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Phase transitions in the frustrated Ising model on the square lattice
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We consider the thermal phase transition from a paramagnetic to a stripe-antiferromagnetic phase in the
frustrated two-dimensional square-lattice Ising model with competing interactions J1 < 0 (nearest neighbor,
ferromagnetic) and J2 > 0 (second neighbor, antiferromagnetic). The striped phase breaks a Z4 symmetry and
is stabilized at low temperatures for g = J2/|J1| > 1/2. Despite the simplicity of the model, it has proved
difficult to precisely determine the order and the universality class of the phase transitions. This was done
convincingly only recently by Jin et al. [Phys. Rev. Lett. 108, 045702 (2012)]. Here, we further elucidate
the nature of these transitions and their anomalies by employing a combination of cluster mean-field theory,
Monte Carlo simulations, and transfer-matrix calculations. The J1-J2 model has a line of very weak first-order
phase transitions in the whole region 1/2 < g < g∗, where g∗ = 0.67 ± 0.01. Thereafter, the transitions from
g = g∗ to g → ∞ are continuous and can be fully mapped, using universality arguments, to the critical line of the
well-known Ashkin-Teller model from its four-state Potts point to the decoupled Ising limit. We also comment
on the pseudo-first-order behavior at the Potts point and its neighborhood in the Ashkin-Teller model on finite
lattices, which in turn leads to the appearance of similar effects in the vicinity of the multicritical point g∗ in
the J1-J2 model. The continuous transitions near g∗ can therefore be mistaken for first-order transitions, and
this realization was the key to understanding the paramagnetic-striped transition for the full range of g > 1/2.
Most of our conclusions are based on Monte Carlo calculations, while the cluster mean-field and transfer-matrix
results provide useful methodological benchmarks for weakly first-order behaviors and Ashkin-Teller criticality.
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I. INTRODUCTION

The Ising model with nearest-neighbor interactions on the
two-dimensional (2D) square lattice presents a rare instance
in which the partition function can be computed exactly
at any temperature T .1 This allows for the calculation of
the critical exponents characterizing the continuous phase
transition between the magnetically ordered ferromagnet
and the disordered paramagnetic state. Adding competing
(frustrated) interactions provides a route for the appearance of
new phases and, in some cases, new types of phase transitions
outside the Ising universality class. A next-nearest-neighbor
antiferromagnetic interaction represents the simplest way to
incorporate frustration in the standard Ising model. This model,
the J1-J2 Ising model, is defined by the Hamiltonian

H = J1

∑
〈ij〉

σiσj + J2

∑
〈〈ij〉〉

σiσj , (1)

where first and second (diagonal) neighbors on the square
lattice are denoted by 〈ij 〉 and 〈〈ij 〉〉, respectively, and
σi = ±1. When the ratio g = J2/|J1| < 1/2, there is an Ising
transition versus T to a ferromagnetic state.2–6 The competing
interactions in the model stabilize a new striped phase (see
Fig. 1) when g > 1/2. Since these stripes can be oriented
in either the x or y lattice direction, the ordering breaks a
fourfold (Z4) symmetry on the square lattice. Increasing the
temperature from T = 0 at a fixed g > 1/2, a transition to
a disordered state occurs with no other intermediate broken
symmetry phase in between. In this paper, we study the phase
transition into the striped state.

Unlike the Ising transition to a (Z2 ordered) ferromagnetic
state, the nature of the phase transition between a Z4 ordered

state and a disordered state in two dimensions cannot be
determined simply from the symmetry of the order parameter.
This is an example of weak universality, a concept first
introduced by Suzuki,7 where the dimensionality of the system
and the symmetry properties of the order parameter are not
enough to fix the universality and hence the critical exponents
of the phase transition. The exponents may vary with some
tuning parameter in the system even though the symmetry
of the order parameter does not change. Only certain ratios
of the critical exponents remain fixed and these define7 the
weaker form of universality (or, equivalently, the exponent
η describing the correlation function at the critical point is
fixed, while other exponents vary). Some exotic 2D models,
where the critical exponents can be analytically calculated
as a function of a coupling parameter, indeed show this
behavior, e.g., the eight-vertex model8 and the Ashkin-Teller
(AT) model.9–11

Even though the frustrated J1-J2 model defined by Eq. (1)
represents perhaps the simplest generalized 2D Ising model, its
stripe transition remained highly controversial until recently,
despite several past studies.2–6,12–16 Early numerical and
analytic approaches supported the idea that the transition is
always continuous for g > 1/2, but with critical exponents that
vary with g, thus providing an example of weak universality.
However, some variational studies13,14 and recent Monte Carlo
(MC) studies15,16 have found a line of first-order transitions for
1/2 < g � 1.

One recent MC study by Kalz et al.16 used the existence
of a double-peak structure in energy histograms to conclude
that the transition is first-order up to g = g∗, with g∗ ≈ 0.9.
For higher g, in the same work a continuum field theory was
derived perturbatively in 1/g, resulting in an AT-like model.
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FIG. 1. (Color online) The four symmetry-related striped ground
states of the J1-J2 model when g > 1/2. The striped phase breaks a Z4

symmetry. Solid and open circles represent the spin states σi = ±1.

For intermediate values of g, where the (perturbative) field
theory cannot be expected to be reliable, and the MC results
were ambiguous, it was not possible to definitely conclude that
the AT scenario holds all the way down to g∗. In particular,
deviations from η = 1/4 (the fixed value of this exponent in
the AT model) were seen for g in the range 1–5.

In another recent study,17 it was shown by three of the
present authors that the stripe transition is first-order in a much
smaller range of couplings than previously believed: for 1/2 <

g < g∗, with g∗ ≈ 0.67. For g > g∗, it is continuous and in
the AT universality class. The exponents change continuously
with g as in the AT model,11 with g∗ corresponding to
the universality of the four-state Potts model18,19 (which is
equivalent to the AT model at one end point of a critical line)
and g → ∞ to standard Ising universality. While AT criticality
had been suspected at the stripe transition earlier, it had not
been possible to demonstrate this convincingly for a wide
range of couplings before. The key to solving this problem was
the realization that the Potts model harbors pseudo-first-order
behavior and (previously known19) logarithmic corrections,
and that these match very well the properties of the J1-J2

model at g ≈ 0.67. Thus, the full critical curve bridging the
Ising and four-state Potts point of the symmetric version of the
AT model (which we will define in detail further below) can
be completely realized in the J1-J2 model.

The pseudo-first-order behavior found in Ref. 17 implies
that indicators (necessary but not sufficient conditions) of
first-order transitions, e.g., multiple peaks in energy and
order-parameter distributions, lead to an overestimation of
the region of discontinuous transitions in the J1-J2 model.
Mere observation of multipeak structures is not sufficient for
concluding that a transition is first-order, but careful finite-size
scaling studies are required to extrapolate, e.g., the latent heat
to infinite size. The four-state Potts model and neighboring
transitions in the AT model exhibit clear pseudo-first-order
behavior17 for finite sizes, though these transitions are known

to be continuous.11 It is then necessary to look at certain
universal properties in the J1-J2 model to determine whether
the transition is continuous and belongs to the AT universality
class. This pseudocritical behavior in the J1-J2 model was also
verified recently in Ref. 20, where the double-peak structure
in the energy histogram was shown to disappear at large
system sizes (L ∼ 2000 for a periodic L × L system) for
g = 0.80 (while in Ref. 17 the order-parameter histograms
were analyzed).

In this article, we present further evidence to support this
picture17,20 of the transitions from the striped phase in the
J1-J2 model. In addition to MC simulations, we also consider
cluster mean-field (CMF) and numerical transfer-matrix (TM)
calculations. While in the end MC calculations appear to be
the only way to reliably study the stripe transition close to the
most interesting point g = g∗, due to the subtleties discussed
above, it is still useful to benchmark these other commonly
used methods.

The rest of the paper is organized in the following way:
In Sec. II, we briefly summarize the known scenarios for
continuous phase transitions from a Z4 ordered to a disordered
phase in two dimensions. We then investigate the phase
transitions of the J1-J2 model in detail using the CMF method
(Sec. III), MC simulations (Sec. IV), and the TM approach
(Sec. V). We also present some further results for the AT model
in Sec. IV, including its pseudo-first-order behavior near the
four-state Potts point. We further establish the equivalence
between the continuous phase transitions in the AT and J1-J2

models, including quantitative results for how the parameters
of the two models correspond to each other in terms of the
varying critical indices. We give a brief summary of the results
in Sec. VI.

II. EXPECTATIONS FROM UNIVERSALITY

In two dimensions, the critical exponents can have various
possible values when the ordered phase breaks a Z4 symmetry.
In the J1-J2 model for g � 1/2, only the g → ∞ limit
and g = 1/2 transitions are exactly known. At g → ∞,
the system consists of two decoupled Ising systems and
there is a continuous thermal phase transition in the Ising
universality class. At g = 1/2, it is clear that there is a
first-order transition at T = 0 between a ferromagnetic and
a stripe-antiferromagnetic state of the type depicted in Fig. 1.
The first-order transition point is unusual in that there is a
coexistence of a large number of states15 made up entirely of
horizontal (or vertical) stripes where the orientation (σ = +1
or −1) of each stripe can be chosen independently. The nature
of the g > 1/2, T > 0 transitions is not a priori clear. We
briefly discuss two microscopic scenarios which cover the
known theoretical possibilities for continuous transitions out
of a Z4 symmetry-broken 2D state.

Let us first consider the 2D XY model in a fourfold
anisotropic field of strength h4,

H = −
∑
〈ij〉

cos(θi − θj ) − h4

∑
i

cos(4θi), (2)

where the sites i reside on a square lattice and θi defines a
2D fixed-length vector in the XY plane. At h4 = 0, there is
a Kosterlitz-Thouless (KT) transition versus temperature21,22
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while |h4| → ∞ gives the standard Ising universality. A
nonzero h4 leads to a fourfold broken symmetry phase at low
T . The critical exponents change as a function of h4, e.g., the
thermal exponent ν equals 1 in the Ising limit and ν → ∞ at
the KT transition. However, the important observation for our
purpose here is that the specific-heat exponent α/ν pertaining
to finite-size scaling equals 0 in the Ising limit (the specific heat
diverges logarithmically with system size here) and develops a
cusp at finite h4 indicating a negative α. This cannot possibly
explain the behavior of the specific heat in the J1-J2 model17

where the divergence with system size seems quite strong for
all g > 1/2, indicating α/ν > 0 if the transition is assumed to
be continuous.

Next, we consider the AT model on the square lattice,9,11

which can be written as

H = −
∑
〈ij〉

(σiσj + τiτj + Kσiσj τiτj ), (3)

where two Ising variables σi,τi reside on each site i of the
square lattice and are coupled to each other through K . There
is a symmetry of the model, corresponding to the permutations
of the variables σ , τ , and στ . These map the Hamiltonian (3)
onto itself, and, thus, only values of K in the range [−1,1]
have to be considered.

The ferromagnetic phase of the AT model breaks a Z4

symmetry and is defined by 〈στ 〉 	= 0 and 〈σ 〉 = ±〈τ 〉. The
transition from this Z4 ordered state to the fully disordered state
(〈στ 〉 = 0 and 〈σ 〉 = 〈τ 〉 = 0) has continuously changing
exponents which are exactly known as a function of K

(Refs. 10 and 11) using the following relations based on the
powerful Coulomb-gas (CG) formulation for studying this
class of 2D phase transitions (see Ref. 10 for an excellent
review of this approach):

yt = 2 − 2/gR, yh = 15/8, yp = 2 − 1/(2gR), (4)

with

gR = 8

π
arcsin

(
1

2
coth(2/Tc)

)
(5)

being the CG coupling. The critical temperature Tc is exactly
given by the fact that there is a self-dual line,

sinh(2/Tc) = exp (−2K/Tc). (6)

The three exponents are the thermal exponent yt = 1/ν,
the magnetic exponent yh = 2 − η/2, which is fixed in the
region, and the exponent yp corresponding to a polarization
field acting on one of the sets of Ising variables, P

∑
i τi

(which breaks the Z2 symmetry of the Hamiltonian).10 The
corresponding scaling dimensions are Xt = 2 − yt , Xh =
2 − yh, and Xp = 2 − yp.

In the AT model, K = 0 corresponds to the decoupled
Ising limit and K = 1 corresponds to four-state Potts model
universality. When K is extended from 0 to negative values, the
thermal exponent ν increases and the specific heat develops
a cusp. In the AT model, the critical line is defined up to
the point K = −1, where ν = 2. The transitions from K = 0
to K = −1 can be viewed as a subset of the critical points
in the anisotropic XY model discussed above. Since the
exponent α/ν � 0 when K ∈ [0,1], this suggests that if there
are continuous phase transitions in the J1-J2 model, then these

belong in the same universality class as critical points in the
AT model in the range K ∈ [0,1]. Moreover, the specific-heat
exponent α/ν seems to decrease smoothly as g is increased17

and its behavior with g indicates that the frustrated Ising
model may have all the critical points of the AT model from
K = 0 to 1 (the four-state Potts model), which will then be the
multicritical point in the frustrated Ising model and is the end
point of the line of continuous transitions between Z4 ordered
and disordered phases in the AT model.

As we will see later in Sec. IV, the continuous transitions
in the J1-J2 model for g ∈ [g∗,∞) indeed can be mapped
to the transitions in the AT model when K ∈ [1,0). We will
assume that the stripe transition for g < g∗ is first-order instead
of some unlikely and alternative exotic behavior outside the
known scenarios for Z4 symmetry breaking. Results near g =
1/2 discussed in Sec. IV suggest that the first-order transitions
are very weak, and large system sizes may be needed to observe
unambiguously the expected first-order scaling behaviors. In
principle, one cannot exclude, based on the numerics alone,
that there is some yet unknown type of continuous transition
for 1/2 < g < g∗.

III. CLUSTER MEAN-FIELD THEORY

Here we study the J1-J2 model using a CMF approach based
on 2 × 2 and 4 × 4 clusters, as illustrated for the latter case
in Fig. 2. In this section, we will not just consider the striped
phase and transition but also the standard ferromagnetic phase
obtained for 0 � g < 1/2.

A. Variational approach with a reference system

One way to formulate a mean-field theory is to construct
an approximate expression for the partition function with the
aid of some solvable model.23 Let E0

σ be the energy for such
a reference system in spin configuration σ . It is assumed that

FIG. 2. (Color online) Illustration of a variational mean-field
theory based on 4 × 4 clusters. The infinite lattice is divided into
clusters (sites connected by the thicker, red lines), and a single
isolated cluster with added magnetic fields (indicated here by
different circles) is solved exactly (with no interactions between
it and neighboring clusters), giving 〈E0

c 〉0 and F 0
c . The energy

〈Ec〉0 of the original system without the fields is evaluated using
the mean-field decomposition 〈σiσj 〉0 → 〈σi〉0〈σj 〉0 for the bonds
connecting clusters and using the imposed periodicity to translate
both sites i and j into the same cluster. The fields are adjusted to
minimize the upper bound F ∗

c = F 0
c + 〈E0

c − Ec〉0 on the cluster free
energy.
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its partition function,

Z0 =
∑

σ

e−E0
σ /T , (7)

can be calculated exactly in some way (numerically or
analytically). We can write the partition function of the original
system of interest, with energy function Eσ , as

Z = Z0

∑
σ

e−E0
σ /T

Z0
e−(Eσ −E0

σ )/T = Z0
〈
e−(E−E0)/T

〉
0, (8)

where 〈 〉0 denotes the expectation value with respect to
the Boltzmann distribution of the model E0

σ . Under our
assumption, this expectation value can also be evaluated
exactly. A well-known result is that23

Z � Z0e
−〈E−E0〉0/T , (9)

from which we obtain an upper bound F ∗ to the free energy
F = −T ln(Z),

F � F ∗ = F0 + 〈E − E0〉0. (10)

This variational principle for the free energy is very useful
if the reference model E0

σ has some parameters that can be
varied. One can then minimize the free-energy bound F ∗ with
respect to those parameters to obtain the best (in the sense of
minimum free energy) variational solution to the system Eσ .

In the variational CMF approach, the reference system is
an infinite system divided into clusters, with no interactions
between the clusters. The energy of the infinite reference
system can be written as a sum over the identical clusters
c,

E0 =
∑

c

E0
c . (11)

A small isolated cluster can be solved by exact summation
over all its spin configurations. The aim is to minimize the free
energy of the J1-J2 model with respect to variational parame-
ters of the reference system. In principle, the reference model
can contain arbitrary field and spin-dependent terms within the
cluster. However, in practice, the cluster Hamiltonian function
minimizing the variational free energy has exactly the same
couplings as the original J1-J2 model, and only fields −hiσi

acting on the edge spins are added. Since the J1-J2 model
includes only up to second-neighbor couplings, the edge here
has the standard meaning of only the outermost layer of sites,
but for longer-range interactions the “edge” extends further
into the cluster.

Let us first consider independent fields hi coupling to all the
spins σi , i = 1, . . . ,n within a cluster of n sites (disregarding
symmetries that will eventually imply that some of the fields
should be equal),

E0
c =

∑
(i,j )

Jijσiσj −
n∑

i=1

hiσi, (12)

where (i,j ) refers to site pairs (counted only once) within
the cluster. In the model we will consider explicitly, Jij =
−J1 or J2, but in principle Jij could include even longer-
range interactions. The cluster energy defines the reference
Boltzmann distribution with relative probabilities W0(σ ) =
exp[−E0

c (σ )/T ] for the 2n spin configurations σ = σ1, . . . ,σn.

Using this probability distribution, we can evaluate the
partition function Z0

c = ∑
σ W0(σ ), 〈E0〉0, and the expectation

value 〈E〉0 of the original energy for each cluster. We have

〈Ec〉0 =
∑
(i,j )

Jij 〈σiσj 〉0 + 1

2

∑
(i,j )′

Jij 〈σi〉0〈σj 〉0, (13)

where (i,j )′ in the second sum refers to interactions between
a site i in the cluster c and a site in a different cluster. Since
all clusters are equivalent, this site can be translated into an
equivalent site j of the cluster c. The factor 1/2 accounts
for the fact that each interaction bond (i,j )′ is shared by two
different clusters.

In the free-energy bound (10) F ∗
c = −T ln(Z0

c ) + 〈E −
E0〉0, we need only the difference between the two energies,
for which the intracluster interactions cancel,

〈E − E0〉0 = 1

2

∑
(i,j )′

Jij 〈σi〉0〈σj 〉0 +
∑

i

hi〈σi〉0. (14)

To minimize F ∗
c , we need its derivatives with respect to the

fields,

T
∂F ∗

c

∂hk

=
∑

i

hi(〈σiσk〉0 − 〈σi〉0〈σk〉0)

+
∑
(i,j )′

Ji,j 〈σi〉0(〈σjσk〉0 − 〈σj 〉0〈σk〉0), (15)

which can be written in the form

∂F ∗
c

∂hk

=
∑

i

(
hi +

∑
(j )i

Jij 〈σj 〉0

)
aik = 0, (16)

where the notation (j )i in the second sum indicates summation
for given i over only those spins j corresponding to interclus-
ter (edge) interactions and aik = 〈σiσk〉0 − 〈σi〉0〈σk〉0. These
equations are satisfied if

hi = −
∑
(j )i

Jij 〈σj 〉0, (17)

which amounts to self-consistency conditions for all the fields.
For sites i that have no nonzero intercluster interaction Jij , we
have hi = 0, i.e., we need to consider only fields on the edge
spins. This self-consistent solution has the lowest free energy
also if other interactions are allowed within the reference
system E0. The variational approach is therefore equivalent to
the self-consistent approach. The advantage of starting from
the variational ansatz is that the free energy (its upper bound
F ∗

c ) is also obtained without any further assumptions.
In practice, one does not have to treat all the fields hi

as independent parameters, because the optimal fields for an
ordered state will obey symmetries corresponding to those
of the order parameter. For the J1-J2 Ising model considered
here, we have ferromagnetic and striped order for J2/J1 < 1/2
and > 1/2, respectively. The field arrangements appropriate
for these order parameters on 2 × 2 and 4 × 4 clusters are
illustrated in Fig. 3. We will not consider the 3 × 3 cluster,
because it is not appropriate for the striped state (due to its
incompatibility with the periodicity 2 in one of the directions,
although in principle one could also take this into account
by modified boundary conditions). Using the appropriate
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FIG. 3. Clusters and fields used in mean-field calculations for the
J1-J2 Ising model. For a ferromagnetic state (all black circles), all
fields are positive, of strength h1 for the 2 × 2 cluster and h1,h2 for
the 4 × 4 cluster (with h0 = 0, because the sites marked 0 are not on
the cluster edge). For the striped state, the black and white circles
indicate positive and negative fields of magnitude hs and sign (−1)xi ,
where xi is the x coordinate of the sites i to which it couples. For
the 4 × 4 cluster, the broken rotational symmetry of the striped state
implies one more variable field than for the ferromagnet, for a total
of three adjustable parameters h1,h2,h3.

symmetries, the largest number of parameters here is three
for the stripe order on the 4 × 4 lattice. With such a small
number of parameters, we can easily solve the self-consistency
equations numerically.

B. Phase diagram

By finding the optimal solutions for both ferromagnetic and
striped field patterns, and comparing their free-energy minima
for a range of temperatures and coupling rations g, the phase
diagram of the system can be extracted. To precisely determine
a phase boundary as a function of temperature at fixed g, one
can carry out a bracketing procedure to locate the point at
which the optimal solution changes between paramagnetic
and ordered, or between ferromagnetic and stripe-ordered.
Figure 4 shows the phase diagram obtained in this way,
based on both 2 × 2 and 4 × 4 clusters. There are continuous
as well as first-order transitions. First-order transitions are
obtained close to g = 1/2, which is the point at which we
already concluded that there should be such a transition as a
function of g when T → 0. The point at which the transition
becomes continuous is stable with respect to the cluster size,
g∗ ≈ 0.66, and is in remarkably good agreement with the value

0 0.2 0.4 0.6 0.8 1
J2/J1

0

1

2

3

T/
J 1

ferromagnetic striped

paramagnetic

FIG. 4. (Color online) Phase diagram of the J1-J2 Ising model
in the coupling-temperature plane based on mean-field calculations
with clusters of size 2 × 2 (thin curves, at higher T ) and 4 × 4 (thick
curves, at lower T ). Dashed and solid curves indicate continuous and
first-order phase transitions, respectively, with the circles indicating
the multicritical points at which the order of the transition changes.

g∗ ≈ 0.67 obtained in the previous MC work17 identifying the
Potts point. The mean-field calculation of course cannot give
any information on the true critical exponents.

The paramagnetic-ferromagnetic transition is seen to al-
ways be continuous within the 2 × 2 cluster calculations, but it
also changes to first-order in a narrow window of g values when
the 4 × 4 cluster is used. There are no clear indications from
previous MC simulations of the transition being first-order in
this regime, but it may be worthwhile to examine this issue
more carefully as well with improved MC simulations. In this
paper, however, we focus on the stripe phase for g > 1/2.

In principle, one can try to extrapolate the critical tempera-
ture to infinite cluster size, but this is not possible based on just
the 2 × 2 and 4 × 4 results. In principle, one can add standard
single-site MF calculations and the 3 × 3 cluster to enable
some estimates. Here, however, our interest is in the order
of the transitions and we will not attempt any CMF-based
extrapolations of Tc (which come out very precisely in the MC
and TM calculations, as discussed in the later sections).

C. Order parameter and free energy

An example of self-consistent field parameters and induced
shell magnetizations is shown in Fig. 5. These results are
for the 4 × 4 cluster at g = 0.7, where there is a continuous
paramagnetic-striped transition at T/J1 ≈ 1.83. All the fields
vanish continuously at this point. Note that the order parameter
is not uniform, as it should be for an infinite system, but
shows significant variations between the shells. For most of
the temperature range, the order is the weakest at the four
central spins, where there is no field, but close to Tc one
of the edge magnetizations becomes equal to it. The ratios
of the magnetizations ms to the central magnetization m0

are significantly above 1 close to Tc, but should remain
finite because all ms should vanish as T → Tc with the
mean-field power-law behavior ms ∼ (Tc − T )1/2. In general,
one would expect that the four central spins should most
closely represent the behavior of the infinite system. If we
could go to much larger cluster sizes, we would expect the
order parameter to become uniform in the interior of the
cluster, with nonuniformity emerging gradually as the edges
are approached.

0.5 1.0 1.5
T/J1

0.0

0.2

0.4

0.6

0.8

1.0

m
s

s=3
s=2
s=1
s=0

0.5 1.0 1.5
T/J1

0.0

0.5

1.0

1.5

2.0

2.5

h s/J
1

1.0 1.5

1.0

1.2

1.4 ms/m0

FIG. 5. (Color online) Self-consistent variational field parameters
(left) and the corresponding induced stripe magnetizations (right) vs
temperature obtained using a 4 × 4 cluster at J2/J1 = 0.7. The inset
of the right panel shows the ratio of the shell magnetizations for shells
s > 0 to the one with s = 0 (center of the cluster). The shell index s

follows the convention illustrated in Fig. 3.
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FIG. 6. (Color online) Free energy vs the external field parameter
h in the 2 × 2 CMF calculations at and close to first-order transitions.
Positive and negative h correspond to ferromagnetic and striped field
patterns, respectively. Panel (a) shows results for different coupling
ratios at and close to the ferromagnetic-striped transition at fixed
T/J1 = 1, and panel (b) shows the behavior for temperatures at and
close to the striped-paramagnetic transition at g = 0.55.

To discuss the first-order transitions, it is useful to examine
the free energy of the 2 × 2 cluster, where there is just
one variational parameter. The free energy for both the
ferromagnetic and striped fields can be shown in the same
graph by defining a new parameter h, such that for h > 0 this
is the ferromagnetic field h1 = h, whereas for h < 0 it is the
strength of the stripe field; h1 = |h|. Two examples of the
dependence of the cluster free energy F ∗

c on this parameter as
a first-order transition is crossed are shown in Fig. 6. In the left
panel, two minima for h 	= 0 can be seen, corresponding to
ferromagnetic and stripe orders, whereas in the right panel one
of the minima is at h = 0, corresponding to the paramagnetic
phase, and the other minimum is for a striped state. In either
case, the two minima are degenerate at the transition between
the two phases. Changing g at fixed T (as in the left panel)
or varying T at fixed g (right panel), the degeneracy is broken
and one of the states becomes the stable one. The other, higher
minimum then corresponds to a metastable state.

The discontinuities associated with the first-order transi-
tions vanish continuously at the special multicritical points
indicated with circles in the phase diagram in Fig. 4. Figure 7
shows the behavior of all the discontinuities for the 2 × 2 and
4 × 4 clusters.
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FIG. 7. (Color online) Dependence on the coupling ratio of the
discontinuity of the ferromagnetic magnetization (left) and stripe
magnetization (right) at the first-order transitions obtained with the
2 × 2 and 4 × 4 clusters (l = 2,4). Note in the left panel and in Fig. 4
that for g in the range 0.50–0.504, as T is lowered there is first a
paramagnetic-ferromagnetic transition, followed by a transition into
the low-temperature stripe state.

IV. MONTE CARLO SIMULATIONS

We have simulated the J1-J2 Ising model using a standard
single-spin Metropolis algorithm.24 Due to the presence of
frustration, cluster MC methods cannot be used for this model
unless J1 (J2) = 0. We found that the single-spin Metropolis
algorithm is sufficient to study the thermal phase transitions
accurately if g is not very close to 1/2 (we have gone down
to g = 0.52 using single spin-flip MC moves). The transitions
closer to g = 1/2 can be simulated using a combination of
parallel tempering and certain nonlocal spin flips15 which have
a high acceptance probability very close to g = 1/2. We have
also simulated the AT model on the square lattice, and for that
we again use a local Metropolis algorithm, except at K = 1,
where we use a cluster algorithm.25 Temperature is measured
in units of J1 for the frustrated Ising model and in units of K

for the AT model. MC simulations combined with finite-size
scaling and universality arguments provide the most unbiased
method to understand the nature of the transitions in the J1-J2

model.

A. Calculated observables

Before proceeding further, we define the observables that
we measure in our MC simulations for the J1-J2 and the AT
models, respectively. Let us first define the order parameters
that characterize the broken Z4 phase in both the models. The
striped phase of the 2D frustrated Ising model is characterized
by a two-component order parameter (mx,my) with

mx = 1

N

N∑
i=1

σi(−1)xi , (18)

my = 1

N

N∑
i=1

σi(−1)yi , (19)

where (xi,yi) are the coordinates of site i on an L × L periodic
square lattice and N = L2. We define m2 = m2

x + m2
y and the

stripe susceptibility as

χ = N

T
(〈m2〉 − 〈|m|〉2). (20)

We also measure the specific heat,

Cv = N

T 2
(〈E2〉 − 〈E〉2), (21)

where E is the energy per site. For the AT model, the order
parameter can again be expressed as a 2D vector (mσ ,mτ ),
where

mσ = 1

N

N∑
i=1

σi, (22)

mτ = 1

N

N∑
i=1

τi, (23)

and m2 = m2
σ + m2

τ . The order parameter susceptibility χ and
specific heat Cv are then defined in exactly the same way as
described above for the J1-J2 model.

We also compute the Binder cumulant of the order param-
eter in both models. It is defined as

U = 2

(
1 − 1

2

〈m4〉
〈m2〉2

)
, (24)
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where the constants are chosen to give a step function (U → 0
and U → 1 in the disordered and ordered phase, respectively)
for a 2D vector order parameter in the thermodynamic limit.26

Lastly, we collect the histograms of the squared order
parameter m2 and the energy E near the transition for both
models. These are helpful for analyzing the pseudo-first-order
behavior in detail.

B. Map between AT and J1- J2 critical points

The Binder cumulant, Eq. (24), turns out to be especially
useful in establishing the universality class of the continuous
transitions in the J1-J2 model. It is well known27 that for
continuous phase transitions the Binder cumulant for different
system sizes crosses at the critical point (when the system size
is large enough). The value at the crossing, U ∗, is universal
as well and characterizes the universality class of the phase
transition. U ∗ may in some cases depend on the details of
the model beyond the universality class, such as the boundary
conditions, the shape of the lattice, and the anisotropy of the
interactions.28 However, in our case, both the J1-J2 model
and the AT model live on periodic square lattices and the
interactions respect the full symmetry of the lattice, so a
comparison of U ∗ between the two models seems to be
justified. We have established this directly from our MC data by
using the equality of U ∗ to map phase transitions in one model
to the other and then directly looking at critical exponents to
check if the universality class is indeed the same.

We estimate U ∗ from our MC simulations by extracting
the crossing point of U between data for pairs (L,2L) and
then extrapolating to L → ∞.17 In Fig. 8, we show U ∗ as
a function of the coupling K and g for the AT model and
the J1-J2 model, respectively. This immediately establishes
a numerical map between the continuous transitions of both
models. From Fig. 8, we see that g ≈ 0.67 corresponds to the
four-state Potts model universality in the AT model (K = 1).
This was already reported in Ref. 17, and other consistency
checks were used there to show that the multicritical point is
located at g∗ = 0.67 ± 0.01. Since then, the location of g∗ has
also been computed in Ref. 20, and the result agrees perfectly
with the earlier result.

As a further illustration of the correctness of the procedure,
we use the data presented in Fig. 8 to note that the phase
transition at g = 1 should map to K ≈ 0.35 and g = 2 to
K ≈ 0.081. This is indeed consistent with the divergent critical
forms of physical quantities. In Fig. 9, we plot the peak
value of the specific heat Cmax(L) and the order-parameter
susceptibility χmax(L) versus L for the two models at the above
points. By standard finite-size scaling arguments, Cmax ∼ Lα/ν

and χmax(L) ∼ Lγ/ν . For the system sizes studied here (L �
256), the exponent α/ν for the two models, estimated from
the slope of Cmax(L) on a log-log scale (Fig. 9, left panel),
converges to the same value in a very similar way for the
J1-J2 and Potts models at the corresponding g and K values.
This is also the case for the exponent γ /ν (Fig. 9, right
panel), which converges to the value 7/4, as is expected for
AT universality. The latter behavior is of course less useful,
since the exponent γ = 7/4 is expected on the whole critical
curve. In both cases, some deviations from pure power laws
can be observed, and we will discuss this further below. The
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FIG. 8. (Color online) (a) Universal crossing value U ∗ of the
Binder cumulant vs K for the AT model and vs 1/(1 + g − g∗),
g∗ = 0.67 for the J1-J2 model. The AT data points have been fitted
to a single polynomial function, while the J1-J2 data were fitted with
several polynomials in segments. The corresponding K values with
the same U ∗ as g = 1.0 and 2.0 are marked in the graph. The map
between the two models at these points is (g = 1.0) 1/(1 + g − g∗) =
0.752 to K = 0.35 with U ∗ = 0.8805; (g = 2.0) 1/(1 + g − g∗) =
0.429 to K = 0.081 with U ∗ = 0.9086. (b) The map between the AT
model (K) and the J1-J2 model (g−1) using the universality of U ∗

and the procedure illustrated in (a).

behavior seen for the specific heat is nevertheless quite telling
and suggestive of the same critical exponent in the two models
at the mapped points. Thus, we have rather convincingly
established the map (Fig. 8) between the parameters of the
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L
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K=0.35
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(b)(a)Cmax χmax/L
7/4

FIG. 9. (Color online) Examples of divergent peak values of the
specific heat and stripe susceptibility vs L for the J1-J2 and AT
models. The factor L7/4 corresponding to the asymptotic AT scaling
of the susceptibility has been divided out in the right panel. Two
point pairs are chosen for which the mapping in Fig. 8 shows that the
critical exponents for the two models should coincide.
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AT model and the frustrated J1-J2 Ising model in two different
but mutually consistent ways. Note that this kind of map does
not imply microscopic equivalence of the two models, which
holds only in the weakly coupled Ising limit (1/g → 0), but it
demonstrates common low-energy descriptions of the systems
for the mapped parameter values.

C. Four-state Potts scaling at g∗

To further strengthen the case for g∗ = 0.67 ± 0.01 being
in the four-state Potts universality class, we next consider
scaling in the form of data collapse of the specific heat
and the susceptibility at the coupling g = 0.68 of the J1-J2

model (for which we have MC data; the estimate for g∗
is based on interpolation, as shown in Fig. 8) and for the
four-state Potts model on the square lattice (K = 1 in the AT
model). The critical exponents of the four-state Potts model
are19 ν = 2/3, α/ν = 1, and γ /ν = 7/4. There are, however,
important multiplicative logarithmic scaling corrections at this
critical point that strongly affect finite-size scaling. According
to Ref. 19, the divergences in the thermodynamic limit are of
the forms

ξ ∼ |t |−2/3(− ln |t |)1/2, (25)

Cv ∼ ξ

(ln ξ )3/2
, (26)

χ ∼ ξ 7/4

(ln ξ )1/8
, (27)

where t = (T − Tc)/Tc is the reduced temperature and ξ is the
correlation length. Then, using finite-size scaling arguments,
one expects CvL

−1[ln(L/L0)]−3/2 and χL−7/4[ln(L/L0)]1/8

to be functions of the argument t(− ln |t |)−3/4L3/2. The two
quantities with these expected asymptotic L dependences
divided out are graphed versus t(− ln |t |)−3/4L3/2 for different
system sizes L in Fig. 10, with the nonuniversal scale factor
L0 (which can be different for different quantities) treated as
a fitting parameter to optimize the data collapse.

Figure 10(a) shows the resulting data collapse of Cv for
the four-state Potts model with a set of moderate to large
system sizes L = 60–160 included in the fitting procedure
(with smaller sizes excluded because they are visibly affected
by subleading corrections to scaling). The data collapse to
a common fitted polynomial is statistically sound with the
parameter L0 = 0.20 ± 0.01. Figure 10(b) shows the same
kind of analysis for the J1-J2 model at g = 0.68. The system
sizes included here are in the range L = 80–128 and L0 =
0.144 ± 0.006. The data collapse of Cv in both cases, using
the same expected exponents and multiplicative logarithmic
corrections, is another strong indication that g = 0.68 in the
J1-J2 model is close to the four-state Potts end point of the
critical Potts-Ising line of the AT model.

The logarithmic scaling correction for the susceptibility,
Eq. (27), does not yield a good data collapse for either g =
0.68 or the four-state Potts model. Therefore, instead of using
χL−7/4(ln L/L0)1/8 on the y axis, we treat the exponent of the
logarithmic function as another variable r in addition to L0.
After carrying out a multivariable data collapse, we obtain r

close to −1/8 instead of the value 1/8 proposed in Ref. 19.
Figures 10(c) and 10(d) show the results for the two models
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FIG. 10. (Color online) Data collapse with the anticipated leading
logarithmic correction to the specific heat C and the susceptibility χ

for the four-state Potts model and the J1-J2 model at g = 0.68. The
system sizes included in (a) are L = 60, 64, 80, 120, 128, and 160,
and in (c) L = 48, 64, 96, 128, 192, and 256, while for (b) and (d)
all the sizes are listed in the panels. The black curves are common
curves fitted to all data points shown in each figure. The corresponding
reduced chi-squares per degree of freedom for the fitted curves in (a),
(b), (c), and (d) are χ 2 = 1.3, 1.6, 1.2, and 1.8.

with r = −1/8. Given that the data collapse is very good in
both cases, and only the sign of the log exponent differs from
what was expected, the natural conclusion is that there is a sign
mistake in the analytical result for this exponent in Ref. 19.
Thus, we propose that χ ∼ ξ 7/4(ln ξ )1/8 instead of the form in
Eq. (27).

D. Pseudo-first-order behavior in the AT model

Even though the transitions in the AT model are all
continuous, there are interesting pseudo-first-order signatures
at finite system sizes at the four-state Potts point and its
neighborhood. This was explicitly shown in Ref. 17 using
various observables. Here, to further investigate this behavior,
we show histograms of the distribution of the squared order
parameter m2 and energy per site E for the four-state Potts
model in the top panels of Fig. 11. For each system size,
the temperature is very close to Tc, chosen to ensure that the
two peaks in the energy histograms are of the same height.
There is clearly a double-peak structure present even for the
large system sizes L = 512. The distance between the peaks
decreases slowly as the system size increases and the dip
between the peaks also does not increase appreciably (as it
should if the double-peak structure is evolving into δ functions
corresponding to phase coexistence at a first-order transition).
This can in principle happen for a weak first-order transition
as well if the system sizes used are L � ξ , where ξ is the
large but finite correlation length at the transition. However, in
this case we know rigorously that the four-state Potts model
harbors a continuous transition. For a continuous transition,
there cannot be an order parameter jump or a latent heat
in the thermodynamic limit. Thus, the distance between the
double peaks will eventually shrink to zero when L → ∞. This
type of double-peak structure was previously also observed
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FIG. 11. (Color online) Histograms of the squared order param-
eter m2 and the energy E for (a), (b) the four-state Potts model
(the K = 1 AT model) and (c), (d) the J1-J2 model at g = 0.67.
Here T is very close to Tc, chosen such that the two peaks in
the energy histograms are of the same height; for the Potts model,
T/K = 3.642 31 for L = 128 and 3.644 60 for L = 256, while for the
J1-J2 model, T/J1 = 1.2014 for L = 128 and 1.2004 for L = 256.

in the energy distribution of the Baxter-Wu model on the
triangular lattice,29 which is in the same universality class
as the four-state Potts model. The corresponding histograms
of the J1-J2 model at g = 0.67 (which equals g∗ within error
bars) also show a very similar behavior, as can be seen from
the figures in the bottom panel of Fig. 11, again confirming the
equivalence of the critical behaviors with that of the four-state
Potts model.

In Ref. 17, it was also shown that the Binder cumulant of
the order parameter exhibits a nonmonotonic behavior with
T , developing a negative peak at K = 1.0 and its vicinity
(e.g., at K = 0.95) in the AT model. A negative Binder
peak is often taken as evidence of a first-order transition,
but here the transitions are clearly continuous. However, the
negative peak increases very weakly with system size L,
with the increase being much slower than the expected30 L2

divergence. Moreover, the dip is more pronounced at K = 1
compared to K = 0.95, which indicates that there may be a K∗
below which these pseudo-first-order signatures vanish. These
pseudo-first-order signatures in turn lead to an overestimation
of the region of first-order transitions when the appearance
of double-peak structures in energy or order-parameter his-
tograms is taken to be indicative of discontinuous transitions
in the J1-J2 model (see Ref. 17 for more discussions on this
point).

Note that a two-peak structure was found in the energy
histogram at very large system sizes for g = 0.9 in Ref. 16,
which was taken as evidence of the first-order transition
extending at least up to this value; based on our conclusions, we
instead see that the pseudo-first-order region in the J1-J2 model
extends from g∗ ≈ 0.67 to g � 1. Following our previous
work, Ref. 20 recently considered the energy histograms at
g = 0.8 for even larger system sizes than before. A double-

peak structure appears when the system size reaches about L =
1000, but going further it eventually disappears again, around
L = 2000. This again confirms the pseudo-first-order behavior
of the J1-J2 model close to g∗, and it is a demonstration of the
pitfalls in distinguishing between continuous and first-order
transitions. We stress here that the reason we were able to
avoid this pitfall is that the Potts model is rigorously known to
harbor a continuous transition, and we found that the behavior
of the J1-J2 model at g = g∗ ≈ 0.67 matches it very well in
all respects. Thus, the combination of analytical theory and
numerics was crucial.

E. Weak first-order transitions

Since the J1-J2 model at g∗ is in the four-state Potts
universality class and approaches the Ising limit for higher
g, the transitions for 1/2 < g < g∗ have to be first-order
transitions if there is to be a correspondence with the known
scenarios for Z4-breaking transitions discussed in Sec. II.
Unless some unknown scenario applies, which we find unlikely
(but cannot rule out completely), all the transitions in the range
1/2 < g < g∗ are very weak first-order transitions. Weakening
of a discontinuous transition is expected when approaching
a multicritical point, since the continuous transition has to
be approached in a continuous manner. However, here the
transitions in the close neighborhood of the obvious first-order
point g = 1/2 are also weakly first-order. Reference 15
suggested this based on the appearance of a double-peak
structure in the energy histograms. However, as we saw, such
a double-peak structure also appears at the Potts point and its
neighborhood (where they disappear in the thermodynamic
limit). Here we show the evolution of the pseudocritical
exponents with system size L on the (likely) first-order side
close to the g = 1/2 point.

We analyze the peak value Cmax(L) of the specific heat
and χmax(L) of the stripe susceptibility. By finite-size scaling
arguments for first-order transitions, these quantities should
diverge as L2 in two dimensions.30 Examples of the scaling
behavior are shown in Fig. 12. Two coupling ratios, g = 0.52
with system size L � 128 and g = 0.55 with system size
L � 256, are considered. The peak values of Cmax(L) and
χmax(L) are shown as the inset in each graph on a log-log scale.
Graphed in this way, the peak values of Cmax(L) and χmax(L)
seem to follow a linear scaling behavior, especially in the insets
of Figs. 12(b)–12(d). A more systematic analysis involves
extracting the running exponents α

ν
(L) and γ

ν
(L) from the local

slope of Cmax(L) and χmax(L) between, e.g., system sizes L

and L/2. These should approach 2 as L → ∞ for a first-order
transition. The first-order exponent 2 is not obtained in these
figures for the system sizes studied. The scaling exponents
α
ν

(L) and γ

ν
(L) [Figs. 12(a) and 12(c)] increase as the system

size increases for g = 0.52, but they have not converged at size
L = 128. This suggests that it may require very large system
sizes to observe the expected L2 scaling behavior. The scaling
exponent α

ν
(L) for g = 0.55 [Fig. 12(b)] is farther away from

2 at the same system size L = 128, while it shows the same
tendency to increase as g = 0.52. The scaling exponent γ

ν
(L)

for g = 0.55 actually seems to have converged to ≈ 1.82, at
a comparably smaller system size L = 80. This again may
be indicative of the large correlation length involved at a

144406-9



JIN, SEN, GUO, AND SANDVIK PHYSICAL REVIEW B 87, 144406 (2013)

0 50 100
L

1.4

1.5

1.6

1.7

1.8

1.0

1.2

1.4

1.6

0 50 100 150 200 250
L

1.70

1.75

1.80

1.85

1.20

1.25

1.30

1.35

10 100
100

101

102

C m
ax

10 100

100

101

102

C m
ax

10 100

101
102
103
104

χ m
ax

10 100101

102

103

χ m
ax

)b()a(

)d()c(

α/ν

ν/γν/γ

α/ν 55.0=g25.0=g

55.0=g25.0=g

FIG. 12. (Color online) Scaling exponents α/ν and γ /ν of
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very weak first-order transition, this being reminiscent of an
extremely weak first-order transition like that in the five-state
Potts model31 on the square lattice. It is puzzling, however, that
there is no visible size dependence in the local γ

ν
(L) between

L = 80 and 256 for g = 0.55. It would be interesting to go to
larger lattices.

Note that for both couplings α
ν

(L) is already much larger
than 1, which is the maximum divergence expected if the
critical point is continuous and in the AT universality class. It
is an interesting open question to understand the mechanism
which makes the transitions near g = 1/2 so weakly first-
order; it likely is related to the extensive degeneracy of the
system at T = 0.

V. TRANSFER-MATRIX CALCULATIONS

We now address the stripe transition in the J1-J2 model
using numerical TM calculations. Consider the lattice wrapped
on a cylinder of infinite length with circumference L, on which
the TM is constructed. It is possible to perform finite-size
scaling in L to obtain properties of the phase-transition-like
critical exponents. We use a sparse-matrix technique32,33 to
enable the calculations of sizes up to L = 26. Note that by
using TM calculations, one can in principle obtain the exact
non-mean-field exponents of the phase transition by using
sufficiently large L. This is unlike the CMF approach that
we discussed in Sec. III, where the exponents are mean-field
exponents (although for sufficiently large clusters the true
exponents should emerge close to the transition, but such large
clusters cannot be reached in practice).

The critical exponents of the transition are obtained by
calculating three types of scaled gaps based on the eigenvalues
of the TM. Each of them converges to a separate scaling
dimension when system size L tends to infinity at the critical

point. The antiferromagnetic scaled gap is defined as

Xh(T ,g,L) = L

2π
ln

(
λ0

λ1

)
, (28)

where λ0 is the largest eigenvalue and λ1 is the largest
eigenvalue in the subspace that breaks the symmetry of two
neighboring sites (i.e., corresponding to the stripe state), which
means that the associated eigenvector v1 satisfies

v1 = −Rv1, (29)

where R is the operator translating the system by one lattice
spacing in the short direction (perpendicular to the axis parallel
with the tube; the stripes in the tube geometry form along this
axis). Thus, the scaled gap is also called the stripe scaled gap.
For the system to host this stripe order, we have to restrict
the system to even L. In addition, the eigenvector also bears
odd parity when the system is reflected about the center, but is
invariant under global spin flips.

The two other scaled gaps are defined as

Xt1 (T ,g,L) = L

2π
ln

(
λ0

λ2

)
(30)

and

Xt2 (T ,g,L) = L

2π
ln

(
λ0

λ3

)
, (31)

where λ2 and λ3 are the leading and subleading eigenvalues
associated with eigenvectors that are invariant under the lattice
translation and global spin flips. However, it is not a priori
clear which of these gaps corresponds to the thermal scaling
dimension, and what the physical meaning is of the other gap.

According to finite-size scaling theory34 and conformal
invariance,35 the gap Xi(T ,g,L) in the vicinity of a critical
point scales as

Xi(T ,g,L) = Xi + a(T − Tc)Lyt + buLyu + · · · , (32)

where i indicates one of the three gaps (i = h, i = t1, or
i = t2), yt is the leading thermal exponent, u is the leading
irrelevant field, and yu is the associated irrelevant exponent.
The constants a,b are unknown (not universal).

We calculate the scaled gap Xh(T ,g,L) and then numer-
ically solve for Tc(L) using the following scaling equation:

Xh(T ,g,L) = Xh(T ,g,L − 2). (33)

The solution Tc(L) converges to the critical point Tc as L → ∞
in the following way:

Tc(L) = Tc + a′uLyu−yt + · · · , (34)

where a′ is an unknown constant. We thus determined the
critical points of the J1-J2 model for various g values to good
accuracy, and the results are listed in Table I. These Tc values
extracted from the TM approach agree very well with our MC
results.

The scaled gaps Xh, Xt1 , and Xt2 at the solutions Tc(L) are
calculated for a sequence of systems up to L = 26. Generally
speaking, these gaps should converge to the corresponding
scaling dimensions, respectively, in the following way:

Xi(L) = Xi + b′Lyu + · · · , (35)
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TABLE I. Best estimates for the critical properties obtained using the TM method for the J1-J2 model at various g values.

g |J1|/Tc Xh = η/2 Xt2 = 2 − 1/ν Xt1 gR

0.67 0.8335(2) 0.12(1) 0.50(2) 0.12(1) 4
0.70 0.7758(1) 0.12(1) 0.57(1) 0.14(1) 3.5
0.75 0.69866(5) 0.12(1) 0.630(5) 0.155(5) 3.17
1.00 0.48029(5) 0.123(5) 0.803(5) 0.199(5) 2.5
2.00 0.22468(3) 0.125(2) 0.953(2) 0.238(1) 2.1
5.00 0.088406(5) 0.125(2) 0.993(1) 0.248(1) 2.01

where b′ is an unknown constant. However, at the four-state
Potts point, the irrelevant exponent yu is zero, i.e., the
corresponding field is marginally irrelevant, which leads to the
following multiplicative logarithmic correction to scaling:19

Xi(L) = Xi + b′
1

ln L
+ b′

2 ln(ln L)

(ln L)2
+ · · · , (36)

with b′
1,b

′
2 unknown constants.

From the scaling analysis of our MC data (Sec. IV), we
already know that g∗ ≈ 0.67. Fitting Xi(L) according to
Eq. (35) for g > 0.67, we obtain the scaling dimensions Xh,
Xt1 , and Xt2 . The convergence of our data is not very good.
This is because the irrelevant exponent yu has a small absolute
value even away from g∗. This is also the case for the AT
model when K is close to 1 (the four-state Potts critical point).
For g = 0.67, the scaling dimensions are estimated by fitting
Xi(L) to Eq. (36). The results of such fits are listed in Table I.

It is remarkable that, for all g in the region [0.67,5], the
ratio of Xt2 and Xt1 is always close to 4. Comparing with the
CG formula Eq. (4) describing the AT universality class, we
thus identify Xt2 as the thermal scaling dimension, and Xt1 is
a scaling dimension corresponding to the polarization scaling
dimension Xp of the AT model. Meanwhile the striped scaling
dimensions are close to 1/8 for all g, which corresponds to
the magnetic scaling dimension of the AT model. We further
obtain gR for each g using Eq. (4), which expresses Xp as a
function of the CG coupling gR . These results are also listed
in Table I. We plot our numerical results Xt1 ,Xt2 versus gR in
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FIG. 13. (Color online) The scaling dimensions as functions of
the Coulomb gas coupling gR . The curves for the AT model are
theoretical predictions, while points are numerical results for the
J1-J2 model with numerical TM-estimated gR .

Fig. 13, together with the CG predictions of Xt and Xp for
the AT model. Thus, the TM calculations give a picture that
is consistent with the MC simulations when we consider the
ratio of the scaling dimensions Xt2/Xt1 . The TM calculations,
however, converge very slowly with L near the four-state Potts
point, which makes the method unsuitable for the extraction
of g∗ itself.

VI. CONCLUSIONS

We have shown that the thermal transitions from the striped
ordered phase in the J1-J2 model for the range g ∈ [g∗,∞)
can be fully mapped to the continuous phase transitions
of the well-known AT model. The special point g∗ ≈ 0.67
corresponds to the four-state Potts universality class and for
g → ∞ the transition approaches the standard Ising universal-
ity class. We have provided a numerical mapping between the
critical lines of the two models, based on matching universal
properties, critical exponents, as well as order-parameter
histograms.

Interestingly, the four-state Potts model and the neighboring
transitions in the AT model show a pseudo-first-order behavior
on finite lattices, though these transitions are rigorously
known to be continuous. The energy and order-parameter
histograms show double-peak structures near Tc, with the
distance between the peaks decreasing slowly to zero as
the system size is increased. This feature of the Potts point
and its neighborhood consequently leads to similar effects in
the J1-J2 model as well, in the vicinity of g∗. This feature
was misinterpreted as indicative of first-order transitions in
some previous studies. The frustrated Ising model exhibits
this pseudo-first-order behavior for g∗ � g � 1.

We further showed that the MC data of the J1-J2 model at
g∗ can be scale-collapsed by using the critical exponents of
the four-state Potts model, if logarithmic scaling corrections
known to exist at this point are properly taken into account.
CMF and TM calculations were also used to understand
aspects of the phase transition. CMF calculations on 2 × 2
and 4 × 4 clusters predict a multicritical point at g∗ ≈ 0.66,
very close to the exact location based on the MC calculations.
However, since these calculations are mean-field in nature,
the universality class of the continuous exponents cannot be
determined directly with this approach. The TM calculations,
carried out on cylinders of infinite length and finite width,
lead to accurate (well-converged) results for the transition
temperature Tc and also present an alternative method (to
MC simulations) to calculate critical exponents when g is
not too close to g∗. However, it is difficult to reliably
compute the location of g∗ with the TM method based on
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accessible cylinder widths, due to the effects of the logarithmic
corrections discussed above.

An open issue requiring further investigation is to un-
derstand why the transitions in the whole region (1/2,g∗)
(especially near g = 1/2, where an unusual first-order tran-
sition occurs at T = 0) are so weakly first-order (unless they
are of some more exotic continuous kind, which cannot be
completely ruled out).

The CMF calculations indicate that there may be a
narrow region of first-order transitions for g < 1/2 (for the
ferromagnetic-paramagnetic transition). It is not clear whether
this is an artifact of the small cluster size (with the first-order
behavior obtained for a 4 × 4 cluster but not for 2 × 2). Further

large-scale MC simulations and TM calculations in this region
are called for.
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32H. W. J. Blöte and M. P. Nightingale, Physica A 112, 405

(1982).
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