnetization curve M(B), and their
differences can be extracted from it (B is the magnetic field).
In a magnetic field, the energies are modified as EB(S,B) =
E(S) − 2μBBS (assuming a gyromagnetic factor equal to 2),
and at zero temperature M is discontinuous with steps of height
2μB at fields BS = [E(S) − E(S − 1)]/(2μB). An energy
dependence E(S) = 1

2�S(S + 1) with an appropriate gap �

yields steps at regularly spaced fields BS = �
2μB

S, and devia-
tions from the S(S + 1) energy dependence or a constant slope
g(S) are detected as deviations from this regular field pattern. If
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FIG. 2. (Color online) Slope g(S) as function of S for S � Sg for
(a) N = 6 and (b) N = 7 chains for different spins s (symbols). The
horizontal (red) line is the slope g(S) = 1 of the HAB model. The
arrow and the dotted line in (a) point to the value of the slope for
S = 2s. Lines are guides to the eye.

one extrapolates through the magnetization steps or measures
the magnetization at elevated temperatures, the M(B) curve
increases linearly with field (except at very low fields), and
deviations from the E(S) ∝ S(S + 1) behavior are observed
as a field-dependent slope or nonconstant susceptibility M/B.
For the classical case s → ∞, the slope can in fact rigorously
be shown to be proportional to the inverse susceptibility
(Sec. VI). The energy differences E(S) − E(S − 1) can also
be measured directly by inelastic neutron scattering due to
the selection rule |S − S ′| = 1, permitting a spectroscopic
determination of the slope g(S).

The slope g(S) is plotted for N = 6 and 7 for s ranging
from 1

2 to 7
2 or 3 in Fig. 2. For N = 7, which represents odd

chains, g(S) varies weakly with S (at least for s � 3
2 ), and is

close to 1. In contrast, there is a strong reduction of the slope
for N = 6, the representative for even chains, for S � 2s. In
comparison to the maximal total spin Sf , the region of strong
deviation is thus given by S/Sf � 2/N , and the disagreement
with the S(S + 1) spectrum does not alleviate with increasing
s, contrary to naive expectation. The deviation is pronounced
for a wide range of S values for short chains, but for long
chains where s � Sf , it becomes very limited in range and is
less important. These observations are a major result of this
paper and establish the even-odd effect considered here.
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FIG. 3. (Color online) Slope gAF for even (blue lines) and odd
(green dashed lines) chains as a function of the length N for
different spins s (symbols). The horizontal (red) line represents the
slope g(S) = 1 predicted from the HAB model. Lines are guides to
the eye.

The even-odd effect is most pronounced in the antiferro-
magnetic region, and hence also the slopes

gAF = g(Sg + 1), gF = g(Sf ) (4)

are considered, which characterize the antiferromagnetic and
ferromagnetic parts of the L band, respectively [see Figs. 1(a)
and 1(b)]. In Fig. 3, gAF is plotted as a function of N for
various s. Since �AB in Eq. (3) is slightly smaller for even
than for odd chains, the scaling by �AB mitigates the even-odd
difference in gAF as compared to the non-normalized slope.
Nevertheless, the difference between even and odd chains is
obvious. Interestingly, the difference between the even and
odd gAF grows with N . This divergence suggests that the
excitations on the L band in the antiferromagnetic region
have different physical origin for even and odd chains. For
much larger N , the behavior known for long chains will be
approached. The ferromagnetic slope gF can be calculated
exactly from the lowest one-magnon energy as14

gF = 2J

N�AB

[
1 − cos

(
π

N − 1

N

)]
. (5)

Hence, as gF is just the classical one-magnon energy for
a particular wave vector, the even-odd effect is absent in
the ferromagnetic regime. We note that using Eq. (5), one
finds gF > 1 for N > 3. This is an important difference to
even-membered rings, where due to translational invariance
the eigenvalues and eigenfunctions of the lowest one-magnon
state are equivalent to those of HAB and hence g

ring
F = 1 for

all ring sizes.31 The absence of the even-odd effect in the
ferromagnetic region is also seen in the spin density in the
lowest one-magnon state, given by

〈
sz
i

〉 = s − 2

N
cos

(
π

2i − 1

2N

)2

. (6)

There is no qualitative difference between even and odd N

here.
It is also of interest to consider the lowest energies E(S)

in odd chains for S � Sg = s since the HAB model (Sec. III)
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FIG. 4. (Color online) Normalized excitation energies δE(s) of
the lowest-energy states in the spin sectors S � Sg for the N = 7
chain and spins s ranging from 1 to 5 (symbols). For each chain, an
approximate linear dependence on S is observed. Lines are guides to
the eye.

and the edge-spin picture (Sec. IV) predict distinctly different
trends with S for these states. The energies in this region can
be represented by the normalized excitation energies

δE(S) = 2[E(S) − E(Sg)]

�AB(N − 1)s
, (7)

shown in Fig. 4 for the N = 7 chain for s = 1 to 5. The
energies get smaller with increasing S, E(S) > E(S + 1), and
the dependence on S is essentially linear with a small curvature.

We conclude this section by discussing the different
symmetry properties of even and odd chains. The mirror
symmetry about a central site for odd chains can support
a Néel-type antiferromagnetic configuration in the ground
state [as indicated in Fig. 10(b), top picture]. Even-membered
chains, on the other hand, are mirror symmetric about a
link and cannot show any local magnetization in the ground
state. In this case, an alternating quantum dimerization is
more suggestive if s is not very large, where neighboring
spins are more strongly correlated on odd links and less
on even links. Another difference is that possible residual
spin degrees of freedom at the edges, the so-called edge
spins, first introduced in the context of valence bond ground
states and long s = 1 AFHCs,40,43,49,50 are effectively coupled
ferromagnetically for odd N and antiferromagnetically for
even N (Sec. IV C). Notably, rings with periodic boundary
conditions always possess mirror symmetry about a link and a
site for both even and odd N , so that there is no fundamental
symmetry difference as in chains. For chains, the symmetry
properties of the lowest multiplets in each sector S, which for
S � Sg represent the L band, are summarized in Table I,48 in
agreement with the findings for the s = 1

2 chain in Ref. 51.
It is also noted that multiplets in a specific S sector share
the spin-flip parity of the corresponding state of the L band,
whenever this is a good quantum number.

TABLE I. Symmetry properties of the lowest-spin multiplets in
each S sector for the AFHC.

N s Mirror parity Spin-flip parity

even integer or half-integer (−1)S+Ns (−1)S+Ns

odd integer s, S � Sg +1 (−1)S−s

odd integer s, S < Sg (−1)S−s (−1)S−s

odd half-integer s, S � Sg +1
odd half-integer s, S < Sg (−1)S−s

III. THE HAB MODEL

For a number of bipartite molecular nanomagnets
with antiferromagnetic Heisenberg interactions such as
regular even wheels, modified even wheels, and grid
molecules, the lowest-lying spectrum was observed to
consist of rotational bands or sets of states whose energies
increase as E(S,q) = 1

2�S(S + 1) + ε(q), with appropriate
gap � and “dispersion relation” ε(q), where q is a suitable
index or quantum number.5,28,29,31 The lowest band (L band)
and the set of higher-lying bands (E band) are distinguished
according to a selection rule and the different nature of the
excitations associated to them. This structure of the excitations
is reminiscent to that shown in Fig. 1 for the AFHCs, and the
E(S) ∝ S(S + 1) energy dependence is indeed well obeyed
for the odd chains, but as was demonstrated in the previous
section, pronounced deviations occur in the antiferromagnetic
region for the even chains. In order to examine the even-odd
effect, the L- and E-band picture is therefore reanalyzed.

In the L- and E-band picture, the L band is described by
an effective Hamiltonian HAB of two collective spins,31

HAB = �ABSA · SB, (8)

where SA = ∑
iεA si and SB = ∑

iεB si are the total spin oper-
ators of the two sublattices A = {1,3, . . .} and B = {2,4, . . .}.
The value of �AB can be determined using symmetry or
mean-field arguments,5,30,31,52,53 and is given for chains and
rings in Eq. (3). The eigenvalues of HAB are easily determined
to be

E(S) = �AB

2
[S(S + 1) − SA(SA + 1) − SB(SB + 1)], (9)

where |SA − SB | � S � (SA + SB). For given values of SA

and SB , the energy spectrum consists of rotational bands. In the
L band, SA and SB assume their maximal values, and the slope
is calculated to g(S) = 1. The next-higher-lying states of HAB ,
which involve the states where either SA or SB is reduced by
one, are related to the E band. However, they do not reproduce
the energies of H because the spatial fluctuations, which give
rise to dispersion of these excitations, are not accounted for in
the HAB model [that is, ε(q) is not obtained correctly].31

Based on the observation that the energies follow an
S(S + 1) dependence and that the calculated eigenvalues and
matrix elements become quantitatively exact for large s,
the HAB model has been called classical or semiclassical.
However, this notion is misleading as HAB retains a quantized
spectrum. The basic underlying assumption of the model is in
fact that the correlation length is infinite. The HAB model could
then be regarded as a symmetrized version of the bipartite
Heisenberg Hamiltonian, and in fact it is part of the greater
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class of the symmetrized effective Hamiltonians, which we
introduce next.

With a unitary symmetry operator P , a translation operator
for example, the symmetrized effective Hamiltonians are
constructed as follows: if a Hamiltonian H remains unchanged
after j transformations with P ,

P −jHP j = H, (10)

for example if P j = 1, then an effective Hamiltonian Heff is
formed by adding up all j transformations of H ,

Heff = 1

j

j−1∑
i=0

P −iHP i. (11)

This effective Hamiltonian commutes with P since
P −1HeffP = Heff. A common eigenbasis can thus be found
where the eigenvalues of the unitary P have magnitude 1, and
one derives from Eq. (11)〈

	n
eff

∣∣Heff

∣∣	n
eff

〉 = 〈
	n

eff

∣∣H ∣∣	n
eff

〉
(12)

since P i |	n
eff〉 = ±1|	n

eff〉 for any i. If then perturbation theory
is applied to a nondegenerate eigenstate |	n

eff〉 using H =
Heff + V , Heff is found to be exact in first order according to
Eq. (12). This establishes also an upper bound for the ground-
state energy of H , in any spin sector S if H is SU(2) invariant,
as the higher orders in perturbation theory will result in a
negative contribution by the variational principle.

HAB is obtained if P is a sublattice permutation operator,
and it therefore follows that HAB is exact in first order for
nondegenerate energy eigenstates or SU(2) multiplets, respec-
tively, and the L band in particular [see Figs. 1(a) and 1(b)].
For odd chains and even rings, it suffices to use a translation
operator on one (the bigger) sublattice. j is then the size of the
sublattice, and �AB = 2/j . For even chains, the two sublattices
have to interchange.

At this point, it may be surprising that odd chains can be
described by the HAB model, as the two collective spins SA and
SB are necessarily of different size and therefore the problem
becomes less symmetric. However, much more important is
the fact that the collective spins obey the mirror symmetry for
odd N , which is not the case for even N (where SA and SB are
interchanged by this symmetry operation). For even chains,
on the other hand, the HAB model would be expected to work
well, in contrast to our findings. In a study on the N = 8,
s = 3

2 chain, it was argued that the L- and E-band states mix,
producing deviations in the energies, which is forbidden in
rings due to translational symmetry, at least in first order.22

The argument is obviously correct, but does not provide further
insight, in particular on the even-odd effect.

Except for energies with S � 2s in the even chains, Fig. 2
could suggest that the HAB model works otherwise well for
chains. However, the slopes which approximate the L band in
the ferromagnetic region in Fig. 2 are significantly larger than
what is predicted by Eq. (3). This is not easily accounted for
within the HAB model. The upper bound given by HAB for the
energies in the L band is hence not very tight for both even and
odd chains [see Figs. 1(a) and 1(b)], giving room to convex
deviations from an S(S + 1) dependence, which in the case of
the even chains indeed occur for S � 2s.

It is also interesting to inspect the lowest energies in
odd chains for S � Sg and compare to those of HAB . HAB

predicts a linear dependence on S, i.e., up to a constant
E(S) = − 1

2�AB(N − 1)sS or δE(S) = Sg − S for S � Sg . A
linear dependence is indeed observed in this spin sector as
shown in Fig. 4, but the slopes are much lower than what is
predicted by HAB . This is attributed to the neglected spatial
fluctuations or dispersion of the excitations, which generally
lowers the minimal energy.

For even rings and other bipartite clusters, it is well
established that the HAB model becomes more valid the smaller
N and/or the larger s is.31,54 Regarding chains, a similar
tendency should be expected, which is not observed; e.g., the
even-odd effect persists for large s as discussed in Sec. II. In
contrast to rings, the open boundaries in chains induce spatial
inhomogeneities, which are apparently not properly reflected
in a model with infinite correlation length.

Taken together, the HAB model appears appealing at first
sight based on its S(S + 1) energy dependencies, which are
consistent with the energy spectrum in the AFHCs up to
the even-odd effect displayed in Fig. 2, and because it is
exact in first-order perturbation theory. However, the detailed
analysis revealed its deficiencies, which appear to be connected
to its neglect of spatial fluctuations or the assumed infinite
correlation length.

IV. PATH-INTEGRAL REPRESENTATION:
THE O(3) NONLINEAR σ MODEL

The O(3) nonlinear σ model (NLSM) has the potential to
be suitable for short chains as it is based on the large-spin,
semiclassical limit, and can take inhomogeneous states into
account. In general, boundaries lead to residual topological
contributions in the effective action for both half-integer-
and integer spin chains,55 a concept that goes beyond the
physics the HAB model is capable of describing. In the
following, we relate the concepts of the O(3) NLSM with
the numerical findings for the spectra of the antiferromagnetic
Heisenberg model on short chains. In the limit of vanishing
spatial fluctuations, we indeed identify rotational bands in the
spectra. For long chains, the topological boundary terms have
been interpreted as remaining free spins at the edges of the
chain (edge spins).43,44 We show that this interpretation is
not supported by our numerical data and cannot explain the
even-odd effect in the spectra of short AFHCs. On the contrary,
we find that in short chains, the alternating magnetization can
no longer be separated from the uniform magnetization, as it
is assumed in many theories.

A. Derivation of the O(3) NLSM

The O(3) NLSM originates in an effective path-integral
representation of the AFHC in the low-energy continuum
limit12,13 (see also Appendix C). The Euclidean action of a
single isolated spin si with Hamiltonian H is best expressed
in terms of spin-coherent states reading as2

A[�] =
∫ β

0
dτ 〈�|H |�〉 − is ω[�], (13)
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where β = 1/(kBT ). States |�〉 are labeled by a three-
dimensional unit vector �2 = 1 defined by the eigenstate
equation � · si |�〉 = s|�〉. The kinetic energy of the spin
enters in the last term in Eq. (13), defined as

is ω[�] = −is

∫
D

dτ du� · (∂τ� × ∂u�), (14)

where D is the region bounded by the closed curve �(τ ) on
the unit sphere. The auxiliary variables u and τ parametrize
D. The action is unambiguously defined provided that 2s is an
integer.56 It should be pointed out that in deriving the action in
Eq. (13), the assumption that |�(τ + δτ )〉 − |�(τ )〉 is of order
O(δτ ) is used. However, there is no physical reason why the
difference of two paths at adjacent time steps should be a small
quantity.57 Only for large s the overlap of two spin-coherent
states becomes infinitely small,2 and therefore only in this limit
the action in Eq. (13) becomes exact.

For finite chains of length N , the action A [Eq. (13)]
generalizes to

A[�] =
∫ β

0
dτ 〈�|H |�〉 − is

N∑
i=1

ω[�i], (15)

where 〈�|H |�〉 = J s2 ∑N
i=1 �i · �i+1 and |�〉 =

|�1,�2, . . . ,�N 〉 is a product of single spin states on
each lattice site. In order to derive an effective field theory,
some assumptions must be made which are justified in
the low-energy and large-s limits. Since it is expected
that at least for short-range order the chain exhibits
sizable antiferromagnetic correlations, the local spin field is
decomposed into a Néel field n and a transverse canting field l:

�i(τ ) = (−1)i+1n(xi,τ )

√
1 − l(xi,τ )2

s2
+ 1

s
l(xi,τ ), (16)

where xi = ia and a is the lattice constant. The fields n
and l are assumed to be slowly varying and chosen to fulfill
l(xi,τ ) · n(xi,τ ) = 0 and |n(xi,τ )| = 1. Field l contains the
Fourier modes near 0 and field n those near k0, the ordering
wave vector. Thus, l roughly represents the net magnetization,
which is assumed to be small.

Then, Eq. (16) is inserted in Eq. (15), L = Na is set, and
the continuum limit is taken. After some technical calculations
(see Appendix C), the O(3) NLSM is generated:

A =
∫ L

0
dx

∫ β

0
dτ

[
1

2γ υ
(∂τ n)2 + υ

2γ
(∂xn)2

]
+ Atop (17)

with υ = 2J sa, γ = 2/s, and

Atop = −is

N∑
i=1

(−1)i+1ω[n(xi)]. (18)

In Eq. (17), the field l has been integrated out giving l =
i

4J
(n × ∂τ n). The O(3) NLSM combines both the classical

and quantum character of the AFHCs. In the classical
limit s → ∞, only spatial fluctuations remain and A =∫ L

0 dx
∫ β

0 dτ υ
2γ

(∂xn)2. When ignoring spatial fluctuations (just
keeping quantum fluctuations), a low-energy spectrum equiv-
alent to that of the HAB model is predicted, as shown below. In
order to understand the topological meaning of Atop, for even

N Eq. (18) is rewritten as

Atop = −is

N/2∑
i=1

ω[n(x2i−1)] − ω[n(x2i)] (19)

≈ i
s

2

∫ L

0
dx

δω

δ�
|�=n ·∂xn. (20)

After evaluating the integral in Eq. (20) and taking into account
an additional uncompensated Berry phase for N odd,55 one
generally obtains

Atop = i
s

2
{4πQ + ω[n(L)] − (−1)Nω[n(0)]}, (21)

where Q is integer valued and simply counts the winding
number of the field n. For periodic boundary conditions and N

even, Eq. (21) reduces to Atop = iθQ, the so-called θ term,12,13

where θ = 2πs. Atop depends only on the topology of the path.
In general, with respect to the derivation of Eq. (17) for open

boundaries, when performing the continuum limit for open
chains, additional boundary terms in the action are expected to
be found. In some cases these terms can simply be included by
introducing an effective length. For alternating sums, though,
the cases of summing over an odd or even number of terms
need to be distinguished. Higher-order terms in the bulk action
are found which are assumed to be small [see Eq. (C7) in
Appendix C].

The topological term Atop = iθQ in Eq. (17) is known to
play a crucial role for the behavior in the thermodynamic
limit. It enters the path integral with a factor e−i2πsQ, thus for
integer spin it does not affect the partition function of the chain,
while for half-integer chains θ = π yields an alternating factor
(−1)Q. The renormalization group treatment of the action in
Eq. (17) with the constraint |n| = 1 leads to an increase of γ ,
which is at first independent of Atop at large energy scales.
Without the topological term, this leads to a strong-coupling
fixed point with a mass gap �H ∼ 0.4Je−πs for integer spin
chains, which has also been suggested from the calculation of
the exact S matrix.58 However, with the topological term for
θ = π , the renormalization behavior is altered and becomes
difficult to analyze at small energy scales, but it is known
that half-integer spin chains are massless and belong to the
universality class of the SU(2) Wess-Zumino-Witten model
with topological coupling k = 1 (Refs. 59–62) in agreement
with the Lieb-Schultz-Mattis theorem63 and the Bethe ansatz
solution for the integrable spin- 1

2 chain. This difference
between integer and half-integer spin chains has become well
known in the literature.12,13 However, in the small chains that
are considered in this work, the renormalization group flow
is terminated by the finite length of the system at rather large
energy scales, which exceed the mass gap, i.e., before Atop

makes a significant difference. Therefore, there is no need
to distinguish between massive and massless theories in the
following analysis.

B. Rotational band in the O(3) NLSM

In order to connect with the HAB model, spatial fluctuations
in the action are initially ignored. The problem then reduces
to a (0 + 1)-dimensional one and the action of Eq. (17) taking
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into account Eq. (21) is given by

A = I

2

∫ β

0
dτ (∂τ n)2 + iε s ω[n], (22)

where I = N/4J , ε = 0 for N even, and ε = 1 for N odd. For
ε = 0, this yields the path integral of the three-dimensional
rigid rotator,64 with energy levels

E(S) = 1

2I
S(S + 1) (N even), (23)

where S = 0,1, . . . and each energy level is (2S + 1)-fold
degenerate.

The case ε = 1 can also be solved exactly, e.g., in the CP 1

representation by introducing an independent gauge field.65

This auxiliary field can be set to zero, and the Lagrangian
becomes the rigid rotator Lagrangian again. However, the
variation of the gauge field generates a constraint on the
possible quantum numbers. One obtains

E(S) = 1

2I
[S(S + 1) − s2] (N odd) (24)

with the allowed S now constrained to S = s,s + 1, . . . .
For open boundaries, there is an additional discrete lattice

symmetry i → N + 1 − i, which is maintained by introducing
an effective length L = (N + 1)a in the continuum model.
The moment of inertia then reads as I = (N + 1)/4J , and
thus Eqs. (23) and (24) recover the slopes of the HAB

model in Eq. (3) up to order O(1/N2). Taking into account
short-range fluctuations in the Berry phase of a single spin57

or higher-order operators in the effective action generally
renormalizes the coupling constants. A similar mapping of
magnetic molecular rings onto a rigid rotator model has been
performed in Refs. 66 and 67.

Neglecting spatial fluctuations in the O(3) NLSM ap-
parently renders its physics equivalent to the HAB model.
However, if spatial fluctuations are included, the coupling
to the rotational band has to be analyzed, which will alter
Eqs. (23) and (24). In particular, one would expect the spatial
derivative term in Eq. (17) to become more important once
the total spin is excited since the additional net spin needs to
be distributed along the chain. A discussion of this point with
regards to the spin density will be given in Sec. VII. However,
as soon as the spatial derivative term is included in Eq. (17) and
the full Lagrangian is treated, the spectra cannot be extracted
as easily anymore, but it is possible to consider the simplified
case of edge excitations.

C. Effective edge-spin Hamiltonian

In Ref. 43, long s = 1 chains of even or odd length were
modeled by the O(3) NLSM coupled to sedge = 1

2 edge spins.
The constraint |n|2 = 1 of the nonlinear σ field was relaxed by
adding an artificial mass term and a repulsive λn4 interaction.
On a mean-field level, the parameter λ can be assumed to be
small. Then, the field n can be integrated out, and an effective
Hamiltonian where only the edge spins couple to each other
results43

Hedge = Jeffs′
1 · s′

L, (25)

where s′
1 and s′

L are spin operators representing the edge
spins. Equation (25) is a valid approximation at energies

much smaller than the Haldane gap, for chains much longer
than the correlation length. The effective exchange interaction
Jeff ∼ (−1)Ne−N/ξJ between the edge spins is ferromagnetic
for N odd and antiferromagnetic for N even, where ξ is
the spin-spin correlation length of the corresponding spin
chain. The edge-spin picture hence gives rise to a pronounced
even-odd difference in the L-band energy spectrum at small
values of S. However, this difference can only be derived for
long chains, in contrast to the even-odd effect observed in
Sec. II, which is a property of chains that are shorter than the
correlation length.

For long chains, the existence of edge states is not restricted
to integer spin. Based on Eq. (21) and interpreting the residual
Berry phase with free spins, edge spins of magnitude sedge = s

2
for s integer and sedge = 1

2 (s − 1
2 ) for s half-integer have

been proposed.44 Half-integer spin chains have thereby been
pictured as a continuum model of a spin- 1

2 chain coupled to
two “impurity” spins of magnitude 1

2 (s − 1
2 ). Equation (25)

then predicts the following spectrum: for N even, the ground
state has Sg = 0 and the edge spins form a singlet. The
lowest-energy excitations can be constructed by exciting
the two edge spins into an S = 1,2, . . . ,2sedge state, and
the excitation energies are given by

E(S) − E(0) = JeffS(S + 1) (N even). (26)

For N odd, due to the ferromagnetic effective coupling Jeff <

0, the lowest energy is obtained if the edge spins are coupled
to their maximal value 2sedge (in case of half-integer spin, the
bulk spin- 1

2 chain contributes the additional spin 1
2 to the total

spin Sg = s of the ground state). Excitations with S < Sg are
constructed by coupling the edge spins to lower spin values
2sedge − S ′ where S ′ = Sg − S. The corresponding excitation
energies are

E(Sg − S ′) − E(Sg) = |Jeff|S ′(S ′ + 1) (N odd) (27)

for S ′ = 1,2, . . . ,2sedge. For large system sizes, the edge-spin
picture has been numerically verified.15,40,43,45,68 However, for
short system sizes, it does not seem justified to regard the edge
states decoupled from the bulk states, as explained above.

The coupling of spatial fluctuations to the bulk states for
shorter system sizes may be described by a more general effec-
tive edge-spin Hamiltonian with the following ansatz: H ′ =
l2

2I
+ HI where HI = λul · (s′

1 + s′
L) + λsn · [s′

1 − (−1)N s′
L],

which is appropriate if the coupling to the edge spins is weak.
In case the two parameters λu and λs are both sufficiently small,
the field l can be integrated out, which recovers the edge-state
Hamiltonian in Eq. (25). However, it is so far unclear how to
treat the effective model H ′ for the general case of short chains
in order to extract the modified spectrum, which remains a task
for future research.

In Refs. 15 and 45, it has been conjectured on the basis
of numerical density matrix renormalization group (DMRG)
data that the edge-state picture stays robust up to very small
N , even when N becomes smaller than the correlation length.
In our data, however, we do not see signatures of edge
states. First, for odd chains, the lowest excitations E(S) for
S < Sg scale rather linearly with S in contrast to the quadratic
behavior predicted in Eq. (27) (see Fig. 4 and the corresponding
discussion in Sec. II). Interestingly, a linear dependence results
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FIG. 5. (Color online) Slopes Gedge for odd (green squares) and
even (blue circles) N . Solid symbols are for chains with s = 1, and
open ones with dashed lines for chains with s = 2. The red lines
represent the slopes Gedge = Jeff for large even N resulting from
Eq. (26) with Jeff = 0.35e−N/6J for s = 1 and Jeff = 0.05e−N/33J

for s = 2 according to Ref. 15. The solid line is for s = 1, and the
dashed one for s = 2. Lines are guides to the eye.

from the HAB model. Second, for even chains, the excitations
at small S generally do not obey E(S) ∝ S(S + 1) which
contradicts the edge-spin prediction of Eq. (26). In particular,
the deviation from quadratic behavior is observed up to ∼2s,
while edge states would correspond to the lowest s excitations
[see Fig. 2(a)]. The edge states cannot be distinguished from
the higher excitations up to ∼2s. Finally, the scaling with chain
length N of the first excited state above the ground state does
not follow the exponential decay of the edge-spin picture. To
illustrate this, let us define the corresponding (unnormalized)
slopes in the E versus S(S + 1) diagram:

Gedge =
{

−�AB

2 g(s) (N odd),
�AB

2 g(1) (N even),
(28)

where g(S) is defined in Eq. (2). For N even, Gedge is related to
gAF by Gedge = gAF �AB/2 (see also Fig. 3), and for N odd,
it is related to δE by Gedge = (N − 1)�ABδE(s − 1)/4 (see
also Fig. 4). Figure 5 shows Gedge for s = 1 and 2 for even
and odd N . According to Eqs. (26) and (27), for long chains
these slopes are given by Gedge = Jeff for N even and Gedge =
|Jeff|/s for N odd. The fit curves to the data for long even chains
which thus have the form Gedge = 0.35e−N/6J for s = 1 and
Gedge = 0.05e−N/33J for s = 2 where the fit parameters are
taken from Ref. 15 are also plotted. The deviations for smaller
N are obvious. Furthermore, the deviations appear to increase
with increasing s, demonstrating that the edge-spin picture
becomes less appropriate with increasing s, in contrast to the
observations for the even-odd effect of Sec. II, which is present
even for large s.

In conclusion, the standard edge-spin picture cannot ac-
count for the even-odd effect. Including couplings of edge
spins to both l and n in the NLSM would result in a more
complete model that may remedy the situation. However, this
would imply that uniform and alternating magnetization be-
come strongly coupled and can no longer be treated separately.

V. COMPARISON TO THE SPIN- 1
2 CHAIN

As both the HAB model and the NLSM fail to account for
the even-odd effect quantitatively, it may be instructive to turn
to the special case of s = 1

2 chains to examine if quantum
effects play an important role. The spectrum of finite s = 1

2
chains is quantitatively very well understood, not only from the
Bethe ansatz,69 but also in terms of effective bosonic quantum
numbers from bosonization,51,70 which establishes the s = 1

2
chain as an excellent reference.

The description of the spectrum of the s = 1
2 chain in terms

of bosonic quantum numbers51,69,70 results in an almost equally
spaced energy spectrum in the form of a conformal tower.
There are corrections of order 1/N2 and 1/(N ln N ) to the
spectrum, but this effective description works well for N � 10.
An L band can also be observed, except that in this case the
lowest-lying energy states of a given S are created by adding
bosonic particles with zero momentum, and the number of
bosonic particles is given by the Sz quantum number, the pro-
jection of S along the z axis. For s = 1

2 chains with N both even
and odd, the excitation energies in the L band are given by51

E(S) = πv

N + 1
S2 (29)

up to higher-order corrections in 1/N2 and 1/(N ln N ), where
v = πJ/2. Hence, there is no even-odd effect to lowest
order in the excitation spectrum. There is a contribution to
the ground-state energy of order 1/N , which is positive for
odd N and negative for even N ,17 but this is not related to
the even-odd effect in Sec. II. It is important to notice that
in the s = 1

2 chain, the E(S) dependence is predicted to be
changed from the S(S + 1) behavior to a simple S2 behavior,
analogously to the charging energy of a capacitor, which
shows a quadratic energy dependence in the charge Q2.

Interestingly, such an S2 behavior seems to agree better with
the L-band energies for even chains with larger s, as shown
in Fig. 6(a) for the case of N = 6 and s = 3

2 corresponding to
the Cr6 molecule. The S2 behavior is consistent with the entire
L band with πv

N+1 = 0.32J or v ≈ 0.71J according to the fit
in the figure. In order to test this further, the slope of the L

band in an energy versus S2 diagram, which is given by g(S) ×
2S/(2S − 1), is plotted in Fig. 6(b) for N = 6 and different s.
The S2 dependence does not account for the even-odd effect,
which in Fig. 6(b) is observed as the pronounced “dip” at
small S, but provides a significantly better average fit through
the spectra compared to the S(S + 1) behavior in Fig. 2(a).
However, this “success” of an S2 behavior does not explain
why such an approach fails for odd chains, which obviously
remain to be well described by the S(S + 1) behavior as shown
in Fig. 2(b), nor does it give an independent estimate for πv

N+1 .
For the s = 1

2 chain, it is also possible to predict local expec-
tation values, such as the alternating magnetization18,71,72 and
the dimerization along the chain. For example, the alternating
spin expectation values in the z direction can be calculated for
the highest weight states in the L band18

〈
sz
i

〉 ∝ (−1)i+1 sin(2πSzxi/L)√
L sin(πxi/L)

, (30)
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FIG. 6. (Color online) (a) Energy spectrum of the N = 6, S = 3
2

chain as function of S(S + 1). The (red) line is the fit E(S) = 0.32S2.
(b) Slopes g(S) × 2S/(2S − 1) as functions of S for the N = 6 chain
for different spins s (symbols). The dashed (red) line is the prediction
of the HAB model.

where L = (N + 1)a is the effective length. Possible mul-
tiplicative corrections70 of order 1/ ln L and higher-order
terms have been neglected here. The alternating order always
decreases ∝√

i near the edges.71 The calculation also implies
an even-odd effect in the density: For the ground state of
odd N chains with Sz = 1

2 , there is a maximum ∝1/
√

L in
the middle of the chain, while the alternating order is zero
for even N chains with Sz = 0. The result shows explicitly
that inhomogeneities are present and important over the entire
chain, which were of course neglected in the HAB model. Spin
densities for higher-s cases will be discussed in Sec. VII.

A similar calculation yields the alternating part of the
nearest-neighbor correlation for states in the L band, which
is dimerized:

〈si · si+1〉 ∝ (−1)i
cos(2πSxi/L)√
L sin(πxi/L)

. (31)

The dimerization becomes very strong and length independent
at the edges 〈s1 · s2〉 ∼ −0.65, but remarkably there is no
pronounced even-odd difference since the cosine function near
the boundary is independent of S being integer or half-integer.
Corrections to the edge dimerization are small down to very
short s = 1

2 chains and the correlation of the first two sites
〈s1 · s2〉 is much enhanced compared to the bulk value of
−0.4431 both for even and odd N , despite the fact that only

even chains could potentially lock into a dimerized ground
state, while odd chains naively should not be able to support
such a valence bond state. In fact, the difference of the
expectation value 〈s1 · s2〉 is only about 15% between chains
of N = 4 and 5.

In conclusion, the analysis in this section shows that the
even-odd effect described in Sec. II is not present in the
quantum theory of the s = 1

2 chain. An even-odd difference
in the spin density can be observed,18 but this is related
to symmetry properties, as also discussed later in Sec. VII.
However, significant spatial inhomogeneities are observed in
the chain and quantum effects cause the L band to be better
described on average by a “charging energy” of the form
E(S) ∝ S2.

VI. CLASSICAL ANTIFERROMAGNETIC
HEISENBERG CHAIN

The classical AFHC, where the spins in Eq. (1) are treated
as classical objects (vectors), is a good approximation of the
quantum model for large s. It ignores quantum fluctuations
but fully retains spatial fluctuations, and thus allows us to
study the importance of the latter. This model has already been
studied within the context of artificial nanostructures,73,74 and
it has been found that even chains always have a coplanar and
noncollinear ground state. For odd chains, the situation is the
same, except that for magnetic fields below a critical field the
lowest-energy configuration is ferrimagnetic, and an analytical
expression for the critical field was found.74 This difference
reflects the different total ground-state spins Sg = 0 and s for
even and odd chains. In this section, we present the lowest-
energy, spin density, and nearest-neighbor correlation func-
tions of the classical AFHC, and compare them to the quantum
results, as functions of the normalized squared total spin

S2
n = S(S + 1)

Sf (Sf + 1)
(32)

or Sn = S/Sf in the classical case, where Sf = Ns.
The classical analog of Eq. (1) is constructed by in-

troducing unit vectors ei = si/s, whose components com-
mute in the limit s → ∞.75,76 The classical vectors can
then be parametrized in spherical coordinates as ei =
(cos φi sin θi, sin φi sin θi, cos θi). Substitution in Eq. (1) min-
imizes the energy when θi = θN+1−i and the nearest-neighbor
relative azimuthal angles φi+1 − φi = π ,77,78 thus the spin
configurations are planar as expected. The classical Hamil-
tonian then reads as

H = J s2
N−1∑
i=1

cos(θi + θi+1), (33)

where θi ∈ [0,π ] for all i. Minimization of Eq. (33) gives the
absolute ground state.77–79 Employing rotational symmetry,
the lowest energy for arbitrary total magnetization S = s

∑
i ei

can be calculated by adding an external magnetic field term
HB = −Bs

∑
i cos θi in Eq. (33), where B is directed along the

z axis (the field is measured in units of 2μB in this section).
The direction of the magnetization coincides then with the
direction of the field and S = s

∑
i cos θi . By tuning B, the

zero-field energies E(S) can be calculated for all values of
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FIG. 7. (Color online) (a) L-band energies E(S) of the classical
AFHC scaled with J (N − 1)s2 for chains with lengths N = 6 to 11
for smaller values of S2

n . For the odd chains, the energies with S < s

do not belong to the L band but to configurations with magnetization
less than the one of the absolute ground state, and are included here for
completeness. The arrow points towards the “kinks” in the energies
at the fields where S = s. The inset shows the same figure for the
whole S2

n range. (b) The slopes g of the L band of the classical AFHC
as function of S2

n for chain lengths N ranging from 6 to 11.

S by subtracting the magnetic energy at the end. For odd
chains, configurations with magnetization less than the value
of the absolute ground state S < Sg = s are not accessible
this way, as E(S) decreases as a function of S in this regime.
The calculation of these states is performed by adding a term
HK = KS2 with K > 0, which favors states with minimal S.

A. Slopes and energies

The slope in the classical case is determined as g(S) =
2

�AB
∂E/∂(S2) = 1

�ABS
∂E/∂S, and is related to the inverse

magnetic susceptibility (S/B)−1: According to the Legendre
transformation E(S) = EB + BS, the magnetization S is
given as S(B) = −∂EB/∂B (at T = 0) and the field as
B(S) = ∂E(S)/∂S. One thus finds

B(S) = �ABSg(S). (34)

The inverse of this equation gives the magnetization as a
function of field S(B), which implies that �ABg(S) is the
reciprocal susceptibility (S/B)−1 (see also Sec. II).
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FIG. 8. (Color online) L-band energies E(S) scaled with
J (N − 1)s2 for the (a) N = 6 and (b) N = 7 chains, for s ranging
from 1

2 to ∞ (symbols). Results are shown as a function of S2
n . For

N = 7 (odd chains), the energies with S < s do not belong to the L

band but to configurations with magnetization less than the absolute
ground state, and are included here for completeness.

The L-band energies of chains with lengths N = 6 to
11 are displayed in Fig. 7(a) as functions of S2

n , and the
corresponding slopes are presented in Fig. 7(b). For even
chains, the classical slope g is small at small S and increases
rapidly with increasing S (which comes about effectively like
an increase of the external magnetic field B and can be thought
of in these terms). In contrast, the slope (for S � Sg) for
the odd chains starts off at a higher value compared to the
even chains, and shows a significantly weaker dependence
on the total magnetization. The slopes for both the even
and odd chains become comparable and weakly varying for
S2

n ≈ 4/N2 or S ≈ 2s. In Fig. 8, the energy spectra E(S) of the
quantum AFHC, scaled with the energy of the ferromagnetic
state J (N − 1)s2, are shown for the N = 6 and 7 chains
for s ranging from 1

2 to 7
2 , and the classical results are

also shown. The corresponding slopes g(S) are presented in
Figs. 9(a) and 9(b). The quantum energies and corresponding
slopes approach the classical ones with increasing s. Although
convergence is relatively slow, in both the even and odd chains,
the classical and quantum slopes exhibit very similar features.
Most importantly, the strong down-bending in the slope for the
even chain at small values of S2

n (or S), which is the hallmark
of the even-odd effect of Sec. II, is also present in the classical
system. This implies that spatial inhomogeneities must be the

144409-11



A. MACHENS et al. PHYSICAL REVIEW B 87, 144409 (2013)

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

 s = 1/2
 s = 1
 s = 3/2
 s = 2
 s = 5/2
 s = 3
 s = 7/2
 s → ∞

g

S2

n

N = 6

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

S = 2s
N = 6

i = 2,5

i = 3,4

ez i

S2

n

i = 1,6

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

N = 6
i = 2,5

i = 3,4

e ie i+
1

S2

n

i = 1,6

0.0 0.2 0.4 0.6 0.8 1.0
0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

N = 7

s = 1/2
 s = 1
s = 3/2
 s = 2
s = 5/2
 s = 3
 s → ∞

g

S2

n

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

S = 2s

N = 7

i = 4
i = 2,6

i = 3,5
ez i

S2

n

i = 1,7

0.0 0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.0

0.5

1.0

N = 7
i = 2,6

i = 3,5

e ie i+
1

S2

n

i = 1,7

(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. (Color online) Behavior of the classical AFHC for N = 6 (top) and N = 7 (bottom) as a function of S2
n . (a), (b) The classical slopes

where s → ∞ (red lines), along with the slopes of the quantum AFHC (symbols) of Fig. 2 are shown. (c), (d) Spin density ez
i = cos θi along

the direction of total spin S. The numbering of the spins starts at the edge of the chain. The spin density is mirror symmetric with respect to the
center of the chain. (e), (f) Nearest-neighbor correlation functions ei · ei+1. They are mirror symmetric with respect to the center of the chain.

leading mechanism of the even-odd effect, while quantum
fluctuations give quantitative corrections to this phenomenon.

B. Local magnetization and correlations

To study the spatial inhomogeneities further, local quanti-
ties are considered. The local magnetizations of the spins along
the direction of S (with S > 0) or spin densities ez

i = cos θi

and the nearest-neighbor correlation functions ei · ei+1 are
shown in Figs. 9(c)–9(f) for N = 6 and 7, respectively. The
related spin configurations are presented in Fig. 10 for different
values of S2

n . The ez
i and ei · ei+1 obey the mirror symmetry

of the chain. In even chains, the local magnetization ez
i is zero

everywhere in the ground state as the spins align perpendicular
to S. For very small S (or magnetic field B), the ez

i

are almost perpendicular to S, to optimally preserve their
exchange energy. With increasing S, the outer spins ez

1 and
ez
N have the largest projection on S among all spins and gain

the most magnetic energy, while their nearest neighbors ez
2

and ez
N−1 turn against the field. This configuration allows a

net magnetization at low exchange energy cost, and the edge
spins are in fact very quickly magnetized, which implies a
large magnetic susceptibility or a small slope g. The situation
is quite different for odd chains since the ground state is in
a ferrimagnetic configuration and the outer spins are already
fully aligned with the total magnetization S = s. In order to
magnetize the chain further, the spins on the odd sites decrease
their local magnetization ez

i , and this allows the spins on the
even sites to increase their magnetization. This magnetization
process costs more energy and is less efficient than in the
even chain. Hence, the susceptibility is smaller and the slope

g(S) is larger for odd chains. This is also reflected in the local
correlations in Figs. 9(e) and 9(f) where the correlation e1 · e2

of the first bond increases more strongly for odd chains than for
even chains, which in turn requires more energy. The markedly
different slopes at small S in the even and odd chains are hence
related to the high susceptibility of the outer spins in the even
chains towards magnetic fields, providing an intuitive picture
of the even-odd effect.

Remarkably, at S2
n ≈ 4/N2 or S ≈ 2s, the differences in

correlations and local magnetizations between even and odd
chains start to disappear, and the slopes g(S) in Figs. 9(a)
and 9(b) become comparable [see also Fig. 7(b)]. This
crossover region S ≈ 2s is marked by a vertical dotted line in
Figs. 9(c) and 9(d) and the corresponding spin configurations
are depicted in Fig. 10. For S larger than 2s, the interior spins

2
nS

04.0

6=N 7=N

3.0

2/4 N
)2( sS =

2/4 N
)2( sS =

22 / fg SS

(a) (b)

FIG. 10. (Color online) Spin configurations of the classical
AFHC for chains with lengths (a) N = 6 and (b) N = 7 for different
values of S2

n extracted from Figs. 9(c) and 9(d).
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exhibit nearly identical ez
i for both even and odd chains, while

the outer spins have larger local magnetization.

C. Analytical results

Further insight is provided by the analytic calculation of
the local magnetization along the chain in the limits NB → 0
and NB → ∞, respectively. Using a small-angle expansion
of Eq. (33) for infinitesimal fields B, we arrive at a set of
coupled equations, which can be solved analytically for the
local magnetization of classical chains with arbitrary even N :

ez
i = B

4J s
[1 + (−1)i(2i − 1 − N )] (35)

for i � N/2 (ez
N+1−i = ez

i due to mirror symmetry). The
local magnetization hence decays linearly from the edges
into the chain. The total magnetization is obtained as S =
NB/(2J ), where it should be noted that both the uniform
and alternating parts in Eq. (35) contribute equally to it.
This is remarkable since it implies that the alternating part
due to the boundary condition is affecting a thermodynamic
quantity, i.e., the edge effect is of order N and cannot be
extracted from standard finite-size scaling. The energy is
E(S) = −(N − 1)J + (J/N)S2. For the slope thus holds

g(S → 0) = 2J

N�AB

= 1

2

N

N − 1
. (36)

This is almost a factor 2 smaller than the prediction g = 1 of the
HAB model or the slope gF in the ferromagnetic region Sn → 1
[Eq. (5)], and thus explains the strong reduction of g(S) for
even chains analytically (but does not explain a crossover at
S ≈ 2s). For odd chains, we could not find a closed analytical
solution of the linearized equations.

The local magnetization can also be calculated approx-
imately from an effective hydrodynamic theory in a semi-
infinite chain in finite fields (i.e., NB 
 J s),80 which can
also be derived from the classical version of the NLSM in
Sec. IV. This results in the following expression for the local
magnetization80:

ez
i = B

4J s
− (−1)i4JBs

∫ ∞

−∞

dq

2π

cos(iq)

4J 2s2q2 + B2

= B

4J s
− (−1)i exp(−i/ξB) (37)

without any adjustable parameters (i � N/2). Here, we
introduced the quantity

ξB = 2J s

B
, (38)

which defines a characteristic length in units of the lattice
spacing. The local magnetization decays exponentially into
the chain with a length scale ξB , which depends on the field B.
Interestingly, the prefactor of the alternating part is unity and
independent of J and B. The field therefore does not determine
the strength of the alternating response, but only its range ξB . In
this case, the edge effect is also large but not of order N , and the
thermodynamic contribution can be extracted using finite-size
scaling, in contrast to Eq. (35). The local magnetization of a
N = 100 chain at intermediate field is shown in Fig. 11, and
good quantitative agreement is found with the exact classical

0 20 40 60 80 100
-1.0

-0.5

0.0

0.5

1.0

B = 0.2 J

N = 100

 numerical
 Eq. (37)

ez i

site i

FIG. 11. (Color online) The local magnetization ez
i along an even

classical chain of length N = 100 for a field of B = 0.2J (solid
symbols) compared to the theoretical prediction in Eq. (37) (open
symbols).

result [for very short chains, Eq. (37) holds only qualitatively,
see below]. In first order in (NB)−1, the total magnetization
is obtained as S = NB/(4J ), and ξB thus varies with S as
ξB ∝ S−1. Since S � Sf (magnetic field � saturation field),
the limit ξB > 1

2 is implied. For relatively large S, when
ξB � N , the alternating part becomes located near the edges,
and the local magnetization becomes essentially homogeneous
in the interior of the chain, as it is also observed qualitatively
in the spin configurations shown in Fig. 10 for S2

n = 0.3. The
slope is determined as g(S) = 1, as in the HAB model, and
consistent with the exact ferromagnetic slope gF which is
approached for N → ∞. This finding may serve also as a
measure of the quantitative accuracy of Eq. (37).

Equations (35) and (37) describe two completely different
physical regimes, and combined they provide a qualitative
description of the crossover. At small fields B � J s/N , the
characteristic length ξB exceeds the chain length and there is
full interference between the edges, while at large fields B 

J s/N , the length ξB is much shorter than N and the two edges
act independently. According to Fig. 9, the crossover occurs
when S ≈ 2s, which translates into N ≈ 4ξB [which also
implies N 
 2 for Eq. (37) to describe quantitatively the large-
field regime, which is not always fulfilled in very short chains].

In the thermodynamic limit N → ∞ at very low fields
B → 0, both Eqs. (35) and (37) appear to be valid, but give
contradictory results. This discrepancy is resolved if one takes
care of the order of limits. If NB → 0, only Eq. (35) is
applicable while Eq. (37) only holds if NB → ∞. Therefore,
the thermodynamic limit N → ∞ and the zero-field limit
B → 0 do not commute in the classical model with edges,
which has also been observed for impurity effects in higher
dimensions.80–82

In this section, it has been shown that the difference in the
L-band behavior between even and odd chains is captured by
the classical AFHC model. The analytic calculations for the
spin densities naturally suggest a crossover in even chains
at the onset of interference between the edges, which the
numerical results show to occur at S ≈ 2s or N ≈ 4ξB . Below
this magnetization, the edge spins of even chains can be
magnetized with a low-energy cost, leading to a reduction
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of g(S) predicted in Eq. (36). In odd chains, on the other hand,
the ferrimagnetic configuration at small S prevents an easy
magnetization of the edge spins, leading to a larger slope g(S)
in the numerical results. It should be noted that the edge spins
here are classical and are hence not related to the quantum
edge spins of the NLSM (Sec. IV C). At magnetization above
2s, the alternating spin density localizes at the edges, and the
distinction between even and odd chains largely disappears.

VII. SPIN DENSITY AND CORRELATION FUNCTIONS

After having shown in the previous section that the even-
odd effect can be rationalized with the help of the classical
spin densities and correlation functions, these quantities
will be briefly examined for the quantum AFHC in the
antiferromagnetic region. The spin densities and correlation
functions have to be symmetric under the parity operation with
respect to the center of the chain. This leads to an obvious
difference in the spin density or wave functions between
even and odd chains. For even chains, the parity operator
interchanges the two sublattices, flipping the spins of each
sublattice. The symmetry competes with the antiferromagnetic
order and leads to having the same nearest neighbor 〈sz

i 〉 around
the center, which is very small in magnitude. For odd N , there
is no such restriction.

A specific example is shown in Fig. 12. The spin density of
the s = 1 chains with N = 15 and 16 is plotted for the S = 1
lowest state (which is the ground and the first excited state,
respectively), showcasing the differences for even and odd N
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FIG. 12. (Color online) Spin density 〈sz
i 〉 and nearest-neighbor

correlations 〈si · si+1〉 of the s = 1 AFHC (black solid circles).
(a) Spin density in the lowest S = 1 multiplet of the N = 16 even
chain and (b) for the S = 1 ground state of the N = 15 odd chain.
(c) Correlations in the S = 0 ground state for N = 16 and (d) in the
S = 1 ground state for N = 15. For comparison in panels (a) and
(b), the spin density of the corresponding HAB model is shown (blue
open circles). The nearest-neighbor correlations in the HAB model
are equal to −1.125 (not shown). Lines are guides to the eye.

(note that for the ground state of the N = 16 chain 〈sz
i 〉 = 0

for all spins). The spin density is weaker at the center, while
it increases approximately linearly going towards the edges,
where spins are less bound. The predictions of the HAB model
are also plotted in the two figures, and they miss the main
features, even though they exhibit a difference between even
and odd chains. For the odd chain, the HAB prediction clearly
shows the antiferromagnetic order, while for the even chain it
is uniform (and hence small in magnitude).

For comparison, we shortly comment on the situation in
long AFHCs. In Ref. 43, the spin density in the lowest S = 1
state was numerically calculated with the DMRG method for
s = 1, N = 100. A very good agreement has been found with
an exponential decay away from the chain ends, resulting from
sedge = 1

2 edge spins. Additionally, data for higher spin states
S > 1 confirmed the analytic picture of edge states and dilute
bosonlike bulk magnons in long chains.83 However, for the
s = 1 chain, the correlation length is about six sites, and the
end spin wave functions protrude accordingly from each end of
the chain. The data shown here are for N = 15 and 16 which
is about two times the correlation length, and the effective
description by independent quantum edge spins is apparently
not appropriate.

Looking at the nearest-neighbor correlation functions for
the ground states of the N = 15 and 16 chains [Figs. 12(c)
and 12(d)], only weak differences between even and odd
chains are observed. Correlations are maximal at the edges,
where the relatively loosely bound spins have more freedom
to minimize correlations in their vicinity. The strength of the
nearest-neighbor correlations decreases towards the center.
The difference between the even and the odd chains is seen in
the central region, where the correlation oscillates in strength
with position for N = 16, similarly to what happens for the
spins further out [Fig. 12(d)]. In contrast, for N = 15 the
strength of the central correlations does not oscillate much
with position [Fig. 12(c)]. The HAB model predicts for both
cases uniform nearest-neighbor correlations equal to −1.125
and completely misses the central features.

VIII. VALENCE BOND STATES

The HAB model can describe the physics of the AFHC
when Néel-type correlations prevail. Its main deficiency is
that it does not account for spatial fluctuations, leading
to an infinite correlation length in this model and small
nearest-neighbor quantum entanglement. The valence bond
solid (VBS) is a complementary description, where strong
(singlet) entanglement between nearest neighbors is built in,
and correlations are exponentially decaying.49,50,84 In contrast
to the HAB model, the VBS states also explicitly contain spin
degrees of freedom near the edges, and might hence better
approximate the spatial fluctuations relevant for the even-odd
effect. We therefore compare and combine quantum VBS
states with Néel-type HAB states in order to understand better
which effect plays a more dominant role.

A. Construction of valence bond states

VBS states were originally introduced as translationally
invariant ground states of exactly solvable integer spin
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FIG. 13. Sketches of valence bond states for N = 6 and 7 chains.
Each column represents a spin s, each circle a spin 1

2 , and each line a
singlet bond. (a) Even and (b) odd completely dimerized s = 1

2 chain.
(c) Even and (d) odd VBS state in an s = 1 chain. (e) Even and (f)
odd partially dimerized s = 3

2 chain. (g) Even and (h) odd VBS state
in an s = 2 chain.

models with an excitation gap,49,50 rigorously exemplifying the
Haldane phase.12,13 In general, valence bond states are formed
by replacing the spin-s operators by symmetrized 2s spin- 1

2
objects on each site, and then coupling pairs of spin- 1

2 objects
on different sites to form singlets.2 Many different valence
bond states can be constructed for a particular system in
this way depending on the coupling scheme of the spins,
forming an overcomplete basis of the Hilbert space in the
singlet sector.85 As a simplification, we here restrict the valence
bonds to connect nearest neighbors evenly to the right and
the left as shown in Fig. 13. Because the spin- 1

2 objects are
symmetrized at each site, the resulting correlations remain
extended over a correlation length of several spins. For integer
spin chains, this construction leads to a unique, and in the case
of periodic boundary conditions, translationally invariant state
called a VBS.49,50 In the case of half-integer s, the number
of singlets between nearest-neighbor sites of the valence
bond wave function is different for two successive pairs [see
Figs. 13(e) and 13(f)], therefore translational invariance is lost.
The depicted state for each half-integer s case is complemented
by a state where all bonds are shifted one lattice spacing to
the right. More generally, a half-integer spin VBS can be
regarded as an integer spin VBS with an additional spin- 1

2
chain. However, according to the magnetization profile in
Eq. (30), the residual free spin for odd-N spin- 1

2 chains is
located mostly in the center of the chain, i.e., not as depicted
in Figs. 13(b) and 13(f) near the edge. The approximate ground
state for half-integer s is therefore formed by all states where
the residual free spin is delocalized. However, using a suitable
parent Hamiltonian based on projection operators, a unique
trial VBS state can be defined as will be shown below.

Using the original idea from Affleck, Kennedy, Lieb, and
Tasaki, parent Hamiltonians with nearest-neighbor VBS wave
function as the ground state can be constructed for integer s

by projecting out all parts where neighboring spins couple to a

total spin less than s. In the case of open boundaries, this results
exactly in the ground states shown in Figs. 13(c), 13(d), 13(g),
and 13(h) with s unpaired spin- 1

2 objects at each end. These
edge spins can form total spin multiplets ranging from 0 to s.
Parent Hamiltonians can also be constructed for half-integer
spin chains,86 as will be shown below for the case s = 3

2 .
In order to define parent Hamiltonians with exact VBS

ground states, it is useful to define (non-normalized) projection
operators acting on sites i and i + 1, which project out all states
with total spin (si + si+1)2 < F :

P F
i,i+1 = 1

KF

F−1∏
f =0

[(si + si+1)2 − f (f + 1)]. (39)

The constant KF > 0 is conveniently fixed such that the
prefactor of si · si+1 equals 1. The bond projection operators
can be easily expressed as polynomials of si · si+1.2 The parent
Hamiltonians for s = 1 and 2 are then2,49,50

Hs=1 =
∑

i

P 2
i,i+1 =

∑
i

[
si · si+1 + 1

3
(si · si+1)2 + 2

3

]
,

(40)

Hs=2 =
∑

i

P 3
i,i+1 =

∑
i

[
si · si+1 + 2

9
(si · si+1)2

+ 1

63
(si · si+1)3 + 10

7

]
. (41)

For half-integer spin, the situation is more complicated
because the total spin of two neighboring spins is obviously
alternating in the VBS states in Figs. 13(a), 13(b), 13(e), and
13(f) and cannot be fixed to a constant. One solution is to use
alternating parent Hamiltonians. In particular, for s = 3

2 one
can choose

H 12
s=3/2 =

∑
i

(
P 2

2i,2i+1 + P 3
2i+1,2i+2

)
,

(42)
H 21

s=3/2 =
∑

i

(
P 3

2i,2i+1 + P 2
2i+1,2i+2

)
,

with two different ground-state wave functions: |	12〉 with
one singlet bond between the first two sites and |	21〉 with
two singlet bonds between the first two sites. For even N , only
|	21〉 is a reasonable VBS trial state, while for odd N both
states are equivalent, so that a parity-symmetric combination
of the two must be formed.

In the following, we analyze the overlaps and expectation
values of the corresponding VBS states |	VBS〉 depicted in
Figs. 13(c)–13(h). The states |	VBS〉 can be numerically
calculated as ground states of the parent Hamiltonians using
the iterative power method and a projection onto the S subspace
of interest or alternatively using an iterative method described
in Appendix B.

B. Comparison of the HAB model with the VBS model

In Fig. 14, the ratio of the variational energies EAB =
〈	AB |H |	AB〉 and EVBS = 〈	VBS|H |	VBS〉 over the exact
ground-state energy of the AFHC of Eq. (1) are plotted for s =
1, 3

2 , and 2. |	AB〉 is the ground state of the HAB Hamiltonian
of Eq. (8), and |	VBS〉 is the ground state of the corresponding
VBS parent Hamiltonians of Eqs. (40), (41), and (42). The
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FIG. 14. (Color online) Variational energies EVBS and EAB of the
AFHC Hamiltonian for the VBS states sketched in Figs. 13(c)–13(h)
(green solid symbols) and the ground states of the HAB model (blue
open symbols). The energies are shown with respect to the exact
ground-state energy Eg of the AFHC for s = 1 (squares), s = 3

2
(circles), and s = 2 (stars), as a function of chain length N . Lines are
guides to the eye.

accuracy of the variational energy of the ground state of the
HAB model drops off quickly with N , however, for very small
N the HAB variational energy is better than the VBS variational
energy. Increasing s also improves the quality of the HAB

variational energies, which agrees with the expectation that
the HAB model is best suited for small N and large s. It should
be mentioned here that in the variational energy, the even-odd
effect appears to be reversed: ground-state energies for even N

are on the average slightly better approximated than for odd-N
chains by HAB , which is opposite to what would be expected
from the behavior of the excited states as described in Sec. II.
For the VBS energy ratios, the variational energy for s = 1
starts out relatively poor, but then improves with increasing N .
In contrast to the HAB model variational energies, the energy
is generally estimated well also for large N by |	VBS〉.

In Fig. 15, the overlaps of |	AB〉 and |	VBS〉 with the ground
state of the AFHC of Eq. (1) are shown. These overlaps largely
confirm the picture discussed in the previous paragraph. For

small N and especially larger s, the HAB model has a slight
advantage over the VBS ground state, but then its overlap
drops off quickly with N . Again, the HAB overlaps are slightly
better for even N than for odd N . The overlap of |	VBS〉, on
the other hand, is much less dependent on s and also drops off
slower with N . This shows that local quantum entanglement
is important for any s and N , while the Néel-type order of
HAB is relevant for large s and small N . The overlap of the
two ground states |	AB〉 and |	VBS〉 is also plotted in Fig. 15.
Interestingly, both models give very similar wave functions up
to N = 4, as can be concluded from the large overlap values.

To improve on the quality of the variational approximation,
both the HAB and VBS models were simultaneously taken into
account by forming a trial state as a linear combination of the
two corresponding wave functions, namely, the optimal wave
function |�opt〉 = a|	AB〉 + b|	VBS〉 (the notation always
implies normalization). Its overlap with the AFHC ground
state is also plotted in Fig. 15 for the optimal combination of
the variational parameters a and b. The overlap improves in
comparison with the two individual wave functions, but still
decreases with N , with a weak dependence on s. In the insets
of Fig. 15, the optimal ratio a/(a + b) is plotted. The overlap
decrease with N shows the importance of the VBS state for
longer chains. It generally increases with s, and the HAB model
gains more weight as the increase of s makes the AFHC ground
state more Néel ordered and less entangled.

Comparing the approximation of the ground-state energy
(Fig. 14) with the overlap of the ground-state wave function
(Fig. 15) for the VBS model, the former hardly worsens with
N , while the overlap of the wave functions decreases. This is
due to the fact that the overlap of the VBS model wave function
with the AFHC wave functions of other low-lying energy levels
is still significant. Hence, the VBS wave function mostly mixes
with the low-lying AFHC energy levels.

IX. SUMMARY AND DISCUSSION

The results presented in the above on the structure of the
lowest-S excitations in AFHCs are of relevance from at least
three perspectives.
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FIG. 15. (Color online) Squared overlap of the ground-state wave function of the AFHC |	〉 with the VBS state (〈	VBS|	〉2, green squares),
with the HAB ground state (〈	AB |	〉2, blue circles), and with an optimized linear combination (|�opt〉 = a|	AB〉 + b|	VBS〉, black stars) for
the spin values (a) s = 1, (b) s = 3

2 , and (c) s = 2 as function of chain length N . The relative overlap 〈	VBS|	AB〉2 is shown for comparison
(red diamonds). In the insets, a/(a + b) is plotted (black squares). The red line corresponds to a value of 0.5. Lines are guides to the eye.
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Quantum versus spatial fluctuations. First of all, the
findings further our understanding of the physics in the AFHC
model. It has been demonstrated that there is a distinctive
even-odd effect in the dependence of the lowest energies
E(S) in each total-spin sector on S or the L band in short
chains. The effect is markedly different to the established
even-odd effect in long chains, which is well understood
in terms of the quantum edge-spin picture; the arguments
were given in Sec. IV C. The different physics found in these
two regimes justifies a distinction into short and long chains,
which represents a major finding of this work. The described
even-odd effect manifests itself in the antiferromagnetic region
of the L-band spectrum (low S), but not in the ferromagnetic
part (high S). In the antiferromagnetic region, even-odd effects
can also be noticed, e.g., in the ground-state spin, the spin
density, and the nearest-neighbor correlation functions. These
are, however, straightforwardly explained by the different sym-
metry properties of even and odd chains. The even-odd effect
focused on in this work in contrast is not as trivially traced back
to the different symmetry properties of even and odd chains.

To elucidate the physics giving rise to this effect, different
models were investigated, and the AFHC model was first
compared to the HAB model. Phenomenologically, the HAB

model appeared as a promising candidate since it naturally
produces an E(S) ∝ S(S + 1) energy dependence and an
L- and E-band structure, as approximately observed in short
AFHCs (Fig. 1). While for odd chains the HAB model describes
the L band surprisingly well in the full range of S values, with
a slight renormalization of the slope g(S) or the effective gap
�AB , it fails to do so for even chains. The deviation is most
pronounced in the antiferromagnetic region for S � 2s, which
is the even-odd effect, but also in the ferromagnetic region the
deviation is significant. For even-membered antiferromagnetic
Heisenberg rings, the energies predicted by the HAB model
were previously shown to become more accurate the larger
s, and the HAB model was hence considered (semi)classical
in nature.31 Our results on the AFHC correct this view
and point to the fact that the main characteristics of the
HAB model is the neglect of spatial fluctuations or implicit
assumption of an infinite correlation length, which consistently
explains our findings. For instance, the spin densities are more
homogeneous in odd than even chains, suggesting a better
accuracy of the HAB predictions in the odd chains. Also,
that the HAB model reproduces energies and transition matrix
elements extremely well for rings is now expected from the
fact that in rings the L-band states exhibit homogeneous spin
densities by symmetry. These trends for rings and odd and even
chains also manifest themselves in the ferromagnetic region,
as characterized by the slope gF . For rings, one finds gF = 1,
which coincides with the prediction of the HAB model (g = 1),
while for chains (with N > 3) gF > 1 holds, with the larger
discrepancy for the even chains.

The predictions of the O(3) NLSM for short AFHCs
were also analyzed. Interestingly, with neglected spatial
fluctuations, the HAB model is reproduced, which underpins
the role of spatial fluctuations and establishes the theoretical
basis of the HAB model. More importantly, the analysis
demonstrated that the even-odd effect is not easily reconciled
within the NLSM. It in fact showed that the usual assumption of
describing Néel order and uniform canting as separate, weakly

coupled degrees of freedom, which is exploited in or is even at
the heart of many theories such as bosonization, hydrodynamic
theories, or those based on the NLSM, fails in short chains. In
particular, it demonstrated that the even-odd effect is distinct
from the even-odd effects due to the quantum edge-spin model
established for long chains. The latter was furthered by an
analysis of the VBS wave functions for AFHC systems. As,
e.g., demonstrated by the analysis of the spin densities and
correlations, differences between half-integer and integer spin
chains are small for short chains. The VBS results thus suggest
that in short chains (with s > 1

2 ), the integer spin VBS part in
the total VBS wave function is more relevant to the physics
than the additional half-integer spin VBS part present in
half-integer spin chains. Somewhat surprisingly, it was found
that the VBS and HAB wave functions approximate the exact
wave functions nearly equally well (or equally poor) for small
chains with relatively large spin magnitudes s. The HAB and
the quantum VBS models capture different aspects of the wave
functions; each model has hence its strengths and weaknesses
with no clear advantage for one over the other.

Finally, the AFHC was also analyzed in the classical
limit. The classical model describes the general trends and
in particular the even-odd effect very nicely, as shown by
the numerical results, leaving little doubt that it captures
the essential physics. As a main result, it demonstrates the
importance of spatial fluctuations in the even-odd effect.
Qualitatively, the even-odd effect can be related to the spatial
inhomogeneities introduced by the spins at the edges and
their larger response to weak applied magnetic fields in
the case of even chains [i.e., a smaller slope g(S)]. At a
quantitative level, significant deviations remain unexplained,
which reflects the fact that for the considered spin magnitudes
the classical limit is not yet reached and quantum fluctuations
still play a significant role. As a striking, yet so far unexplained
consequence, the L band of odd quantum chains is well
described by the HAB model, which predicts the slope better
than the classical model in Fig. 9(b).

Physical regimes in the AFHC model. Having established
fundamentally different behavior for short and long chains,
the question arises as to where the crossover between these
regimes is located. It was first argued by Haldane that in
the thermodynamic limit, s determines the physical behavior,
leading to a gap �H ∼ 0.4Je−πs in the excitation spectrum
for integer s, while half-integer spin chains have a linearly
dispersing excitation spectrum.12–14 In the framework of the
renormalization group treatment of the NLSM in Eq. (17),
both integer- and half-integer spin chains in fact show the same
increase of the dimensionless coupling constant γ in the weak-
coupling expansion.87,88 The length scale at which a weak-
coupling expansion breaks down is given by eπs irrespective of
s being integer or half-integer.87,88 For integer spin chains, this
implies a gap proportional to the inverse cutoff length e−πs .
For half-integer spin chains, the topological term leads to a
different physical behavior which resembles that of the s = 1

2
chain, i.e., a gapless critical behavior. While this difference is
always observed in the thermodynamic limit at small fields, it
is important to realize that any relevant energy scale such as
fields or finite-size gaps will lead to a different renormalization
flow. The physical behavior is then determined by the largest
energy scale or equivalently the smallest length scale.
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In the case of finite chains, there are several relevant length
scales (energy scales), such as the chain length N or the
correlation length due to finite fields ξB in Eq. (38). The length
scale corresponding to the breakdown of the weak-coupling
expansion is

Nc = eπs, (43)

which corresponds to the correlation length in integer spin
chains. Two fundamentally different physical regimes can
be identified (in zero field and temperature): (1) Nc � N :
This regime corresponds to the most studied case of the
thermodynamic limit, where the famous difference between
integer and half-integer spin is observed. For finite chains with
N > Nc (long chains), it is possible to clearly see the char-
acteristic features of the thermodynamic limit by finite-size
scaling (in the form of characteristic corrections). The behavior
can be well described by continuous quantum field theories;
hence, we call this case the “renormalized continuous quantum
regime.” (2) N � Nc: This regime of short chains was the
main topic of this paper. The finite-size effects dominate and
the physical behavior is sensitive to the boundary condition and
the geometry of the finite cluster, which leads to the even-odd
effect. It is fundamentally impossible to connect the unique
behavior in this regime analytically to the thermodynamic limit
by finite-size scaling. Since many of the features are correctly
reproduced by the corresponding classical model but quantum
effects are still important (see below), we call this case the
“bounded quantum-classical regime.”

In finite magnetic fields, the correlation length ξB comes
also into play. The above two regimes are present at low
fields, Nc � ξB or N � ξB . The field gives rise, however,
to a further regime where ξB � N,Nc, which we call the
“ferromagnetic regime.” It is dominated by a relatively large
magnetic field or large magnetization S 
 2s,Ns/Nc, and
both short and long chains enter it under these conditions,
obliterating the distinction between the two low-field regimes.
Our numerical results show that the correlations are dominated
by the trend to align all spins with the total spin. This behavior
is continuously connected to the ferromagnetic region, and can
be best described by a hydrodynamic theory or by spin waves,
which give analogous results.80,89 The behavior shows no
fundamental difference between even and odd N nor between
integer and half-integer s. For completeness, it is mentioned
that in addition there is also a finite-temperature regime with
smallest length scale J/T , which is, however, not considered
in this paper.

The above considerations demonstrate that the crossover
from short to long is characterized by the length Nc, which
depends on s and thus describes a boundary line as sketched
in Fig. 16. This plot was not completely traced out by the
numerical results (for obvious limitations in computational
power), but this work provides strong pieces of evidence for its
validity. For instance, since Nc(1/2) ≈ 5, the region N � Nc

of short chains is not reachable in s = 1
2 chains, which is

perfectly consistent with Fig. 3, where the variation of gAF

with N is distinctly different for s = 1
2 , and the absence of the

even-odd effect in the s = 1
2 chain as shown in Sec. V. For

s = 1, the short-chain region starts to become available, but
the short-chain behavior may be realized only approximately,
which is consistent with, e.g., Fig. 5. For s � 3

2 , however, the

classical limit
therm
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FIG. 16. (Color online) Sketch of the properties of the AFHC in
the parameter space spanned by spin magnitude s and chain length N

in an s-log N plot. The region of the short chains is separated from
the region of long chains by the characteristic length Nc(s) = eπs .
The short-chain region connects to the classical limit s → ∞ and
the long-chain region to the thermodynamical limit N → ∞. The
two regimes are suggested to exist also for other, and potentially all,
antiferromagnetic Heisenberg clusters, and based on the characteristic
properties they are denoted as “bounded quantum-classical” and
“renormalized continuous quantum” regime.

short-chain region is already available for significant chain
lengths. This trend with s is also consistent with the notion
that in the VBS picture the half-integer spin part in the VBS
wave function (when present) becomes less and less relevant
the larger s is, such that the physics is related to the integer spin
part. Lastly, the analysis of the classical chain model showed
that for large s, the short-chain behavior is indeed present also
in chains with large, but finite N , as expected from Eq. (43).
In particular, the slope g(S) is suppressed for large even N

in the low-field limit, although only in a small range of fields
B � J s/N . Generally, the short-chain region becomes more
accessible the larger s and the smaller N is, while the long-
chain region is accessible for relatively small s and large N .

The region of small s and large N or long chains has been
studied in great detail in the past, and the physics can be
summarized as the renormalized continuous quantum regime.
For short chains, in contrast, it was demonstrated in this paper
that many of the features, such as the spatial fluctuations, are
qualitatively explained by the corresponding classical model,
and that in this sense short chains are classical. However,
for experimentally accessible spin magnitudes s quantum
fluctuations are clearly not negligible, as demonstrated, e.g.,
by the slow convergence of the quantum results to the classical
limit or the significant overlap of the wave functions with the
VBS states. A further example is the superior performance
of the HAB model over the classical model for the odd
chains, and it remains surprising that the slope g(S) for odd
chains follows the prediction of HAB well, although the local
correlations do not. Short chains hence show both classical
and quantum aspects, depending on the feature one is looking
at, and in this sense blur the distinction between classical
and quantum physics. Hence, we use the notation bounded
quantum-classical regime for this case. Remarkably, in this
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regime, the physical behavior becomes largely independent of
s and N , i.e., is generic.

Implications for spin clusters in general. At this point,
our results are of relevance also from a broader, fundamental
perspective. A diagram which at first sight is very similar to
that in Fig. 16 was proposed a decade ago based on studies
on antiferromagnetic Heisenberg rings of relatively small size
N but with relatively large spin magnitudes s.31 It was, in
particular, demonstrated that the L- and E-band picture and
the energies and matrix elements calculated with HAB become
more accurate the larger s and the smaller N is.31,54 That is,
the large-s–small-N region was (erroneously) linked in this
and subsequent works to the validity of the HAB model, which
lead to some inconsistencies.11 In this work, the situation is
rectified by identifying the (classical) spatial fluctuations as
the characterizing feature in this regime. Both the “small”
rings and short chains are apparently in the bounded quantum-
classical regime. However, for rings additionally the HAB

model is an excellent approximation because of the symmetry-
induced homogeneous spin densities in their L-band states. For
chains, in contrast, the HAB model is less appropriate.

This work thus states more precisely the distinctive behav-
ior of small rings anticipated in Ref. 31 and puts it for the chain
systems, through a very detailed numerical and theoretical
analysis, on a solid basis. The results lend credit to the idea
that the two distinctive regimes are in fact generic and present
not only in rings and chains, but also in other and potentially
many small antiferromagnetic Heisenberg clusters, since one
could generally expect that spatial fluctuations dominate over
quantum fluctuations in these systems. For the calculation of
the quantum fluctuations introduced by magnetic anisotropy
terms, powerful theoretical tools exist.90 In contrast, for the
effects of the antiferromagnetic Heisenberg interactions in
relatively small lattices, a satisfying quantitative theory which
takes into account the relevant effects, i.e., treats the (classical)
spatial fluctuations correctly and introduces the quantum
effects, appears to be missing at the moment. Developing it
should be an attractive challenge for the future.

X. CONCLUSIONS

In this work, the structure of the lowest-S excitations in
AFHCs of relatively short length N but relatively large spin
magnitude s has extensively been studied by contrasting the
results of a broad array of theoretical tools and approaches. As
a major result, an even-odd effect was observed, which was
demonstrated to be distinctly different from the behavior in
long chains and to be not correctly described by the quantum
edge-spin picture developed for those. Bulk and edges are not
well separated in short chains and a strong coupling between
uniform and alternating magnetization should be expected. A
breakdown of the edge-spin picture in short chains appears
hence natural, but previous numerical work has suggested
that the long-chain behavior persists in short chains. The
detailed analysis in this work has resolved this apparent
discrepancy, and has shown that the complicated situation of
boundary-boundary and boundary-bulk interactions in short
chains suppresses quantum fluctuations in the sense that spatial
fluctuations dominate. The region in the N versus s diagram in

which short-chain behavior is realized has been identified, and
the general implications for spin clusters have been discussed.

It is finally mentioned that clusters of a dozen exchange-
coupled spin centers with relatively large spin magnitudes s

are currently of high experimental relevance. An abundance of
examples is provided by the class of molecular nanomagnets,91

which through synthetic chemistry has generated hundreds
of magnetic molecules with different arrangements of the
metal centers. The number of spin centers ranges from 4 to a
current maximum of 84, and the spin magnitudes are typically
s = 3

2 , 2, and 5
2 for transition-metal clusters. Furthermore, the

emerging field of the artificially engineered spin clusters can
be expected to provide many further attractive experimental
systems.8–10 The key findings in this work should be of
fundamental importance to a variety of currently studied
experimental systems, where mesoscopic effects are very
important, and very promising applications go hand in hand
with interesting many-body effects.
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APPENDIX A: SPIN-COUPLED BASIS

In view of the SU(2) symmetry of Eq. (1), it is convenient
to perform numerical work directly in a basis of eigenstates of
the total spin operator S. Since this is rarely done in the area
of quantum spin systems, some details shall be given here.
The general procedure is given by Racah’s methods and the
irreducible tensor operator (ITO) techniques.4

In this paper, the spin-coupling scheme was used where at
first the first two spins are coupled, and then successively
the next spin to the previous ones: S = ({. . . [(s1 + s2) +
s3] + . . .} + sN ). This yields the SU(2)-invariant basis states
|s1s2S12s3S123 . . . sNS〉 with intermediate spin quantum num-
bers S12,S123, . . . ,S1,...,N−1. This basis is exploited by express-
ing the Hamiltonian in terms of ITOs.4

The ITO T k(si) of rank k associated to the spin center si

has 2k + 1 components T k
q (si) with q = −k, − k + 1, . . . ,k.

Coupling ITOs of different rank and different spins is generally
achieved through

T k
q ({ki},{k̃j }) = [[. . . [[T k1 (s1) × T k2 (s2)]k̃2

× T k3 (s3)]k̃3 . . .]k̃N−1 × T kN (sN )]kq, (A1)

where the k̃j ≡ k1,...,j have to be populated according to
the spin-coupling scheme and the intermediate spin quantum
numbers. The tensor product of two ITOs thereby reads as

[T ki (si) × T kj (sj )]KQ =
∑
qi ,qj

〈kikjqiqj |KQ〉T ki

qi
(si)T

kj

qj
(sj ).

(A2)

By repeated application of Eq. (A2), the coupling of the ITOs
in Eq. (A1) can be recast into a sum over the products of single-
spin ITOs and Clebsch-Gordon coefficients 〈kikjqiqj |KQ〉.
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For pairwise interactions, we introduce the notation
T k

q (kikj |sisj ), indicating a many-spin ITO T k
q (. . .) in Eq. (A1)

with corresponding values ki and kj for the single-spin ITOs
T ki (si) and T kj (sj ) and all kl = 0 if l �= i,j . Note that the
elementary ITOs are defined as

T 1
0 (si) = Sz

i , T 1
±1(si) = ∓ 1√

2
S±

i , (A3)

while T 0
0 (si) is the identity. For a Heisenberg system, only the

ITO representation of si · sj is needed, which is

si · sj = −
√

3T 0
0 (11|sisj ). (A4)

The parent Hamiltonians for the VBS wave functions
in Eqs. (40) and (41) include also higher-order coupling
terms (si · sj )n, which lead to higher-order polynomials of

the ITOs T ki
qi

(si) and T
kj

qj
(sj ), respectively, e.g., (si · sj )2 =∑

q1,q2
(−1)q1+q2T 1

q1
(si)T 1

q2
(si)T 1

−q1
(sj )T 1

−q2
(sj ). These polyno-

mials can be successively reduced by the building-up
principle92

T k1
q1

(si)T
k2
q2

(si) =
∑
kq

〈k1k2q1q2|kq〉[T k1 (si)T
k2 (si)]

k
q (A5)

with

[T k1 (si)T
k2 (si)]

k
q = (−1)2s+k

√
2k + 1

{
k1 k2 k

s s s

}

× 〈s||T k1 (si)||s〉〈s||T k2 (si)||s〉
〈s||T k(si)||s〉

× T k
q (si). (A6)

The reduced matrix elements are given by

〈s||T k(si)||s〉 = k!

(
(2s + k + 1)!

2k(2k)!(2s − k)!

)1/2

. (A7)

The biquadratic term then becomes93

(si · sj )2 =
√

5T 0
0 (22|sisj ) +

√
3

2
T 0

0 (11|sisj ) + s2
i · s2

j

3
.

(A8)

For the s = 2 VBS parent Hamiltonian also the (si · sj )3 term
is needed for which we obtain

(si · sj )3 = −
√

7T 0
0 (33|sisj ) − 2

√
5T 0

0 (22|sisj )

−
√

3

5

(
3s2

i · s2
j − s2

i − s2
j + 2

)
T 0

0 (11|sisj )

− s2
i · s2

j

6
. (A9)

Finally, the VBS parent Hamiltonians in terms of ITOs read as

Hs=1 = 1

3

∑
i

[√
5T 0

0 (22|sisi+1)

− 5
√

3

2
T 0

0 (11|sisi+1) + 10

3

]
, (A10)

Hs=2 = 1

7

∑
i

[
−

√
7

9
T 0

0 (33|sisi+1) + 4
√

5

3
T 0

0 (22|sisi+1)

− 42
√

3

5
T 0

0 (11|sisi+1) + 28

]
. (A11)

APPENDIX B: ITERATIVE CONSTRUCTION
OF VBS WAVE FUNCTIONS

VBS wave functions can be calculated in the spin-coupled
basis using iteration. For a dimer of two spins s, the VBS wave
function is known in the spin-coupled basis. It is degenerate
in S, and the maximal S is s. The wave functions are |0〉2 =
|s,s,0〉 for total spin S = 0 in an obvious notation, and go up to
|S〉2 = |s,s,s〉 for total spin S = s. If it is known what happens
when a further spin is attached, i.e., if the VBS wave function
for an open chain of three spins with spin s is known, then by
iteration the VBS wave function for any s chain of length N

can be calculated. In each iteration step, the corresponding
basis vectors are extended by one lattice site, i.e., from
|S12, . . . ,S1,...,N−1〉N−1 to |S12, . . . ,S1,...,N−1,S〉N . The method
finds the unnormalized coefficients for a VBS wave function
in the spin-coupled basis, and the resulting wave function has
therefore to be normalized after completion of the iteration.

For an s = 1 VBS chain [Figs. 13(c) and 13(d)], the iteration
reads as

|0〉N = |1〉N−1, |1〉N = |1〉N−1 −
√

3

2
|0〉N−1. (B1)

The basis functions of |1〉N and |0〉N are orthogonal. The
number of relevant basis functions for the s = 1 chain grows
with N like the Fibonacci numbers. For an s = 2 VBS chain
[Figs. 13(g) and 13(h)], one finds

|0〉N = |2〉N−1, |1〉N = |2〉N−1 −
√

5

7
|1〉N−1,

(B2)

|2〉N = |2〉N−1 −
√

135

49
|1〉N−1 +

√
80

49
|0〉N−1,

and for an s = 3 VBS chain

|0〉N = |3〉N−1,

|1〉N = |3〉N−1 −
√

7

10
|2〉N−1,

|2〉N = |3〉N−1 −
√

7

3
|2〉N−1 +

√
7

6
|1〉N−1,

|3〉N = |3〉N−1 −
√

56

10
|2〉N−1 +

√
28

3
|1〉N−1 −

√
175

36
|0〉N−1.

(B3)

For the dimerized s = 3
2 valence bond function [Figs. 13(e)

and 13(f)] with only one singlet bond between the first two
spins, one obtains

|0〉2N = |3/2〉2N−1,

|1〉2N = |3/2〉2N−1 +
√

2

5
|1/2〉2N−1,

|2〉2N = |3/2〉2N−1 +
√

2|1/2〉2N−1,
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|1/2〉2N−1 = |2〉2N−2 −
√

1

3
|1〉2N−2,

|3/2〉2N−1 = |2〉2N−2 −
√

5

3
|1〉2N−2 +

√
4

5
|0〉2N−2, (B4)

and for the dimerized s = 3
2 valence bond function with two

singlet bonds between the first two spins holds

|0〉2N = |3/2〉2N−1,

|1〉2N = |3/2〉2N−1 −
√

32

25
|1/2〉2N−1,

(B5)
|1/2〉2N−1 = |1〉2N−2,

|3/2〉2N−1 = |1〉2N−2 −
√

27

25
|0〉2N−2.

APPENDIX C: TECHNICAL DETAILS IN
THE DERIVATION OF THE O(3) NLSM

In this Appendix, the O(3) NLSM is derived in detail. With
the decomposition (16), the action in (15) is evaluated. First,
expanding the term J s2 ∑N

i=1 �i · �i+1 up to order |l/s|2,

�i · �i+1

≈ −n(xi)n(xi+1)

[
1 − l2(xi)

2s2
− l2(xi+1)

2s2

]
+ l(xi)l(xi+1)

s2

+ (−1)i+1

[
n(xi)

l(xi+1)

s
− n(xi+1)

l(xi)

s

]
. (C1)

Differences of the Néel fields can be approximated
by derivatives which allow us to write n(xi)n(xi+1) =
1 − 1

2 [n(xi) − n(xi+1)]2 ≈ 1 − a2

2 [∂xn(xi)]2. Then, up to a
constant term

�i · �i+1 ≈ a2

2
[∂xn(xi)]

2 + [l(xi) + l(xi+1)]2

2s2

+ (−1)i+1

[
n(xi)

l(xi+1)

s
− n(xi+1)

l(xi)

s

]

+O
[
a2 l2

s2
(∂xn)2

]
. (C2)

The alternating term requires a careful treatment of the
boundary conditions. For periodic boundary conditions and
N even, the term can be neglected as can be seen by
writing n(xi)

l(xi+1)
s

≈ − a
s
∂xn(xi+1)l(xi+1) and n(xi+1) l(xi )

s
≈

a
s
∂xn(xi)l(xi), which directly yields

J s2
N∑

i=1

(−1)i+1

[
n(xi)

l(xi+1)

s
− n(xi+1)

l(xi)

s

]
≈ 0. (C3)

For open boundary conditions, additional boundary terms
remain. Discussion of these terms is left for later and periodic
boundary conditions are considered now. Introducing L = Na

and taking the continuum limit

J s2
N∑

i=1

�i · �i+1 −→ J

∫ L

0
dx

[
as2

2

(
∂n
∂x

)2

+ 2

a
l2

]
.

(C4)

Next, the imaginary part in Eq. (15) is evaluated. The Berry
phase is antisymmetric under inversion ω[�i] = −ω[−�i],
hence

is

N∑
i=1

ω[�i] = −is

N∑
i=1

{
(−1)i+1ω[n(xi)]

− i

∫ β

0
dτ

[
n(xi,τ ) × ∂n(xi,τ )

∂τ

]
· l(xi,τ )

}
.

(C5)

In Sec. IV, the first term in Eq. (C5) is of “topological”
significance. The second one in contrast enters in the classical
equation of motion.

Up to an additive constant, the total action reads as

A =
∫ L

0
dx

∫ β

0
dτ

[
Jas2

2

(
∂n
∂x

)2

+ 2J

a
l2

− i

a

(
n × ∂n

∂τ

)
· l

]
+ Atop. (C6)

Completing the square the functional integration over l can
be performed, giving l = i

4J
(n × ∂τ n). Thus, the field l

generates rotations on n. Note that the constraint l · n = 0
is automatically fulfilled. Overall normalization constants are
left out. Finally, the O(3) NLSM is generated, with a θ term
as the effective action for the Heisenberg chain in the large-s
limit [see Eq. (17)].

Finally, Eq. (C3) is considered for open boundaries.
Using n(xi)

l(xi+1)
s

≈ − a
s
∂xn(xi+1)l(xi+1) and n(xi+1) l(xi )

s
≈

a
s
∂xn(xi)l(xi), the following boundary terms are obtained

J s2
N−1∑
i=1

(−1)i+1

[
n(xi)

l(xi+1)

s
− n(xi+1)

l(xi)

s

]

≈
{

−asJ [∂xn(0)l(0) + ∂xn(L)l(L)], N even

−asJ [∂xn(0)l(0) − ∂xn(L)l(L)], N odd.
(C7)

These terms have a scaling dimension of one order higher than
the bulk terms in the action in Eq. (17). Note that they are of the
same order as the higher-order terms in the Euler-Maclaurin
sum formula that occur when going from the discrete sum to
the continuum integral [see Eq. (C4)]. It is assumed that these
terms are small.
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89S. Shinkevich, O. F. Syljuåsen, and S. Eggert, Phys. Rev. B 83,

054423 (2011).
90L. Gunther and B. Barbara, Quantum Tunneling of Magnetization

(Kluwer, Dordrecht, 1995).
91D. Gatteschi, R. Sessoli, and J. Villain, Molecular Nanomagnets

(Oxford University Press, Oxford, 2006).
92R. P. Bickerstaff and B. G. Wybourne, J. Phys. A: Math. Gen. 9,

1051 (1976).
93J. J. Borrás-Almenar, J. M. Clemente-Juan, E. Corondo, and B. S.

Tsukerblat, Inorg. Chem. 38, 6081 (1999).

144409-23

http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1088/0305-4470/22/5/015
http://dx.doi.org/10.1103/PhysRevLett.75.934
http://dx.doi.org/10.1103/PhysRevB.62.4370
http://dx.doi.org/10.1103/PhysRevLett.101.107204
http://dx.doi.org/10.1103/PhysRevLett.101.107204
http://dx.doi.org/10.1103/PhysRevB.79.012405
http://dx.doi.org/10.1119/1.1970340
http://dx.doi.org/10.1103/PhysRev.155.478
http://dx.doi.org/10.1103/PhysRevLett.69.176
http://dx.doi.org/10.1103/PhysRevB.76.104434
http://dx.doi.org/10.1103/PhysRevLett.99.097204
http://dx.doi.org/10.1103/PhysRevLett.99.097204
http://dx.doi.org/10.1103/PhysRevLett.96.017204
http://dx.doi.org/10.1103/PhysRevLett.109.177203
http://dx.doi.org/10.1103/PhysRevLett.109.177203
http://dx.doi.org/10.1103/PhysRevLett.71.1633
http://dx.doi.org/10.1103/PhysRevLett.60.531
http://dx.doi.org/10.1103/PhysRevLett.60.531
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.032
http://dx.doi.org/10.1016/j.nuclphysb.2006.05.032
http://dx.doi.org/10.1209/0295-5075/86/37005
http://dx.doi.org/10.1016/0370-2693(75)90161-6
http://dx.doi.org/10.1103/PhysRevB.83.054423
http://dx.doi.org/10.1103/PhysRevB.83.054423
http://dx.doi.org/10.1088/0305-4470/9/7/006
http://dx.doi.org/10.1088/0305-4470/9/7/006
http://dx.doi.org/10.1021/ic990915i



