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Dynamic control of quantum geometric heat flux in a nonequilibrium spin-boson model
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We study the quantum geometric heat flux in the nonequilibrium spin-boson model. By adopting the
noninteracting-blip approximation that is able to accommodate the strong system-bath coupling, we show that
there exists a nonzero geometric heat flux only when the two-level system is nondegenerate. Moreover, the
pumping, no pumping, and dynamic control of geometric heat flux are discussed in detail, compared to the results
with Redfield weak-coupling approximation. In particular, the geometric energy transfer induced by modulation
of two system-bath couplings is identified, which is exclusive to quantum transport in the strong system-bath
coupling regime.
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I. INTRODUCTION

Smart energy control in low-dimensional nanoscale sys-
tems is of both theoretical and practical importance, render-
ing the emergence of phononics,1 where various functional
thermal devices are designed for managing thermal energy
and information at nanoscale. As is well known, according to
the second law of thermodynamics, energy cannot transfer
from a cold reservoir to a hot side spontaneously without
external modulation. In order to obtain a more flexible control
of thermal energy at the nanoscale, there is a great demand
for designing intriguing phononic thermal devices, which can
utilize temporal modulations to achieve dynamic control, such
as in heat pumps, motors, and engines.

So far, many proposals have been provided to dynamically
control the energy flow between a cold reservoir and a hot
one.2–9 As a result of these investigations,3,6 there is no way to
pump the energy from the cold side to the hot side in classical-
oscillator systems by force driving, though the heat pump can
be implemented in classical spin chains.3 An interesting design
to realize the dynamic control of heat transfer utilizes the
adiabatic geometric phase effect.10,11 Similar to the geometric
phase in a closed quantum system under adiabatic drivings,
when an open system with reservoirs is subjected to time-
dependent modulations, the energy transfer will also gain such
a geometric-phase-induced additional energy flux.10,11

The previous study of geometric heat flux in a spin-
boson model adopted the Redfield weak-coupling scheme.10

There are many approximation methods in studying the heat
transfer in the spin-boson model.12–17 Among them, the
Redfield weak-coupling approximation is often used since this
method is effective.18 The physical picture described by the
Redfield weak-coupling scheme has two inherent assumptions.
One is the resonant tunneling between the system and the
reservoirs, and only the resonant frequency in the reservoir
contributes to the dynamics. The other is that each individ-
ual reservoir interacts with the system separately, or, say,
additively.

However, recent studies reveal that there are also limitations
to the Redfield weak-coupling scheme.15–17,19,20 Besides the

scheme, other methods such as the multilayer multiconfig-
uration Hartree15 and the noninteracting-blip approximation
(NIBA)21–23 are also applied to study the heat flow in a
spin-boson model under temperature bias.16,17 Particularly, as
shown in Refs. 15 and 17, the heat current is not linearly
dependent on the system-reservoir coupling strength as given
by the Redfield-weak coupling scheme. There exists a maximal
heat current at the intermediate system-reservoir coupling
regime, and then the heat current decreases in the strong
system-reservoir coupling regime.

In this paper, we adopt the NIBA scheme to study the ge-
ometric phase-induced energy transfer in a spin-boson model.
Distinct from the Redfield scheme, NIBA is well known as a
scheme accommodating the strong system-reservoir coupling.
It describes another physical scenario of transport:16,17 non-
resonant tunneling between the system and the reservoirs and
the collective nonadditive interaction between reservoirs. We
shall first review the analytical expressions of the investigated
spin-boson model in NIBA and the geometric phase-induced
energy transfer through the generating function approach. We
then investigate in detail the behaviors of geometric heat flux
under various modulation protocols.

Our contributions are twofold. First, through calculating the
geometric phase-induced heat flux in the unbiased (degenerate)
case, we find zero geometric heat flux for the NIBA method
here, which is different from the finite geometric heat flux for
the Redfield scheme.10 Although, Ref. 17 showed that even in
the weak-coupling limit, NIBA method agrees very well with
Redfield calculation of heat flux, we can see that they still
describe distinct [(non)resonant and (non)additive] physical
pictures for nonequilibrium energy transfer in the spin-boson
model. Our results indicate that the geometric heat flux is
a sensitive indicator for different physical pictures of transfer
dynamics, which means that geometric heat flux could become
an effective tool to compare the difference or even judge the
correctness of various approximation schemes.

Second, geometric heat flux itself is a very important
physical problem. A thorough investigation into the problem
with different control protocols is meaningful. We find that
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geometric heat flux under two-temperature modulations is
linearly increasing with the system-bath coupling strength for
the biased (nondegenerate) case. For the modulation of one
temperature and a two-level energy gap, we also observe a
similar increase of the geometric heat flux with the system-
bath coupling. This is useful because the dynamic heat flux
always decays in the strong system-bath coupling limit, so the
geometric heat flux will dominate the energy transfer in that
strong-coupling limit and will have detectable consequences.
Moreover, we find the direction of geometric heat flux can
be reversed by adjusting the system’s parameters, in addition
to reversing the modulation protocol. Finally, two-coupling-
modulation-induced geometric heat flux is identified. So far,
this nontrivial observation is exclusive for quantum transport
in the strong system-bath coupling regime.

II. MODEL

The nonequilibrium spin-boson (NESB) model, consisting
of a two-level system in contact with two bosonic reser-
voirs with temperatures Tν (ν = L,R), is described by the
Hamiltonian

H = ε0

2
σz + �

2
σx+σz

∑
ν,j

λj,ν(b†j,ν+bj,ν) +
∑
ν,j

ωj,νb
†
j,νbj,ν,

(1)

where ε0 is the energy gap of the two levels, � denotes
the tunneling between them, σz ≡ |1〉〈1| − |0〉〈0| and σx ≡
|0〉〈1| + |1〉〈0| are the Pauli matrices expressed in the two-level
basis, and b

†
j,ν (bj,ν) denotes the creation (annihilation)

operator of the j th harmonic mode in the ν bosonic bath,
with λj,ν being the system-bath coupling strength. Before
proceeding to the energy transport calculations, it is useful
to transform the NESB Hamiltonian (1) by using the
canonical transformation24,25 (also called Lang-Firsov or
polaron transformation): HT = U †HU , U = exp[iσz�/2],
� = ∑

ν �ν = 2i
∑

ν,j

λj,ν

ωj,ν
(b†j,ν − bj,ν). After neglecting

an irrelevant constant −∑
j,ν λ2

j,ν/ωj , the transformed
Hamiltonian is expressed as

HT = ε0

2
σz + �

2
(σ+e−i� + σ−ei�) +

∑
j,ν

ωj,νb
†
j,νbj,ν,

(2)

with σ+ ≡ (σx + iσy)/2 = |1〉〈0| and σ− ≡ (σx − iσy)/2 =
|0〉〈1|. HT clearly shows that the energy transfer is
accomplished by the excitation from the lower level to the
upper one with absorbing energy from the baths and the
relaxation from the upper level to the lower one with releasing
energy to the baths. Thereafter, as a result of the NIBA
method20–23 and with the Markov assumption, the population
dynamics of the two-level system becomes17

d

dt

(
p0(t)

p1(t)

)
= −

(
K(−ε0) −K(ε0)

−K(−ε0) K(ε0)

) (
p0(t)

p1(t)

)
, (3)

where p0/1(t) ≡ (1 ∓ 〈σz(t)〉)/2 denotes the population
at the lower (upper) level. The transition rates stand for
the cooperative process between the system and two

reservoirs:

K(±ε0) ≡ (�/2)2

2π

∫ ∞

−∞
C±(ω)dω,

(4)
C±(ω) ≡ CL(±ε0 ∓ ω)CR(±ω),

with Cν(ω) ≡ ∫ ∞
−∞ eiωt−Qν (t)dt denoting the probability

density of the bath ν to absorb the energy ω (equivalently,
to release the energy −ω). Employing the Gaussian statistics
of the “momentum” operator �(t), we have Qν(t) ≡
〈[�ν(0) − �ν(t)]�ν(0)〉= ∫ ∞

0
Jν (ω)
πω2 {coth( ω

2Tν
)[1 − cos(ωt)] +

i sin(ωt)}dω23, with Jν(ω) = 4π
∑

j λ2
j,νδ(ω − ωj,ν) being

the spectral density of the bosonic bath ν. In contrast to the
Redfield weak-coupling scheme,10,12 the rate expressions (4)
distinctly exhibit the nonresonant energy tunneling processes,
conjoining the two baths nonadditively: K(ε0) means when the
central system loses energy ε0 by relaxing from the upper level
to the lower one, the R bath will absorb ω, and the L bath gains
the rest if ε0 > ω or even supplements the shortage if ω > ε0;
K(−ε0) depicts a similar energy transfer process for the
central system exciting from the lower level to the upper one.

III. GENERATING FUNCTION AND GEOMETRIC
HEAT FLUX

Following the full counting statistics,26,27 we next construct
the cumulant generating function (CGF) of the NESB model to
count the phonon energy transfer through the right system-bath
coupling.10,11,19,28–30 Denoting ρt (n,ω) as the joint probability
that the total energy of ω has been transferred to the right
bath during the time interval [0,t], with the two-level system
populating at state |n〉 (n = 0,1) at time t , we then introduce
the characteristic function of that joint probability |z(χ,t)〉 ≡
[
∫ ∞
−∞ ρt (0,ω)eiωχdω,

∫ ∞
−∞ ρt (1,ω)eiωχdω]T with the energy

counting field χ . Following Ref. 17, this characteristic function
satisfies the following dynamics:

d

dt
|z(χ,t)〉 = −Ĥ(χ )|z(χ,t)〉,

(5)

Ĥ(χ ) =
(

K(−ε0) −K+(χ )

−K−(χ ) K(ε0)

)
,

where K±(χ ) ≡ (�/2)2

2π

∫ ∞
−∞ C±(ω)e±iωχdω. When the count-

ing field χ = 0, K±(0) = K(±ε0), and in turn Eq. (5)
reduces to Eq. (3). Thus, the characteristic function of the
heat transfer is Z(χ,t) = ∫ ∞

−∞[ρt (0,ω) + ρt (1,ω)]eiωχdω, and
the CGF is G(χ ) ≡ limt→∞ 1

t
ln[Z(χ,t)], which generates

the n-order cumulant of heat transfer fluctuations through
limt→∞〈〈Qn〉〉/t = ∂n

iχG(χ )|χ=0. The mean value of the heat
flux is just the first order: J = ∂iχG(χ )|χ=0.

Behaviors in the long-time limit are our central interest.
They are governed by the ground state of the operator Ĥ(χ ),
of which the eigenvalue E0(χ ) possesses the smallest real
part. For time-independent Ĥ(χ ), limt→∞ Z(χ,t) ∼ e−E0(χ )t ,
and in turn limt→∞〈〈Qn〉〉/t = −∂n

iχE0(χ )|χ=0. However,

for time-dependent Ĥ(χ,t), where the system parameters
�(t),ε0(t), the bath temperature Tν(t), or the system-bath
coupling λj,ν(t) could be subject to periodic modulations,
the adiabatic geometric phase effect has been unraveled to
play an important role in the dynamic control of energy
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transfer.10,11 In this case, although at every instant the dynamics
(5) is preserved, there exist two contributions in the CGF:
limt→∞ Z(χ,t) ∼ etG = et(Gdyn+Ggeom). One is the dynamic part
Gdyn, and the other is the geometric part Ggeom:10,11,30

Gdyn = − 1

Tp

∫ Tp

0
dtE0(χ,t),

(6)

Ggeom = − 1

Tp

∫ Tp

0
dt〈φ0|∂t |ψ0〉,

with Tp being the modulating period31 and |ψ0〉 (〈φ0|) being
the biorthonormal right (left) eigenvector corresponding to the
ground state of Ĥ(χ,t).32 In the case of two parameters being
modulated, say u1(t) and u2(t), the calculation of Ggeom can be
done using Stokes theorem,33

Ggeom = − 1

Tp

∫∫
u1u2

du1du2Bu1u2 , (7)

and the Berry curvature33,34 is

Bu1u2 = 〈
∂u1φ0

∣∣∂u2ψ0
〉 − 〈

∂u2φ0

∣∣∂u1ψ0
〉

=
〈
φ0

∣∣∂u1Ĥ
∣∣ψ1

〉〈φ1|∂u2Ĥ|ψ0〉 − (u1 ↔ u2)

(E0 − E1)2
, (8)

with E1 being the eigenvalue of the excited state and |ψ1〉 (〈φ1|)
being the corresponding biorthonormal right (left) eigenvector.
According to these formulas, we have the dynamic heat flux
Jdyn and the geometric heat flux Jgeom,

Jdyn = − 1

Tp

∫ Tp

0
dt

∂E0(χ,t)

∂(iχ )

∣∣∣∣
χ=0

, (9)

Jgeom = − 1

Tp

∫∫
u1u2

du1du2
∂Bu1u2

∂(iχ )

∣∣∣∣
χ=0

. (10)

IV. RESULTS AND DISCUSSIONS

With the equations above, we are ready to study the
consequences of the dynamic control of the NESB model
beyond the weak-coupling limit, i.e., without Redfield weak-
coupling approximation.

Unbiased case, ε0 = 0. In this degenerate case, we have
K(−ε0) = K(ε0),K+(χ ) = K−(χ ), and the matrix

Ĥ(χ,t) =
(

K(ε0) −K+(χ )

−K+(χ ) K(ε0)

)
. (11)

Because of the high symmetry of Ĥ(χ,t) at the degenerate
case, the corresponding eigenvalues and eigenvectors turn into
a simple form:

E0/1 = K(ε0) ∓ K+(χ ), |ψ0/1〉 = 1√
2

(±1, 1)T ,

〈φ0/1| = 1√
2

(±1, 1).

Note the eigenvectors are now constants which indicate that
the eigenvectors do not evolve as the parameter modulations.
Thus, from Eq. (8), we have that for whatever two-parameter
modulations, the Berry curvature Bu1u2 ≡ 0. In other words,
there is no geometric phase effect, and geometric heat flux is
absent when the two-level energy gap is zero. In fact, when

ε0 = 0, we have 〈σz〉 = 0 and p0/1(t) ≡ (1 ∓ 〈σz(t)〉)/2 =
1/2. Therefore, no matter how you drive the system, the two
populations always keep constant so that there is no geometric
contribution of the transport.

Note that, in contrast to the absence of geometric heat flux
here, Ref. 10 treats the same physical system with ε0 = 0
(with the notation � → ω0; see also Ref. 17) but in the
Redfield weak-coupling scheme and finds nonzero geometric
heat flux there. Despite the difference, these two results are
not in conflict with each other. As we have emphasized
in the beginning, the NIBA method is not equivalent to
the Redfield one. They describe distinct physical pictures
of the transport dynamics. The Redfield scheme describes
the physical picture in the weak-coupling limit, which has
two inherent assumptions: (1) resonant tunneling and (2) an
additive reservoir effect. However, NIBA usually works in
the strong-coupling regime and describes another different
physical picture of transport: (1) off-resonant tunneling and
(2) a nonadditive reservoir effect. These differences between
the NIBA and Redfield methods give rise to the different results
of geometric heat flux. It is just like the two faces of the same
coin. The two different faces are not in conflict with each other.
They are just two different manifestations of the same system
under different scenarios and conditions.

Rigorously speaking, the NIBA method was originally
derived for a spin coupled to a single equilibrium bosonic
reservoir. Consequently, its theoretical justification for weak
coupling with zero bias23 is merely applied for the case of
a single bath, where there is no difference between additive
and nonadditive reservoir effects. Although Ref. 17 showed
that for the transport problem with two baths, even in the
weak-coupling limit, the NIBA and Redfield methods give
heat flux data with similar values, we can see that they still
have different curve behaviors [reproduced in Fig. 1(a)]. This
in fact reflects the two distinct physical pictures described
by these two methods.35 A larger deviation can be found in
the shot-noise comparison in Fig. 1(b) because the high-order
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FIG. 1. (Color online) Comparison of heat flux and its high-order
fluctuations in the NIBA and Redfield methods. (a) The mean value
of heat flux: J = −∂iχE0|χ=0. (b) The shot noise of heat flux: S =
−∂2

iχE0|χ=0. TL = 150 K (5), TR = 90 K (3), � = 5.22 meV (2).
The cutoff of the Ohmic spectral function is set as 26.1 meV (10).
The numbers in the parentheses are the corresponding dimensionless
parameters used in Ref. 17.
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heat flux fluctuations contain more information about the
underlying dynamics.

Different from the heat flux and high-order fluctuations,
the geometric heat flux does contains not only the information
about the ground-state eigenvalues but also more compre-
hensive information from the eigenfunctions [see Eqs. (8),
(9), and (10)]. In other words, the geometric heat flux is a
more sensitive indicator of the underlying transfer dynamics
for different physical pictures. Therefore, we expect that the
geometric heat flux could be an effective tool for comparing
the differences between or even judging the correctness of
various approximation schemes under different scenarios and
conditions.

Biased case, ε0 �= 0. An applied electromagnetic field
could control this Zeeman splitting. In this nondegenerate
case, the geometric heat flux does exist. In the following,
to simplify the calculation we assume the Marcus limit23,36

that works at high temperature Tν > ε0 and/or the strong
system-bath coupling regime. The Marcus limit could be
approached by a short-time expansion of Qν(t) such that
Qν(t) = �νTνt

2 + i�νt with the renormalized system-bath
coupling �ν = ∫

Jν (ω)
πω

dω = ∑
j 4λ2

j,ν/ωj,ν . In this way, we
have the transition rates17,23

Cν(ω) =
√

π

�νTν

exp

[
− (ω − �ν)2

4�νTν

]
,

K(±ε0) = �2

4

√
π

�LTL + �RTR

exp

[
− (ε0 ∓ �L ∓ �R)2

4(�LTL + �RTR)

]
,

where �,ε0,Tν , and �ν could be subject to the dynamic control.
By substituting these rates into the dynamics (5), we are able
to investigate the Berry curvature and the geometric heat flux
Jgeom through Eqs. (8) and (10).

We first adiabatically modulate the two bath temperatures.
The external control frequency �p is chosen to be sufficiently
small so that the adiabatic condition is respected.31 The
protocol is chosen as TL(t) = 150 + 90 cos(�pt) (K), TR(t) =
150 + 90 sin(�pt) (K), so that there is no temperature-bias-
induced flux on average (Jdyn = 0), but the geometric heat
flux emerges. Figure 2 shows that the integrated geometric
heat flux per period Qgeom ≡ JgeomTp is linearly dependent on

FIG. 2. (Color online) Integrated geometric heat flux per period
Qgeom ≡ JgeomTp as a linear function of the system-bath coupling
under the two-bath-temperature modulation. We set the symmetric
coupling �L = �R = �, and tunneling energy is � = 5.22 meV.
When ε0 → −ε0, we observe the same lines.

0 30 60 90 120

-0.10

-0.05

0.00

0.05

0.10

0 30 60 90 120
-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8
ε0
1.31 meV
0.52 meV
0 meV

ε0
-0.52 meV
-1.31 meV

(b)

ε0
-0.52 meV
-1.31 meV

ε0 = 0 meV

ε0
1.31 meV
0.52 meV

Q
ge
om
(m
eV
)

Γ (meV)

(a)

Q
dy
n
(m
eV
)

Γ (meV)

FIG. 3. (Color online) (a) Qgeom as a linear function of � under
modulations of one bath temperature and the gap ε0(t). We set
TL(t) = 150 + 90 cos(�pt) (K), ε0(t) = ε0 + 0.78 sin(�pt) (meV).
TR = 150 K, � = 5.22 meV. (b) Integrated dynamic heat flux per
period Qdyn ≡ JdynTp under the same conditions for comparison.

the system-bath coupling �. When � approaches zero, Qgeom

does not vanish but persists at some finite values. Also, we
find that increasing the gap ε0 can increase Qgeom, and when
ε0 → −ε0, we observe the same lines. Generally, reversing
the modulation cycle can reverse the direction of geometric
heat flux. Moreover, as indicated in Fig. 2, when the coupling
strength � exceeds some threshold values, the geometric heat
flux will also reverse its direction. This may offer a useful
mean in dynamic control of the heat flux induced by adiabatic
periodic modulation.

Second, we manipulate the bath temperature and the
two-level energy gap ε0. As shown in Fig. 3(a), Qgeom is
linearly dependent on the system-coupling strength. When �

approaches zero, Qgeom vanishes. Raising the average level
gap ε0 can increase the magnitude of Qgeom. If we reverse
ε0 → −ε0, the geometric heat flux reverses its direction so that
when ε0 = 0, Qgeom is absent. Although in this modulation
protocol the dynamic heat flux is nonzero, it decays as the
system-bath coupling � increases [see Fig. 3(b)]. In this way,

FIG. 4. (Color online) Emergence of the geometric phase effect
and geometric heat flux for modulating two system-bath couplings.
Although Qgeom is absent at TL = TR , the nonzero geometric
skewness (∂3

iχGgeom|χ=0) shows the existence of the geometric phase
effect, manifesting itself as the high-order heat transfer fluctuations.
The control protocol is �L = 130.5 + 104.4 cos(�pt) (meV) and
�R = 130.5 + 104.4 sin(�pt) (meV). Other parameters are TL =
150 K, ω0 = 2.61 meV, and � = 5.22 meV.
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the geometric heat flux will dominate the energy transport in
the strong system-bath coupling regime.

Besides the two control protocols discussed above, we
finally consider the special case of modulating two system-bath
couplings �L(t) and �R(t). Figure 4 shows the emergence
of geometric heat flux when TL �= TR . Although, at TL =
TR , the geometric heat flux vanishes, the geometric phase
effect still exists, manifesting itself as the high-order heat
transfer fluctuation, e.g., the nonzero geometric skewness
∂3
iχGgeom|χ=0 �= 0. These observations are distinct from the

previous results either in the quantum weak-coupling regime10

or in the classical regime,11 wherein under coupling modula-
tion, the Berry curvatures are always zero (no matter what
the other parameter settings are), so that the geometric phase
effect and geometric heat flux are always absent. It is the
strong system-bath coupling we consider here that makes the
coupling-modulation-induced geometric heat pump nontrivial.

In summary, we have studied the geometric phase-induced
heat flux extensively in the spin-boson system under the

adiabatic periodical modulation without the Redfield approx-
imation. Using the NIBA approach, we have found that the
geometric heat flux only exists when the two-level system’s
energy gap is not zero. Moreover, the pumping, no pumping,
and dynamic control of the geometric heat flux have been
discussed in detail. In particular, two-system-bath-coupling
modulation-induced geometric heat flux has been identified.
So far, this nontrivial observation is exclusively for quantum
transport in the strong system-bath coupling regime.
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