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Parametric amplification in Josephson junction embedded transmission lines
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An electronic transmission line that contains an array of nonlinear elements (Josephson junctions) is studied
theoretically. A continuous nonlinear wave equation describing the dynamics of the node flux along the
transmission line is derived. It is shown that due to the nonlinearity of the system, a mixing process between
four waves with different frequencies is possible. The mixing process can be utilized for amplification of weak
signals due to the interaction with a strong pump wave. An analytical solution for the spatial evolution of the
wave amplitudes is derived, and found to be in excellent agreement with the results of numerical computations.
Simulations of realistic parameters show that the power gain can exceed 20 dB over a bandwidth of more than
2 GHz.
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I. INTRODUCTION

Recent progress in the development of near quantum-
noise-limited microwave amplifiers has enabled ultrasensitive
detection in radio astronomy1 and real-time monitoring of
quantum bits.2,3 Superconducting parametric amplifiers,4–8 in
particular, have demonstrated reliable, low-noise operation
with power gain in excess of 20 dB and bandwidth ranging
from 1–10 MHz.9–13 These amplifiers, however, comprise a
single Josephson junction or an array of junctions in a resonant
cavity which ultimately limits the bandwidth and dynamic
range. The use of a single resonant cavity also implies that these
devices must operate in a reflection geometry, requiring the use
of lossy, bulky microwave circulators between the amplifier
and the system under measurement. The need for circulators
has become a limiting factor on measurement sensitivity in
some recent experiments on quantum-limited measurement3,14

and has also prevented on-chip, large-scale integration of these
amplifiers.

We consider an architecture based on a nonlinear trans-
mission line comprising capacitively shunted Josephson junc-
tions. Such traveling wave amplifiers have been addressed
in previous theoretical proposals15,16 without a complete
nonlinear treatment of the dynamics of the transmission line
or discussion of the mode matching conditions required for
efficient four-wave mixing. Operation of a prototype device
has also been reported using chains of Josephson junctions,17

although this device was operated as a reflection amplifier and
did not achieve impedance matching to 50 �. Operation of a
device using the kinetic inductance of a thin superconducting
transmission line has also been recently demonstrated.18 We
develop a detailed theoretical model to calculate the amplifier
gain as a function of device length for experimentally relevant
parameters.

The paper is organized as follows: In Sec. II we derive a
continuous nonlinear wave equation describing the dynamics
of the node flux along the transmission line, and present
the coupled envelope equations of the degenerate four-wave
mixing process. In Sec. III, we analyze the problem under
the strong pump assumption without dissipation, present
numerical solutions of the envelope equations, and compare

with the approximate analytic solutions. Finally, our results are
summarized in Sec. IV. The derivation of the coupled envelope
equations (that are presented in Sec. II) is described in detail
in the Appendix.

II. NONLINEAR WAVE EQUATION

In this section, we derive the nonlinear wave equation
describing the dynamics of a capacitively shunted Josephson
junction transmission line (Fig. 1). This circuit model can be
realistically implemented in a microstrip-geometry transmis-
sion line, wherein the linear inductance of the microstrip per
unit cell can be made negligible compared to the Josephson
inductance by using a relatively wide microstrip trace and
short unit cell spacing. We proceed by writing the current
conservation relation, capacitor current-voltage relation, and
Josephson current for each cell. Next, we use the continuum
approximation, leading to the desired wave equation. In the
following, we assume that the capacitance C is the same along
the transmission line, but the capacitance CJ may vary from
cell to cell. The current conservation in each cell reads

In = I(CJ ),n + IL,n. (1)

The current in capacitor CJ ,n is related to the voltages Vn and
Vn+1 by the derivative,

I(CJ ),n = −CJ

d

dt̃
(Vn+1 − Vn), (2)

where t̃ denotes time. We use the usual magnetic flux
definition,

Vn+1 − Vn = −d�n

dt̃
, (3)

and the expression for the Josephson current,

IL,n = IJ sin

[
�n

ϕ0

]
, (4)

where IJ is the critical Josephson current and ϕ0 = �0/(2π )
is the reduced flux quantum. Here �0 = h/(2e) where h is
Planck constant and e is the electron charge. Differentiation of
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FIG. 1. (Color online) Transmission line scheme. The Joseph-
son junctions and the capacitors are represented by J.J. and C,
respectively. The voltages and the currents are denoted by V and
I , respectively. The length of all the cells is constant and is equal
to a.

the last equation yields

dIL,n

dt̃
= IJ

ϕ0

(
cos

[
�n

ϕ0

])
d�n

dt̃
. (5)

Then,

d�n

dt̃
= dIL,n

dt̃

ϕ0

IJ

(
1 − sin2

[
�n

ϕ0

])− 1
2

, (6)

which, upon using Eq. (4), becomes

d�n

dt̃
= ϕ0

IJ

(
1 −

[
IL,n

IJ

]2
)− 1

2
dIL,n

dt̃
. (7)

For a weak nonlinearity, IL,n/IJ � 1, we approximate

d�n

dt̃
= ϕ0

IJ

(
1 + 1

2

[
IL,n

IJ

]2
)

dIL,n

dt̃
. (8)

Since the current through capacitor Cn is

IC,n = −Cn

d

dt̃
(0 − Vn) + Vn

Rn

= Cn

dVn

dt̃
+ Vn

Rn

, (9)

current conservation yields

In − In−1 = −Cn

dVn

dt̃
− Vn

Rn

. (10)

Here Rn is the intrinsic (parallel) resistivity of capacitor Cn,
accounting for dielectric loss in a realistic capacitor. Next, we
use Eqs. (3) and (8) to get

Vn+1 − Vn = −L
dIL,n

dt̃
− ϕ0

6I 3
J

d

dt̃
(IL,n)3, (11)

where L = ϕ0/IJ . Introducing the node fluxes ϕ̃n via

Vn ≡ dϕ̃n

dt̃
, (12)

and integrating (11), we obtain

ϕ̃n+1 − ϕ̃n = −LIL,n − ϕ0

6I 3
J

I 3
L,n, (13)

where, being interested in oscillatory solutions, we set the
integration constant to zero. The last equation yields

IL,n = − 1

L
(ϕ̃n+1 − ϕ̃n) − ϕ0

6I 3
J L

I 3
L,n. (14)

Here, assuming that the nonlinear term is small, we can
approximate to lowest (nonlinear) order:

IL,n ≈ − 1

L
(ϕ̃n+1 − ϕ̃n). (15)

Then, to next order,

IL,n = − 1

L
(ϕ̃n+1 − ϕ̃n) + ϕ0

6I 3
J L4

(ϕ̃n+1 − ϕ̃n)3. (16)

Finally, combining Eqs. (1), (2), (10), (12), and (16), we obtain
the weakly nonlinear system describing our transmission line,

−Cn

d2ϕ̃n

dt̃2
= −CJ

d2

dt̃2
[ϕ̃n+1 + ϕ̃n−1 − 2ϕ̃n]

− 1

L
[ϕ̃n+1 + ϕ̃n−1 − 2ϕ̃n]

+ ϕ0

6I 3
J L4

[(ϕ̃n+1 − ϕ̃n)3 − (ϕ̃n − ϕ̃n−1)3]

+ 1

Rn

dϕ̃n

dt̃
. (17)

At this stage, assuming a sufficiently long wavelength λ

of a wave-type excitation of the chain (a/λ � 1), we use
the continuum approximation and replace the discrete n by
a continuous position x̃ along the line and replace the finite
differences in the discrete line equations by their continuous
counterparts to second order in (a/λ):

ϕ̃n+1 − ϕ̃n ≈ a
∂ϕ̃

∂x̃
+ 1

2
a2 ∂2ϕ̃

∂x̃2
, (18)

ϕ̃n − ϕ̃n−1 ≈ a
∂ϕ̃

∂x̃
− 1

2
a2 ∂2ϕ̃

∂x̃2
, (19)

ϕ̃n+1 + ϕ̃n−1 − 2ϕ̃n ≈ a2 ∂2ϕ̃

∂x̃2
. (20)

Then, to lowest significant order in (a/λ),

(ϕ̃n+1 − ϕ̃n)3 − (ϕ̃n − ϕ̃n−1)3 ≈ 3a4

(
∂2ϕ̃

∂x̃2

) (
∂ϕ̃

∂x̃

)2

, (21)

and, thus, the continuous counterpart of (17) becomes

C
∂2ϕ̃

∂ t̃2
− a2

L

∂2ϕ̃

∂x̃2
− CJ a2 ∂4ϕ̃

∂ t̃2∂x̃2
+ ϕ0a

4

2I 3
J L4

(
∂2ϕ̃

∂x̃2

)(
∂ϕ̃

∂x̃

)2

+ 1

R

dϕ̃

dt̃
= 0. (22)

In this weakly nonlinear wave equation, the first three terms
describe weakly dispersive linear waves with spatially depen-
dent phase velocity, while the fourth and fifth terms represent
the nonlinearity and dissipation in the problem. We will
show below that it is the combination of the weak dispersion
and cubic nonlinearity which allows efficient parametric
amplification in the system via the four-wave mixing process.

In the following, we use dimensionless time t =
t̃(LCJ )−1/2 and coordinate x = x̃/a, and seek solutions for
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the wave equation as a superposition of three waves (pump,
signal, and idler):

ϕ̃(x,t) = 1
2 [Ãp(x)eiψp + Ãs(x)eiψs + Ãi(x)eiψi + c.c.],

(23)

where c.c. denotes complex conjugate. We define the dimen-
sionless wave vectors and constant frequencies of the waves
as km(x) = ∂ψm/∂x and ωm = −∂ψm/∂t , respectively. In our
analysis, we assume the frequency matching condition of a
degenerate four-wave mixing process,

ωs + ωi = 2ωp. (24)

In the Appendix, we derive from Eq. (22) a dimensionless
wave equation,

∂2ϕ

∂x2
+ ∂4ϕ

∂x2∂t2
− ρ(x)

∂2ϕ

∂t2
− ν(x)

∂ϕ

∂t
= γ

∂

∂x

[(
∂ϕ

∂x

)3
]

.

(25)

Here ϕ = ωpϕ̃/(LIJ ) is a dimensionless node flux,

ρ = C(x)

CJ

, ν = ρ(x)

√
LCJ

RC
, γ = ϕ0

6IJ Lω2
p

, (26)

and RC is a constant since both R and C are defined by the area
of the capacitors. We also derive there a set of three evolution
equations for the normalized complex envelope amplitudes,

am ≡ umωp

√
km(x)

LIJ

Ãm, (27)

where um ≡ (1 − ω2
m)1/2. The equations for am are

dap

dx
+ νp

2
ap − i

3γ

8
k̃p(k̃p|ap|2 + 2k̃s |as |2 + 2k̃i |ai |2)ap

= iμa∗
pasaie

i, (28)

das

dx
+ νs

2
as − i

3γ

8
k̃s(2k̃p|ap|2 + k̃s |as |2 + 2k̃i |ai |2)as

= iμa2
pa∗

i e
−i, (29)

dai

dx
+ νi

2
ai − i

3γ

8
k̃i(2k̃p|ap|2 + 2k̃s |as |2 + k̃i |ai |2)ai

= iμa2
pa∗

s e
−i, (30)

where

k̃m ≡ km

u2
m

, νm ≡ ωmν

kmu2
m

, μ = 3γ

4
k̃p(k̃s k̃i)

1/2. (31)

In the next section, we will find an analytical closed-form
solution for the envelope equations under certain conditions,
and compare it to the numerical solution of these equations.

III. STRONG PUMP APPROXIMATION

In this section we discuss the dynamics of our system in
the case |as,i | � |ap|, when the pump depletion due to the
coupling to the signal and the idler can be neglected. We limit
the analysis to a uniform transmission line with ρ and km

constant. We neglect the dissipation effect at this stage, i.e.,
set νm = 0. We also neglect the quadratic terms in as,i in

Eqs. (28)–(30), yielding the system,
dap

dx
− irp|ap|2ap = 0, (32)

das

dx
− irs |ap|2as = iμa2

pa∗
i e

−i, (33)

dai

dx
− iri |ap|2ai = iμa2

pa∗
s e

−i, (34)

where rp ≡ 3γ k̃2
p/8 and rs,i ≡ 3γ k̃pk̃s,i/4. The equation for

the pump is now decoupled and yields the solution,

ap = Bp,0e
iθp(x), (35)

where Bp,0 is the real amplitude of the initial condition ap,0 =
Bp,0e

iθp,0 and θp(x) = θp,0 + rpB2
p,0x (throughout this paper,

the subscript “0” denotes the initial condition value). Then,
Eqs. (33) and (34) become

dãs

dx
+ i

[
(rp − rs)B

2
p,0 − �k

2

]
ãs = iμB2

p,0âi , (36)

dâi

dx
− i

[
(rp − ri)B

2
p,0 − �k

2

]
âi = −iμB2

p,0ãs , (37)

where ãs,i = as,i exp(−i[θp − /2]) and âi = ã∗
i . To shorten

the notations, we write this system as
dys

dx
+ iαsys − iβyi = 0, (38)

dyi

dx
− iαiyi + iβys = 0, (39)

where ys = ãs , yi = âi , αs = (rp − rs)B2
p,0 − �k/2, αi =

(rp − ri)B2
p,0 − �k/2, and β = μB2

p,0. These equations can be
solved by the usual normal mode analysis. We seek solutions
in the form ys,i ∼ eipx , yielding an algebraic system,

Dy =
(

p + αs −β

β p − αi

) (
ys

yi

)
= 0. (40)

We find p by solving the characteristic equation Det(D) = 0,

p2 + (αs − αi)p + β2 − αsαi = 0. (41)

This yields two modes:

p± = (αi − αs) ±
√

(αs + αi)2 − 4β2

2
= (αi − αs)

2
± √

�p,

(42)

where

�p = [(αs + αi)
2/4] − β2. (43)

The general solution of Eqs. (38) and (39) is a sum of two
independent solutions y±:

y =
(

ys

yi

)
= y+ + y− = y+,0e

ip+x + y−,0e
ip−x, (44)

where

D(p+)y+ = D(p−)y− = 0, (45)

leading to relations between the components of the vectors y+
and y−. Then the general solution at the initial stage is(

ys

yi

)
=

(
1

σ/β

)
c+eip+x +

(
σ/β

1

)
c−eip−x, (46)
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where

σ = αs + αi

2
+ √

�p. (47)

The coefficients c± are found from the initial conditions,

c+ + σ

β
c− = ys,0, (48)

σ

β
c+ + c− = yi,0, (49)

i.e., (
c+
c−

)
= β

β2 − σ 2

(
βys,0 − σyi,0

βyi,0 − σys,0

)
. (50)

At this point we can derive a simple expression for the
signal power gain Gs = (Bs/Bs,0)2. Assuming that the initial
amplitude of the idler is negligible comparing to the initial
signal amplitude |yi,0/ys,0| � 1 and substituting Eq. (50) into
Eq. (46) yields an approximate expression for Bs/Bs,0 =
|ys |/Bs,0 from which we find that

Gs ≈
∣∣∣∣β2eip+x − σ 2eip−x

β2 − σ 2

∣∣∣∣2

. (51)

Due to our assumptions of strong pump and negligible
dissipation, the corresponding expression of the pump gain
Gp = (Bp/Bp,0)2 is equal to 0.

The amplification bandwidth in the problem is the spectral
range where �p < 0. Substituting the definitions of αs , αi , β,
and rm into the expression for �p, Eq. (43) yields

�p = (αs + αi)2

4
− β2

=
[
(2rp − rs − ri)B2

p,0 − �k
]2

4
− μ2B4

p,0. (52)

The boundaries of the amplification bandwidth are determined
by setting �p = 0. This yields the bandwidth in terms of the
wave vectors mismatch

�kB = (2rp − rs − ri ± 2μ)B2
p,0, (53)

or by using the definitions of rm and μ,

�kB = 3
4γ k̃pB2

p,0[k̃p − k̃s − k̃i ± 2(k̃s k̃i)
1/2]. (54)

On the other hand, k̃p − k̃s − k̃i = −k̃p − �k̃ ≈ −k̃p − 3�k,
and we can rewrite the last expression as

�kB

[
1 + 9

4γ k̃pB2
p,0

] = 3
4γ k̃pB2

p,0[−k̃p + 2(k̃s k̃i)
1/2],

(55)

where we have left the positive sign in (54) for having �kB > 0
in agreement with Eq. (A32). Finally, we approximate k̃m ≈ km

in the right-hand side of the last equation, neglect the small
term with γ in the left-hand side, and use the previously shown
relation �k ≈ 3kp(�ω)2 [Eq. (A32)] to obtain an estimate for
the amplification bandwidth in terms of the frequencies,

|�ωB | = |ωs − ωp| ≈ 1
2 (γ kp)1/2Bp,0. (56)

Within this bandwidth, the imaginary part of p− is negative,
therefore, the second term in Eq. (46) grows exponentially.
The spatial exponential gain factor is g = √−�p. The gain
vanishes at the frequency shifts given in Eq. (56) and

reaches the maximum value at ωs = ωp, i.e., in the center
of the amplification band. This maximal exponential gain
factor is

gmax =
√

3

4
μpB2

p,0 ≈
(

3

4

)3/2

γ k̃2
pB2

p,0, (57)

where μp is μ at ωs = ωp.
It is interesting to compare between the gain profile in

the process of degenerate four-wave mixing in our present
system and in the related well-known process in third-order
χ (3) nonlinear optical medium.19 In our present system we
see from Eq. (A32) that the maximal gain occurs at the
condition of perfect wave vectors matching �k = 0. On the
contrary, in a χ (3) optical medium, the maximal gain occurs in
a nonvanishing value of �k that is proportional to the initial
pump power P0 (see p. 396 of Ref. 19). However, in both types
of processes, the bandwidth �kB in which the gain is positive
is proportional to the product γP0 where γ is the relevant
nonlinear coupling coefficient [see Eq. (53)].

Finally, we discuss the evolution of the phase mismatch
between the waves. Using the representation am = Bmeiθm

where Bm and θm are real, and defining the phase mismatch
� ≡ θs + θi − 2θp + , we find that in the Appendix a set of
four evolution equations for the Bm and �. In the linear stage,
without dissipation, Eqs. (A25) and (A26) in the Appendix can
be approximated by

dBs

dx
= μB2

pBi sin �, (58)

dBi

dx
= μB2

pBs sin �. (59)

These equations can be used to write

sin � = Bs
dBs

dx
+ Bi

dBi

dx

2μB2
pBsBi

. (60)

Within the amplification bandwidth, �p < 0, and the first
(exponentially decaying) term in the solution Eq. (46) is
negligible at locations such that gx � 1. In this regime,
dBs,i/dx ≈ gBs,i and Bs ≈ Bi , so we obtain

sin � → g

μB2
p,0

, (61)

i.e., � approaches a constant value,

�∞ = π − arcsin

(
g

μB2
p,0

)
. (62)

Note that in choosing between the two possible solutions
of �∞, we take the one with cos �∞ < 0. This choice is
explained by examining the approximation of Eq. (A31) in the
linear regime:

d�

dx
= �k + 3γ

4
k̃pB2

p,0(�k̃ + k̃p)

+μB2
p,0

(
Bi

Bs

+ Bs

Bi

)
cos �. (63)

Since �k and �k̃ are non-negative, a constant solution � =
�∞ can be reached for cos �∞ < 0 only.
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At this stage, we present some numerical results for a
typical set of parameters, and compare these results with our
analytical results. We used the following parameters in our cal-
culations: ϕ0 = 3.29 × 10−16 Wb, C = 4.51 × 10−14 F, CJ =
3.29 × 10−13 F, IJ = 3.29 μA, RC = ∞, fp = ωp/2π =
6 GHz, Ãp,0 = 2.18 × 10−15 V × s, Ãs,0/Ãp,0 = 9.3 × 10−5,
Ãi,0/Ãp,0 = 1.09 × 10−8, 0 = 0, and θp = θs = θi = 0. For
signal and idler frequencies fs = ωs/2π = 7 GHz and fi =
2fp − fs = 5 GHz, this set of physical parameters is reduced
to the following set of normalized parameters: μ = 0.0195,
νp = νs = νi = 0, Bp,0 = 0.4, Bs,0/Bp,0 = 10−4, Bi,0/Bp,0 =
10−8, and �0 = 0. The solution of the normalized wave powers
and the phase � are presented in Figs. 2(a) and 2(b), respec-
tively. Excellent agreement is seen between the numerical
solution of Eqs. (A24)–(A26), and (A31) and the analytic
solution Eqs. (35) and (46). As predicted, the numerical value
of � approaches the asymptotic value �∞, given by Eq. (62).
As predicted for x � 1/g = 389, the dependence of the wave
amplitudes on the position is exponential.

Using our previous definitions, the voltage and the current
were calculated at x = 0 and x = 2000 (the line input and
output). From these quantities, the absolute value of the
impedance of the pumped line was found to be equal to 50 �

with negligible phase shift between the voltage and the current
phases. For comparison, the linear impedance on the line
(without pumping) is equal to (L/C)1/2 = 47.1 �. Figure 3
shows the numerical solution for the signal gain compared
with the analytical solution Eq. (51). The results are plotted for
various values of initial reduced pump amplitude, Bp,0 = 0.4
(used in Fig. 2) as well as lower values of Bp,0 = 0.2 and
Bp,0 = 0.3. All the rest of the parameters are the same as in
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FIG. 2. (Color online) Evolution of (a) the normalized power of
the pump wave B2

p , signal wave B2
s , and idler wave B2

i , and (b) the
phase mismatch � versus normalized position along the transmission
line. The numerical solution of Eqs. (A24)–(A26), and (A31) and
the analytical solution Eqs. (35) and (46) are plotted by solid lines
and dashed lines, respectively. Note that the corresponding numerical
and analytical curves are overlapping. The vertical dashed line is
located in the point x = 1/g after which the wave amplitudes grow
exponentially with exponent g. The asymptotic value of the phase
�∞ expressed by Eq. (62) is plotted by a horizontal dashed line in
Fig. 2(b).
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FIG. 3. (Color online) Signal power gain in the system for the case
of Fig. 2 (Bp,0 = 0.4) as well as for lower initial pump amplitudes
Bp,0 = 0.2 and 0.3. The numerical solution calculated from the
solution of Eqs. (A24)–(A26) and (A31) and the analytical solution
Eq. (51) are plotted by solid lines and dashed lines, respectively.
Note that the corresponding numerical and analytical curves are
overlapping.

Fig. 2. We see again that there is excellent agreement between
the solutions and the corresponding curves are overlapping.
It is seen that the gain is a monotonically increasing function
of position with magnitude that increases as a function of the
initial pump amplitude. It is worth noting that in a real device,
the amplifier will be exposed to quantum vacuum fluctuations
at its input across the entire band of amplification. These
fluctuations will be amplified along with any signal present
at the input, using some of the power of the pump power.
Hence, as the gain of the device grows, the pump will be
depleted, and the actual signal gain may be lower than what
is presented in Fig. 3. Figure 4 shows the local signal gain
calculated by analytical solution Eq. (51) as a function of
the signal frequency fs . We see that the maximal signal gain
decreases as the signal frequency becomes farther from the
pump frequency. The black line is located where the signal
gain level is 3 dB below the local peak, indicating the useful
amplification bandwidth. Note that for larger values of x, the
signal gain increases but the bandwidth decreases. Figure 5
shows the exponential gain factor g = (−�p)1/2 as a function
of the signal frequency. The amplification bandwidth lies
approximately between 3.4 and 8.6 GHz and the maximal gain
is obtained at fs = fp and is equal to 2.74 × 10−3. Figure 6
shows the same solution as in Fig. 2, but for larger x. One can
see that for x > 3400, the difference between the analytical
solution and the numerical solution becomes considerable.
This is a consequence of the violation of the strong pump
approximation. One can also see that the numerical solution
of the equations for large x exhibits periodic oscillations of
the phase � accompanied by a periodic exchange of energy
between the waves. This behavior is characteristic of many
other wave mixing processes, e.g., in the context of nonlinear
optics.20
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FIG. 4. (Color online) Signal power gain as a function of signal
frequency and position given by the analytical expression Eq. (51).
All the parameters are the same as in Fig. 2 except the varying signal
frequency. The black line is located where the gain level is 3 dB below
the local peak.

IV. SUMMARY

We have used a long wavelength approximation to derive
a nonlinear wave equation characterizing a transmission line
composed of capacitively shunted Josephson junctions. The
analysis of this wave equation shows that traveling waves
copropagating along the line may interact via four-wave
mixing. We have studied analytically and numerically the
process of degenerate four-wave mixing in which fs + fi =
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FIG. 5. (Color online) Exponential gain factor g = √−�p versus
signal frequency [given by Eq. (52)]. The maximal gain is obtained at
fs = fp . The approximate value gmax given by Eq. (57) is plotted by a
horizontal dashed line. The simplified expression for the amplification
bandwidth for which g > 0, given by Eq. (56) is plotted by vertical
dashed lines.
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FIG. 6. (Color online) Spatial evolution of the system for the
same case of Fig. 2 in long distance. In long distance, in which
the amplified signal becomes large, the underlying assumption of
the analytical solution derivation fails, and the analytical solution
becomes invalid.

2fp, where fp,s,i denote the frequency of the pump, signal,
and idler, respectively.

Under the assumption of the strong pump approximation,
we have derived closed-form expressions for the following
quantities: (a) the normalized amplitudes of the interacting
waves Bm, Eqs. (35) and (46); (b) the signal power gain Gs ,
Eq. (51); (c) the exponential gain factor g = √−�p, Eq. (52);
(d) the amplification bandwidth for which g > 0, Eq. (56);
(e) the maximal exponential gain factor gmax, Eq. (57).

We have found that degenerate four-wave mixing in the
considered system can lead to efficient parametric amplifi-
cation in a wide spectral bandwidth (3.4–8.6 GHz for typical
parameters). Such a wide-band, transmission-geometry ampli-
fier would be of interest in experiments on microwave quantum
optics and quantum circuit readout near the quantum limit. In
particular, the transmission geometry realized by this design
would in principle remove the need for microwave circulators
between the system under measurement and the first-stage
amplifier. This would enable pursuit of a fully quantum
limited measurement apparatus on a single chip incorporating
both the quantum system of interest and the quantum-limited
following amplifier, substantially reducing losses between the
two. The large bandwidth and dynamic range also make
it a good candidate for a low-noise second-stage following
amplifier, possibly supplementing or replacing conventional
high- electron-mobility transistor (HEMT) amplifiers. Such
an amplifier could also prove useful as a low-power device for
satellite-based wide-band microwave communication.
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APPENDIX: ENVELOPE EQUATIONS

In this appendix we derive a set of three differential
equations for the complex envelopes of the pump, signal, and
idler waves. From the equations for the complex envelopes,
we then derive a set of four differential equations for the real
amplitudes of the waves and the phase mismatch between
phases of the three interacting waves. We start by rewriting
our wave equation (22) as

∂2ϕ̃

∂x2
+ ∂4ϕ̃

∂x2∂t2
− ρ(x)

∂2ϕ̃

∂t2
− ν(x)

∂ϕ̃

∂t
= γ̃

∂

∂x

[(
∂ϕ̃

∂x

)3
]

,

(A1)

where t = t̃(LCJ )−1/2 and coordinate x = x̃/a are dimension-
less time and coordinate, respectively,

ρ = C(x)

CJ

, ν = ρ(x)

√
LCJ

RC
, γ̃ = ϕ0

6I 3
J L3

, (A2)

and RC is a constant since both R and C are defined by the area
of the capacitors. Next, we seek solutions as a superposition
of three waves (pump, signal, and idler):

ϕ̃(x,t) = 1
2 [Ãp(x)eiψp + Ãs(x)eiψs + Ãi(x)eiψi + c.c.],

(A3)

where c.c. denotes complex conjugate. We define the di-
mensionless wave vectors and constant frequencies of the
waves as km(x) = ∂ψm/∂x and ωm = −∂ψm/∂t , respectively.
Furthermore, we assume the frequency matching condition of
a degenerate four-wave mixing process:

ωs + ωi = 2ωp, (A4)

and relate km and ωm via the local linear dispersion relations
(without dissipation):

k2
m(x) = ρ(x)ω2

m

1 − ω2
m

, m = {p,s,i}. (A5)

First, we rescale ϕ̃ to adjust it to our physical problem. We
assume that ρ (x) ∼ O (1) and that the dimensionless wave
vector km � 1 (long wavelength excitation). Then ωm � 1
[see Eq. (A5)] and ωm ≈ km. Furthermore, Eq. (13) yields
∂ϕ̃/∂x ≈ −LIL and, thus, in orders of magnitude,

ϕ̃ ∼ LIJ

k

IL

IJ

≈ LIJ

ω

IL

IJ

. (A6)

This suggests rescaling ϕ̃ as

ϕ = ωpϕ̃

LIJ

, (A7)

where we use the dimensionless frequency of the pump for
definiteness. Note that this dimensionless ϕ roughly represents
IL in units of IJ . For example, for the pump wave ϕp ∼ ILp/IJ ,
which must be sufficiently small in our weakly nonlinear the-
ory. Similarly, we define the dimensionless wave amplitudes
Am = ωpÃm/(LIJ ). We will assume that the rescaled pump
wave amplitude is bounded by 0.5 in the following. The above
rescaling of ϕ does not change the form of (A1) but now the
coupling coefficient becomes

γ =
(

LIJ

ωp

)2

γ̃ = ϕ0

6IJ Lω2
p

, (A8)

and the dimensionless wave equation is

∂2ϕ

∂x2
+ ∂4ϕ

∂x2∂t2
− ρ (x)

∂2ϕ

∂t2
− ν (x)

∂ϕ

∂t
= γ

∂

∂x

[(
∂ϕ

∂x

)3
]

.

(A9)

Substitution of Eq. (A3) into Eq. (A9) and the neglect of
d2Am/dx2 (the WKB approximation) yields the following
linear parts of Eq. (A9) for each of the interacting waves:

L
(

1

2
Ameiψm

)
≈ 1

2

[(
1 − ω2

m

) (
2ikm

d

dx
+ i

dkm

dx

)
+ iωmν] Ameiψm + c.c.. (A10)

Next, we proceed to the calculation of the nonlinear part,
the right-hand side of Eq. (A9). We focus on the degenerate
resonant four-wave mixing in which the following phase
mismatch:

 ≡ ψs + ψi − 2ψp, (A11)

is approximately constant. Consequently, after substitution
of (A3) in Eq. (A9), we leave only resonant terms in the
nonlinear terms for each of the interacting waves (those that are
oscillating in frequency ωm). We will show now that this results
with a set of coupled mode equations in the following form:

L
(

1
2Ameiψm

) = [Sm + Qmeiεm]eiψm + c.c., (A12)

where εm = +1 for m = p and εm = −1 for m = s,i. Note that
Sm are analogous to the self-phase and cross-phase modulation
terms and Qm are analogous to the mixing terms in the context
of nonlinear optics (however, here the form of these terms is
more complex due to the coupling through the derivatives of ϕ

and involves also cubic powers of km and not only Am as usu-
ally appear in nonlinear optics19,20). The explicit evaluation of
the nonlinear terms Sm and Qm is as follows. We first calculate

(
∂ϕ

∂x

)3

=− i

8
(kpApeiψp + ksAse

iψs + kiAie
iψi − c.c.)3 = 3i

8

[
kp

(
k2
p

∣∣Ap

∣∣2+2k2
s

∣∣As

∣∣2 + 2k2
i |Ai |2

)
Ap + 2kpkskiA

∗
pAsAie

i
]
eiψp

+ 3i

8

[
ks

(
2k2

p|Ap|2 + k2
s |As |2 + 2k2

i |Ai |2
)
As + 2k2

pkiA
2
pA∗

i e
−i

]
eiψs

+ 3i

8

[
ki

(
2k2

p|Ap|2 + 2k2
s |As |2 + k2

i |Ai |2
)
Ai + 2k2

pksA
2
pA∗

s e
−i

]
eiψi + nonresonant terms, (A13)

where we wrote explicitly only the terms that multiply eiψm . The three lines in (A13) are written in a form identifying the resonant
terms for use in the three weakly nonlinear coupled wave equations. We then differentiate (A13) with respect to x (each line
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separately) assuming phase locking in the system, ∂/∂x ≈ 0, yielding an approximation,

γ
∂

∂x

(
∂ϕ

∂x

)3

≈ −3γ

8

[
k2
p

(
k2
p|Ap|2 + 2k2

s |As |2 + 2k2
i |Ai |2

)
Ap + 2k2

pkskiA
∗
pAsAie

i
]
eiψp

− 3γ

8

[
k2
s

(
2k2

p|Ap|2 + k2
s |As |2 + 2k2

i |Ai |2
)
As + 2k2

pkskiA
2
pA∗

i e
−i

]
eiψs

− 3γ

8

[
k2
i

(
2k2

p|Ap|2 + 2k2
s |As |2 + k2

i |Ai |2
)
Ai + 2k2

pkskiA
2
pA∗

s e
−i

]
eiψi . (A14)

In combining all the above results, we have the following set of slow coupled mode equations:(
1 − ω2

p

) (
dAp

dx
+ 1

2kp

dkp

dx
Ap

)
+ ωpν

2kp

Ap = i
3γ

8

[
kp

(
k2
p|Ap|2 + 2k2

s |As |2 + 2k2
i |Ai |2

)
Ap + 2kpkskiA

∗
pAsAie

i
]
. (A15)

(
1 − ω2

s

) (
dAs

dx
+ 1

2ks

dks

dx
As

)
+ ωsν

2ks

As = i
3γ

8

[
ks

(
2k2

p|Ap|2 + k2
s |As |2 + 2k2

i |Ai |2
)
As + 2k2

pkiA
2
pA∗

i e
−i

]
. (A16)

(
1 − ω2

i

) (
dAi

dx
+ 1

2ki

dki

dx
Ai

)
+ ωiν

2ki

Ai = i
3γ

8

[
ki

(
2k2

p|Ap|2 + 2k2
s |As |2 + k2

i |Ai |2
)
Ai + 2k2

pksA
2
pA∗

s e
−i

]
. (A17)

Next, for simplification, we introduce new amplitudes:

am ≡ um

√
km(x)Am, (A18)

where um ≡ (1 − ω2
m)1/2. The equations for am are

dap

dx
+ νp

2
ap − i

3γ

8
k̃p(k̃p|ap|2 + 2k̃s |as |2 + 2k̃i |ai |2)ap

= iμa∗
pasaie

i, (A19)

das

dx
+ νs

2
as − i

3γ

8
k̃s(2k̃p|ap|2 + k̃s |as |2 + 2k̃i |ai |2)as

= iμa2
pa∗

i e
−i, (A20)

dai

dx
+ νi

2
ai − i

3γ

8
k̃i(2k̃p|ap|2 + 2k̃s |as |2 + k̃i |ai |2)ai

= iμa2
pa∗

s e
−i, (A21)

where

k̃m ≡ km

u2
m

, νm ≡ ωmν

kmu2
m

, μ = 3γ

4
k̃p(k̃s k̃i)

1/2. (A22)

These equations show that in the case of νm = γ = 0, the
normalized “action fluxes,” |am|2 = (1 − ω2

m)km |Am|2, are
conserved. If the nonlinear coupling is included (still for
νm = 0), |am|2 will satisfy the Manley-Rowe relations, i.e.,
|ap|2 + |as |2 , |ap|2 + |ai |2 , and |as |2 − |ai |2 are conserved.
Finally, we write am = Bm exp (iθm) defining the real ampli-
tudes and complex phases, and introduce the phase mismatch
in the problem:

� ≡ θs + θi − 2θp + , (A23)

and rewrite Eqs. (A19)–(A21) as a system of six real equations:

dBp

dx
= −μBpBsBi sin � − νp

2
Bp, (A24)

dBs

dx
= μB2

pBi sin � − νs

2
Bs, (A25)

dBi

dx
= μB2

pBs sin � − νi

2
Bi, (A26)

dθp

dx
= 3γ

8
k̃p

(
k̃pB2

p + 2k̃sB
2
s + 2k̃iB

2
i

) + μBsBi cos �,

(A27)

dθs

dx
= 3γ

8
k̃s

(
2k̃pB2

p + k̃sB
2
s + 2k̃iB

2
i

) + μ
B2

pBi

Bs

cos �,

(A28)

dθi

dx
= 3γ

8
k̃i

(
2k̃pB2

p + 2k̃sB
2
s + k̃iB

2
i

) + μ
B2

pBs

Bi

cos �.

(A29)

Then,

d�

dx
= dθs

dx
+ dθi

dx
− 2

dθp

dx
+ d

dx
, (A30)

d�

dx
= �k + 6γ

8
�k̃

∑
m=p,s,i

k̃mB2
m

+ 3γ

8

(
2k̃2

pB2
p − k̃2

s B
2
s − k̃2

i B
2
i

)
+μB2

pBsBi

[
1

B2
s

+ 1

B2
i

− 2

B2
p

]
cos �, (A31)

where the wave-vector mismatch is �k ≡ ks + ki − 2kp and
�k̃ ≡ k̃s + k̃i − 2k̃p. Equations (A24)–(A26) and (A31) com-
prise a complete set of four ordinary differential equations
for the real amplitudes Bm and the phase mismatch �. Note
that �k and �k̃ are non-negative. Indeed, using the dispersion
relation (A5) and the frequency matching condition (A4), we
find that

�k = ρ1/2

⎛⎝ ωs√
1 − ω2

s

+ ωi√
1 − ω2

i

− 2ωp√
1 − ω2

p

⎞⎠
≈ ρ1/2

2

(
ω3

s + ω3
i − 2ω3

p

)
= 3ρ1/2ωp(�ω)2 ≈ 3kp(�ω)2 � 0, (A32)

where we defined �ω = ωs − ωp = ωp − ωi . Similarly,
�k̃ = 3�k.
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