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While two-level systems (TLSs) are ubiqitous in solid state systems, microscopic understanding of their
nature remains an outstanding problem. Conflicting phenomenological models are used to describe TLSs in
seemingly similar materials when probed with different experimental techniques. Specifically, bulk measurements
in amorphous solids have been interpreted using the model of a tunneling atom or group of atoms, whereas TLSs
observed in the insulating barriers of Josephson junction qubits have been understood in terms of tunneling
of individual electrons. Motivated by recent experiments studying TLSs in Josephson junctions, especially the
effects of elastic strain on TLS properties, we analyze the interaction of the electronic TLS with phonons.
We demonstrate that strong polaronic effects lead to dramatic changes in TLS properties. Our model gives a
quantitative understanding of the TLS relaxation and dephasing as probed in Josephson junction qubits, while
providing an alternative interpretation of bulk experiments. We demonstrate that a model of polaron dressed
electronic TLS leads to estimates for the density and distribution of parameters of TLSs consistent with bulk
experiments in amorphous solids. This model explains such surprising observations of recent experiments as the
existence of minima in the energy of some TLSs as a function of strain and makes concrete predictions for the
character of TLS dephasing near such minima. We argue that better understanding of the microscopic nature of
TLSs can be used to improve properties of quantum devices, from an enhancement of relaxation time of TLSs to
creating new types of strongly interacting optomechanical systems.
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I. INTRODUCTION

At low temperatures, many physical properties of amor-
phous solids are dominated by an ensemble of two-level
systems (TLSs).1 Measurements of the thermal, elastic, and
dielectric properties of these materials2 have been successfully
interpreted within the phenomenological model of atoms (or
groups of atoms) tunneling in random double well potentials.3,4

While these experiments did not provide a direct evidence
of the nature of the tunneling objects, the small energies of
TLSs were taken as corroboration of tunneling atoms rather
than electrons. To contribute appreciably to thermal properties
at sub-Kelvin temperatures, a significant number of TLSs
should have energies of the order of gigahertz, which was
considered inconsistent with the typical eV energy scale for
electrons in solids (see, e.g., WKB estimate of tunneling matrix
elements3). However, subsequent experiments on the effect of
TLSs provided evidence that tunneling objects carry electric
charge and spin, thus casting doubt on the picture of tunneling
atoms.

It is now known that TLSs in amorphous solids are
very sensitive to even weak electric and magnetic fields.5–8

Moreover, TLSs in the insulating layers of Josephson junctions
(JJ) were found to be rather strongly coupled to JJ qubits. As
the energy of the JJ qubit is tuned, it comes into resonance
with TLSs, leading to anticrossing gaps of up to 30 MHz.9,10

This strong coupling corresponds well with the interaction
between typical electric fields inside JJs and a TLS having
a dipole moment corresponding to an electron tunneling
through a distance of a few angstroms.11,12 The aim of this
paper is to address the seeming discrepancy between the
earlier bulk measurements, suggesting tunneling of heavy
particles, and subsequent experiments, indicating the tunneling
of electrons.13–15 We show that the strong interaction between

tunneling electrons and phonons leads to significant dressing
of electrons. We demonstrate that this polaronic picture of
TLSs not only describes both qualitatively and quantitatively
the properties of TLSs as observed in JJ qubits, but also
provides a natural explanation for many parameters built into
the phenomenological model of TLSs given by Anderson
et al.3

Our theoretical model is motivated by recent experiments
with TLSs in JJ qubits by Grabovskij et al.,16 which observed
dramatic changes in the TLS energy under the application of
mechanical strain to the sample. The dimensionless parameter
characterizing this change, K = d ln(2E)/dε, where E is the
TLS half-energy and ε is the strain (which in the simplest case
can be understood as ε = δa/a, where δa is the change of the
lattice constant a), was found to be consistently in the range of
105. Intriguingly, this variation of energy with applied strain
is in complete accordance with the model of TLS-phonon
interaction used to describe bulk experiments,

HTLS = Ezσz + �σx + γzεσz. (1)

Here, ε is the strain at the position of the TLS. For TLS energies
accessible via JJ devices (∼10 GHz), K ∼ 105 implies γz ∼
1 eV, which is precisely the value of γz one deduces from,
e.g., bulk measurements of thermal conductivity. Furthermore,
in the range of strain applied, even a complete hyperbolic
variation of the half-energy E = √

E2
z + �2 through its

minimum (Ez = 0) has been observed for some TLSs.
While such large TLS-phonon coupling motivates the

analysis of polaronic effects, one would expect that it naturally
gives rise to a large rate of dephasing. This stands at odds with
another important finding,10,17 which is that for most, if not all
TLSs investigated at energies of ∼10 GHz, the decoherence
time T2 is of the order of the relaxation time T1, reaching
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nearly twice of T1 for a few TLSs. As we will show, the bulk
of such TLS-phonon coupling only leads to polaronic dressing
without resulting in any anomalously large dephasing.

The paper is organized as follows. To begin with, in Sec. II,
we study the problem of a tunneling system in which the
principle object is an electron. Typical barrier height (∼1 eV)
and tunneling length (∼1 Å) result in TLS energies at the
scale of 1 eV, clearly incompatible with the observed TLS
energies (∼1 GHz). We show that the interaction of this
confined electron with optical phonon modes strongly alters
TLS asymmetry Ez and suppresses � to result in energies in
the gigahertz regime. We then explain how coupling to acoustic
phonons can result from the modification of the single-electron
potential, as well as polaronic effects, whereby nonlinearity in
the optical phonon modes provides for a resultant interaction
of the TLS with acoustic phonons. Our model allows us to
show why γz ∼ 1 eV, explain why γx [coupling of strain ε

to σx neglected in Eq. (1)] is insignificantly small, and derive
a transparent estimate of the spatial density of TLSs and the
distribution of parameters Ez and �.

Because of strong renormalization due to electron-phonon
coupling, TLS dynamics must be derived fully incorporating
its polaronic nature. In Sec. III, we treat the strong TLS-phonon
interaction via a nonperturbative variational approach (the
partial polaron transformation18), which results in an effective
Hamiltonian of the TLS that is only weakly correlated with
the bath of phonons. This then allows us to treat the dynamics
of the TLS in the phonon bath under the Born-Markov
approximation and analyze the effect of phonons on relaxation
and dephasing of the TLS. We find, as mentioned, that pure
dephasing due to phonons is negligible and that the dominant
decay process is via single-phonon emission leading to an
effective Fermi golden rule like decay rate, which is in
quantitative agreement with experiments.

From an experimental point of view, an intriguing signature
of phonon induced decay is that a broad maximum (with
possible variations due to TLS-TLS interactions) of relaxation
time T1 is achieved as TLS energy is tuned to a minimum
by applying strain. This goes against the expectation that a
fully symmetric double well (achieved at minimum E) should
be more susceptible to decay from a noise that breaks this
symmetry (γzεσz), but as we show, this is really a characteristic
of the superohmic noise spectrum of strain noise.19 Phonon
induced decay can also be effectively controlled. In Sec. III D,
we present an experimental scheme based on band structure
calculations that show how sizable phononic band gaps can be
engineered in Al based superconducting qubits by appropriate
modifications of device geometry, and that could result in
significantly enhanced lifetimes of TLSs.

In Sec. IV, we discuss the effect of TLS-TLS interactions
on the relaxation and dephasing properties of TLSs. We find
that other TLSs contribute insignificantly to TLS relaxation,
but can be expected to dephase the TLS in such a way that
the decay of the off-diagonal TLS density matrix element is
Gaussian in time rather than simply exponential. This altered
form of decay is a consequence of pure dephasing due to
thermally activated TLSs that are typically slower than the
TLS under examination (in the event that the TLS energy is a
few times greater than the temperature of the system, which is
usually the case in experiments). Furthermore, at temperature

T ∼ 100 mK, the time scale of this dephasing process is of
the same order as the decay time due to phonons of TLSs with
energy 2E ∼ 10 GHz. This explains why most observed TLSs
at such energies tend to have T2 of the same order as T1.

Finally, we point out that an automatic result of the
polaronic suppression of tunneling is the suppression of all
TLS coupling to the environment through the tunneling (σx)
operator. As a result, all TLS coupling to the environment is
primarily through its dipole or σz operator, which in the TLS
eigenbasis, transforms to (Ez/E)σz + (�/E)σx This implies
that the pure dephasing rate itself can be tuned proportionally
to Ez/E, turning to zero at the TLS symmetry point. At
this point, TLS decoherence is purely driven by relaxation
(T2 ∼ 2T1 as experiments find17), and our phononic crystal
scheme becomes extremely viable in significantly enhancing
TLS coherence properties.

II. MICROSCOPIC MODEL

A valence electron typically finds itself sitting in a potential
well structure provided by the electrostatic interaction with
the nearest atoms. Given a disordered spatial configuration of
such atoms, it may happen that more than one such potential
wells become accessible to an electron. In other words, if two
such potential wells happen to be near enough (say a few
angstroms apart), an electron can coherently tunnel between
such potential minima, and it becomes important to understand
the properties of the electron in such a double well potential.
The double well itself (see Fig. 1) can be characterized by
the depths of the wells E1 and E2, energies of zero point
motion h̄ω1 and h̄ω2 in the respective wells, and an interwell
separation �x. Given that these structures are created by the
atomic scale Coulomb interactions, we expect the scale of the
energies involved to be on the order of an eV. This is in contrast
to the energy scales used to describe the tunneling of atoms,
10−2 eV,4 that is, of an order below the Debye frequency. For
a sufficiently well aligned double well potential, one can work
in the tight-binding approximation of the two lowest lying
energy eigenstates in either well, neglecting all higher energy
levels, and arrive at the following two-level Hamiltonian for

FIG. 1. (Color online) An electron in a double well potential.
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the electron in the double well structure:

Ho =
(

E1 + h̄ω1 h̄ω0e
−�

h̄ω0e
−� E2 + h̄ω2

)
. (2)

Here, ω0 is of the order of ω1,ω2 and � =
√

2mV/h̄2�x, m

being the mass of the tunneling object, and V is the barrier
height.1 For an electron, with V ∼ few eVs, and �x of a
few angstroms, � ∼ 1. In terms of the asymmetry E0

z = E1 +
h̄ω1 − E2 − h̄ω2 and the tunneling strength �0 = h̄ω0e

−� , one
can effectively describe the system by the TLS Hamiltonian

Ho = E0
z σz + �0σx. (3)

Here, E0
z and �0 are both of the order of an eV. The interaction

of the qubit with the TLS is believed to be primarily an electric
field-dipole coupling that can be described by Sσzτx , where σ

and τ are the Pauli matrices corresponding to the TLS and the
qubit, respectively. Here, S = eEq(�x) cos φ is the interaction
strength that just represents the coupling of an electric dipole
of charge e, length �x, and orientation angle φ (the TLS), with
the qubits electric field whose most significant matrix element
is Eq , that between the ground and excited states (since the
electric field of the qubit is proportional to the time derivative
of the phase difference across the Josephson junction, it is
very small in both eigenstates of the phase qubit, which are
approximately the harmonic oscillator eigenstates in the phase
variable). Such estimate of interaction was made in Ref. 11 and
is in reasonable agreement with the observed gaps in the qubit
spectrum due to TLSs. Hence the Hamiltonian that describes
the combined system of qubit and TLS is

Ho + HTLS-Q = E0
z σz + �0σx + Sσzτx. (4)

A. Interaction with longitudinal optical phonons

Before we perform the analysis of dressing of electrons by
high-frequency phonons more rigorously using a variational
approach in Sec. III, to gain some intuition, we consider a
simplified model of the interaction of the TLS with local
longitudinal optical (LO) phonons whose equilibrium position
is strongly affected by the state of the TLS. One can write
down the Hamiltonian as follows:

Ho + Hop = E0
z σz + �0σx + 1

2
kx2 + p2

2m
+ λx(σz + c), (5)

where one can think of E0
z as coming from the potential created

by atoms frozen into an equilibrium position x = 0 and Hop

describes the energetics of the local phonon due to interaction
with other atoms in the material and the electron in the double
well.

Since we expect the energy of the renormalized TLS to be
in the region of 10 GHz (and as the renormalization procedure
will yield), which is much smaller than ωD , the frequency of
the phonons, we expect the phonon to always remain in its
ground state, even as the TLS changes its internal state. This
key assumption will be justified later in Sec. III. Integrating out
the phonon then requires a minimization of the energy, which
is achieved by the phonon instantaneously positioning itself
according to which well the electron is occupying. Since the
coupling of the phonon to the TLS is such that it has different
energies for different electron positions (due to generally

nonzero asymmetry constant c), the energy asymmetry of the
resulting Hamiltonian is also modified by a factor proportional
to the polaronic shift Ep. In particular, 〈x〉 = −λ(σz + c)/k

and Ep = λ2/k. This polaronic shift has been estimated to
be of the order of an eV (see Ref. 20) in the context of
Si-MOSFETs, with the material-amorphous SiO2.

One must also remember that this procedure also involves a
renormalization of the tunneling strength �0, which arises due
to modification of � by an additional factor of the overlap of the
TLS-state-dependent phonon wave functions. For harmonic
oscillator wave functions, this factor is simply e−(x1−x2)2/4l2 =
e−Ep/ωD , where l is the zero-point motion length associated
with an oscillator of frequency ωD . With that, the effective
low-energy Hamiltonian becomes

HTLS = (
E0

z − cEp

)
σz + �0e

−Ep/ωDσx, Ep = λ2/k. (6)

Note that even though E0
z and Ep both are of the order of an

eV, for some TLSs these can nearly cancel each other. Further,
since Ep/ωD ∼ 10, � = e−10�0, and �0 can as well be of the
order of 10−5 eV. Thus renormalization due to optical phonons
can, in principle, result in TLSs with energies of the order of
10−5 eV, which is the energy scale at which JJ qubits operate
and observe TLSs. Again, the idea here is that the renormalized
energies of the TLS (determined by many different phonon
modes collectively) are much smaller than the frequency of the
phonon (ωD), which means that the phonon always remains in
its ground state. We want to alert the reader that our approach
is in contrast with the usual idea of the Born-Oppenheimer
approximation where it is the electron that instantaneously
assumes the ground-state wave function.

B. Density and distribution of TLSs

As seen above, due to the coupling to LO phonons, the
asymmetry energy is shifted by cEp. We expect c to be a
uniformly distributed number of order 1 for optical phonons.
Therefore we can obtain a simple estimate of the density of
the TLSs, which have an energy asymmetry of about 10−5 eV.
The cancellation of two randomly distributed quantities cEp

and E0
z , both of which are of the order of 1 eV, to a value of

about 10−5 eV happens with a probability of 10−5. The total
energy of TLS is a combination of the energy asymmetry and
the tunneling. However, due to the polaronic renormalization
of the tunneling matrix element (for the typical electron-
phonon coupling strength in polar insulators, Ep/ωD ∼ 10),
its contribution to total energy is expected to be smaller or
comparable to the asymmetry contribution21 and hence does
not affect our estimate for the probability. Given that it is
Ez that primarily dictates the energy of the TLS, the purely
probabilistic cancellation of cEp and E0

z , implies that the
energies of the TLSs are uniformly distributed in the range of
energies Ez < E0

z yielding a constant density of states for the
TLSs, which is essential for obtaining the linear temperature
dependence of the specific heat in bulk amorphous solids, and
is in agreement with Anderson et al.3 and Phillips.4 It is also
important to emphasize here that such TLSs are expected to
exist for a wide range of energies (up to eV), but only a small
fraction of such TLSs are observable in JJ qubit experiments
due to the limited range in which the qubit’s energy can be
tuned.
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What is novel in our approach, however, is that we can
go a step further and give a quantitative prediction of the
density of states of these TLSs. If we take such a double-well
configurations to occur once in every region of about (10 Å)3,
this gives us a density of about 10−8 TLSs per Å3 for TLSs of
energy of up to 10−5 eV. Using the fact the energy of the TLSs
are uniformly distributed, the density of states per unit volume
of TLSs obtained is 1046 J−1m−3, which is indeed in the range
of experimental estimates (1045–1046 J−1m−3) of density of
TLSs in bulk amorphous solids.1

C. Coupling of TLS to acoustic phonons

Acoustic phonons can couple to the σz term of the TLS by
modulating either Ep or E0

z and both forms of coupling may
be equally important. First, we consider the coupling to E0

z .
We can expect that a strain field ε would modify the energy of
either well by a factor of Ez

0ε, which would give the required
coupling strength to acoustic phonons of the form γzεσz, with
γz ∼ Ez

0 ∼ 1 eV as long as there is an asymmetry between the
wells to begin with.

The effect of strain on Ep is captured by the Gruneizen
parameter η = d ln ω/dε ∼ 1, which measures the logarith-
mic change in energy of an individual phonon mode upon
application of uniform strain. Since Ep is determined by
optical phonons, which effectively see the strain due to
long-wavelength acoustic phonons as a uniform strain, the
coupling to phonon fields can also be written as Epηε, where,
as usual, ε is the local strain field of acoustic phonons on
the TLS. A more detailed derivation of this result is given in
Appendix A.

As we said before, we require cEp and E0
z to cancel each

other to give Ez in the region of 10−5 eV (∼10 GHz) to result
in TLSs of energies that are accessible in JJ qubit experiments.
On the other hand, changes in both cEp and E0

z due to strain are
of the order of 1, i.e., δE0

z /E
0
z ε ∼ 1 and δEp/Epε ∼ 1. Since

the changes in the two quantities are generically different,
the change in Ez, δEz = δE0

z − cδEp is of the order of eV
times strain, i.e., δEz ∼ (eV )ε. We see that the dimensionless
coupling parameter K = δE/(Eε) ∼ δEz/Ezε is essentially
a direct comparison of these two energy scales: eVs and
10 GHz, which so happens to be the same order of 105 that
is observed in experiments.16 We also expect that E0

z and
cEp nearly cancel each other for some value of strain as
it is slowly increased/decreased giving us a minimum value
of E = √

�2 + E2
z at some strain value, as is also seen in

experiments16 (see Fig. 2). Finally, it is also easy to see that
the change of � = �0e

−Ep/ωD due to strain is much less
significant as d ln �/dε ∼ ηEp/ωD ∼ 10, which is much less
than 105 that comes from the change in Ez as a result of the
change in Ep or E0

z . This explains the absence of a γxεσz term
in Eq. (1).

Before concluding this discussion, we would like to contrast
this analysis of the TLS-phonon coupling that arises for the
electronic TLSs to the case of TLSs resulting from the motion
of atoms or group of atoms. To find reasonable values of the
tunneling strength, such as � ∼ 10−5 eV, WKB estimates4

require that the atoms live in a potential landscape with valleys
of depths of the order of 10−2 eV. For deeper valleys/barriers, �
quickly diminishes to irrelevantly small values. Since phonons

interact with the TLS by modifying the shape of these valleys,
one should expect the TLS-phonon interaction of the atomic
TLS to be of the order of 10−2 eV times the strain. As we
know, experiments clearly suggest a much larger value of this
interaction, it is γzεσz, with γz ∼ 1 eV. This discrepancy in
the magnitudes of TLS-phonon interaction and the scale of the
potential landscape that the constituent atoms occupy in the
atomic model of TLSs should be a cause of concern as both
scales correspond to the same physics. In our approach, this
issue is naturally resolved as a confined electron is already
associated with eV energy scales, and consequently γz ∼ 1 eV
is well justified.

III. DECOHERENCE AND RELAXATION OF THE
TLS BY PHONONS

TLS decoherence (T2) and relaxation (T1) times have been
measured using the coherent transfer of state information
between the TLS and the qubit.9 Experiments find TLSs
with decoherence times T2 almost always of the order of
T1. Furthermore, as the TLS energy is tuned by applying
strain, experiments find that at the point where the TLS energy
is minimum, pure dephasing is negligible and T2 ≈ 2T1.17

As mentioned before, it is necessary to take into account
polaronic effects in order to properly discuss decoherence
properties of TLSs. The crucial point is that given the large
TLS-phonon coupling strengths, as found from experiments
on both bulk amorphous solids and in JJ qubit experiments,
the phonons cannot be relegated to being a perturbative part of
the environment but actually dress the electron significantly.
It is this polaronic TLS with its residual interaction with
phonons that in fact, is nearly immune to pure dephasing
by phonons, allowing for the observation of TLSs with T2

of the order of T1. Furthermore, we will see that a natural
result of the renormalization procedure is that the TLS can
couple to the environment only through its dipole operator
(σz in the charge basis). In the TLS eigenbasis, this coupling
is of the form (Ez/E)σz + (�/E)σx , and thus, as the TLS is
tuned to its symmetry point Ez = 0, pure dephasing becomes
negligible and one finds T2 ∼ 2T1. We will also show that a
properly applied Fermi’s “golden rule” using the strength of
TLS-phonon coupling discussed earlier can correctly capture
the magnitude of the relaxation rate at low temperatures. An
intriguing signature of phononic decay is that one should
find an increase of T1 as TLS energy is tuned to a minimum
by virtue of the TLS-phonon coupling having a superohmic
spectrum.

A. Polaron transformation

To treat the problem of dressing of TLS by phonons more
rigorously than we presented in Sec. II A, we use the partial
polaron transformation approach developed by Silbey and
Harris.18,22 The advantage of this approach is that it does not
presuppose any separation of time scales between phonons
and the TLS, but allows for a systematic renormalization
of TLS parameters and TLS-phonon coupling. The resultant
Hamiltonian can then be used as an effective model to study
the dynamical properties of the TLS (see, e.g., Refs. 23 and 24
where such a procedure is shown to compare well with more
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rigorous methods). We will also see that this approach is,
indeed, consistent with the analysis presented in Sec. II A.
To begin with, we consider the following Hamiltonian,
which involves a generic coupling to phonons (acoustic or
optical):

H = Eo
z σz + �0σx +

∑
k

(σz + ck) gk (ak + a
†
−k)

+
∑

k

ωka
†
kak. (7)

This is the Hamiltonian of a TLS coupled to a bath of
phonons. Note that E0

z and �0 are still the unrenormalized
TLS parameters, in the eV range as described before. Also,
hermiticity of the Hamiltonian requires gk = g∗

−k and ck =
c∗
−k . Guided by the discussion in the previous section, and

the form of the coupling deduced from experiments, the
form of the coupling parameter gk is given by the term –
γzε(�r)σz, where ε(�r) is the local strain field, which contains
all wave vectors up to kD in the Fourier space.25 Also,
in principle, the strain field has a tensor structure, and
correspondingly so does gk . For the purposes of this discussion,
however, what is important is only the power of k in the
TLS-phonon coupling, and so we do not introduce the full
tensorial structure here. For more discussion on this, see
Appendix D.

Now, gk(ak + a
†
−k) = γzεk giving gk = γzk

√
h̄/(2MNωk),

where εk is the component of the strain field with wave vector
k, and MN is essentially the total mass of the atoms in the
system. Also, ck is significant only for high-frequency phonons
near the Debye frequency (acoustic or optical), which have a
wavelength comparable to the size of the TLS, that is, acoustic
phonons near the Debye frequency and optical phonons. We
now transform the Hamiltonian using a generalized version of
the polaron transformation,

U = exp

[∑
k

(ak − a
†
−k)

1

ωk

(αkσz + βk)

]
,

U † ak U = ak − α∗
k

ωk

σz − β∗
k

ωk

, (8)

U † a
†
−k U = a

†
−k − α∗

k

ωk

σz − β∗
k

ωk

.

As is clear from the form of Eq. (8), the transformation is
a matter of simply shifting the phonons according to which
state the TLS occupies. The Hamiltonian at this step is given
in Eq. (B1). In what follows, we find the optimal values for
αk and βk by minimizing the Bogoluibov-Peirles upper bound
on the free energy (refer to Appendix B for more details). The
result of this is the effective Hamiltonian

H̃ =
(

E0
z −

∑
k

2ck

g2
k

ωk

)
σz + �σx

+
∑

k

(gk − αk)(a†
−k + ak)σz

+�0(e−2α − 〈e−2α〉T )σ+ + �0(e2α − 〈e2α〉T )σ−, (9)

with the following pertinent equations for αk , Ez, and �:

α =
∑

k

αk/ωk(ak − a
†
−k),

αk = gk

/ {
1 + 2E

ωk

[(
�

E

)2

tanh βE coth

(
βωk

2

)]}
,

(10)

� = �0〈e2α〉T = �0 exp

[
−2

∑
k

α2
k

ω2
k

coth

(
βωk

2

)]
,

Ez = E0
z −

∑
k

2ckg
2
k/ωk.

Here, E is the half of renormalized TLS energy, E =√
E2

z + �2, � is the “mean-field” renormalized tunneling
strength, while the final two terms in Eq. (9) serve as
perturbations. One can see that the factor renormalizing Ez

has the same form as in Eq. (6), and so we suggestively denote
the factor renormalizing the asymmetry by cEp as before. An
important result of these equations is that the renormalization
of �0 is primarily determined by high-frequency phonons. To
see this, one needs to note that for ωk 	 E, αk ∼ gk , which
goes as

√
k. The ω2

k in the denominator in the exponent of the
expression for � in Eq. (10) is naturally canceled by the density
of states for phonons, which itself goes as ω2

k . Thus, due to
the form of αk , we see that this exponent increases linearly in
phonon frequency ωk . As a consequence, the renormalization
of �0 is primarily determined by high frequency phonons.
One can then pull out a factor of ωk in Eq. (10) for �,
replacing it with ωD , and find that � ∼ �0e

−Ep/ωD where
Ep = ∑

k 2g2
k/ωk [compare with Eq. (6)], which is the result

we argued for earlier.
Another consequence of this fact is that since the thermal

occupation of high frequency phonons is nearly unaffected by
the change in temperature, even though αk and � are really
part of a self-consistency equation, � essentially does not
change with temperature. This nondependence on temperature
is obvious for Ez, and this result is consistent with the experi-
mental findings,9 which report no significant change of TLS
energies with temperature. Further, one can evaluate the
value of 〈e2α〉 ∼ e−Ep/ωD (where we now drop the explicit
marker of temperature T from the notation), the factor that
renormalizes �0 using the coupling strength to acoustic
phonons as estimated from experiments, i.e., γz ∼ 0.5 eV
(and parameters for Al such as density ρ = 2700 kg/m3,
Debye frequency ωD = 4 × 1013 rad/s, and transverse wave
velocity vt = 3000 m/s) and find this factor to be of the
order of e−10 ∼ 10−5, which we already used above. Thus,
as mentioned earlier, one can arrive at similar estimates of
the suppression of the tunneling strength �0 due to known
estimates of the coupling to optical phonons (as in Sec. II A),
or what is known of the TLS-phonon coupling from JJ qubit
experiments and earlier bulk experiments. To be precise, this
factor of Ep/ωD ∼ 10 in the exponent is an order of magnitude
estimate, and can indeed differ from one TLS to another. The
exponential sensitivity of the suppression of tunneling to this
factor implies there can be a whole distribution of values of the
renormalized tunneling parameter � from very small energy
scales up to the eV scale.
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It is also important to note that this huge suppression
in fact applies to all couplings that the TLS can have
to the environment through its σx operator. This can be
understood by observing that any operator coupled to σx in the
Hamiltonian (7) (before polaron transformation) will acquire
a factor 〈e2α〉 after the polaron transformation as in Eq. (9).
This then implies that the only relevant coupling of the TLS
to its environment is through its dipole operator, σz. When we
transform into the TLS eigenbasis, this coupling appears as
(Ez/E)σz + (�/E)σx , and thus the coupling to the σz operator
in the eigenbasis can be tuned as (Ez/E). In particular, at
the symmetry point, where Ez = 0, this coupling reduces to
zero, thus making the TLS nearly immune to pure dephasing,
which explains why experiments17 commonly find that the
decoherence time T2 reaches twice of T1 at this symmetry
point.

Finally, it is important to note that the behavior of αk

with phonon frequency ωk changes at the scale given by the
typical frequency of fluctuations in the renormalized TLS’s
internal state, given by � (�/E). For ωk 	 �2/E, αk rapidly
approaches gk , whereas for ωk 
 �2/E, αk approaches zero.
Recall from Eq. (8) that αk is associated with displacements
of phonons of frequency ωk in accordance with the TLS’s
internal state. This behavior of αk with ωk thus corresponds
to the fact that phonons whose frequencies are greater than
the renormalized TLS tunneling rates, are able to (near)
instantaneously adjust themselves to the TLS’s internal state
(corresponding to the analysis presented in Sec. II A), whereas
phonons with much lower frequencies are unable to respond
effectively to such changes. Thus, even though the polaron
transformation does not explicitly make presumptions about
the frequencies of the bath and the TLS, the variational
procedure automatically incorporates a time scale, associated
with renormalized TLS tunneling rates, that captures the
essential features of the response of both slow and fast bath
variables.

B. Energy relaxation

As mentioned in Appendix B, the polaronic TLS state is
a strongly correlated state of the unrenormalized TLS and
phonon bath, in which the phonon displacements are correlated
with the TLS’s internal state. The optimal values of αk and
βk describe the mean shifts of phonons in correlation with
the TLS, and the residual interaction with the bath represents
fluctuations beyond this mean-field shift, which has vanish-
ing vacuum expectation values. The polaronic TLS, while
encapsulating all the strong correlations of the unrenormalized
TLS and phonon bath, is itself only weakly correlated with the
bath. Thus one can now apply the Born-Markov approximation
(see Appendix C for more details) to derive a master equation
describing the decoherence properties of the polaronic TLS
and attain results for the relaxation and dephasing times of the
TLS.

In particular, for relaxation, one finds that even though
ostensibly Eq. (9) suggests a different rate of decay due
to change of gk to gk − αk , following the Born-Markov
procedure results in a (single phonon) decay rate that is exactly
the same as that obtained from the Fermi’s “golden rule”
approach applied to the Hamiltonian with unrenormalized

phonon coupling (but with renormalized values of Ez and �)
prior to the polaron transformation. Further, we find that all
multiphonon processes in which the TLS decays by releasing
more than one phonon, are completely insignificant in the
temperature range of experimental interest and do not affect
the decay rate. It must also be mentioned that TLS-TLS
interactions, which will be studied in more detail in Sec. IV,
statistically (as very few are expected to be resonant with a
given TLS) contribute insignificantly in comparison to direct
phonon mediated decay, but when a single TLS’s energy is
tuned, resonances may occur and TLS induced decay may
become significant. The effective relaxation rate T −1

1 of the
excited state to the ground state can then be found (as known
from Fermi’s “golden rule”1,26):

T −1
1 =

∑
α

(2π )3 γ 2
z

v5
α

(2E)3

ρh4
sin2 θ coth

E

kBT
, (11)

where sin θ = �/E and α represents the various phonon
modes that couple to the TLS. For a TLS of energy 8 GHz,
γz ∼ 1 eV, this implies a decay time T1 of about 135 ns / sin2 θ .
For the data on the TLSs presented in Ref. 9, with T1 times of
about 400 ns, this implies that sin θ = �/E ∼ 0.5. It should
be noted that it is, in fact, necessary for this factor of sin θ to
be significant because the same factor precisely enters into the
qubit-TLS coupling strength upon diagonalization in Eq. (4)
and is thus crucial for the TLS to produce a visible gap in the
qubit spectrum.

We would now like to point out an intriguing aspect of this
phonon induced decay rate. Since � remains roughly constant
as the strain is varied (see Sec. II C), one can glean from
Eq. (11) that the decay rate is actually directly proportional
to E [recall sin2 θ = (�/E)2]. This implies that as the energy
of the system is tuned using the strain to its minimum value,
the lifetime of the TLS actually increases to its maximum
value (see Fig. 2). This result is unusual because, in principle,
our expectation would be for a symmetric double well to
be more susceptible to decay due to noise that tampers with

min max

strain

[ ]

FIG. 2. (Color online) Schematic showing the change in energy
E and relaxation time T1 of the TLS as the uniform strain ε applied
on the system is varied. The energy E is minimal (E = Emin) for
strain ε = ε0. At this value of the strain, T1 concurrently reaches its
maximum value T1max .
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this symmetry than an already asymmetric double well (see,
e.g., Ref. 27). In mathematical terms, the matrix element that
accompanies the decay rate is (�/E)2, which clearly implies
that decay rate must increase as the energy E is lowered.
What reverses this trend is the fact that the phonon density
of states also goes as E2 besides the factor of E that comes
from the matrix element of the strain field. Thus, an increase
of T1 as the TLS is tuned to its energy minimum is really
due to the super-Ohmic nature of the strain field responsible
for TLS decay. This can be a simple but effective signature
for experiments to check for phonon induced decay of TLSs
(see also the discussion in Sec. IV of the effect of TLS-TLS
interaction on this result.)

While the above analysis holds true for a single TLS
whose energy is being modulated by applying strain, a similar
comment can be made about the distribution of the TLSs T1

times versus energy E. When calculating such a distribution,
one should be careful to interpret Eq. (11) really as

T −1
1 =

∑
α

(2π )3 γ 2
z

v5
α

8E�2

ρh4
coth

E

kBT
. (12)

In principle, we should integrate over the distribution of � to
find the true distribution of TLSs T1 versus E. As we mentioned
earlier, we expect � to be usually smaller or at best comparable
to the asymmetry energy Ez. Under this assumption, � does
not affect E significantly, and we thus expect the scaling of the
typical relaxation time T1 of TLSs at a given energy E to go
as 1/E, although we expect strong variations due to random
values of �.

C. Decoherence and dephasing

Pure dephasing due to phonons can be found from the Born-
Markov approach and the result is mentioned in Eq. (C6). At its
largest, the dephasing rate is found to be of the order of 1 KHz,
which is still completely negligible in comparison to the decay
rate. The pure dephasing rate can, however, also be estimated in
a more direct and appealing fashion,28 by estimating the effect
of the extra phase difference φ(t) between the eigenstates of
the TLS generated from the interaction with the phonons:

φ(t) = 2
∫ t

0

∑
k

γl,kεk(t). (13)

Here, γl,kεk = (Ez/E)(gk − αk)(ak + a
†
−k), and γl,k has a k

dependence due to the presence of αk [the subscript l is to
indicate the extra factor of (Ez/E) in comparison to γz]. Using
the assumption that the strain field has a Gaussian distribution
implies that 〈eiφ(t)〉 = e−〈φ(t)2〉/2. Further, assuming that the
bath of phonons is uncorrelated with the TLS and in thermal
equillibrium, we arrive at the result

〈φ(t)2〉 =
∫ ωD

0
dω

ω

ρh̄v2
t

4γ 2
l,k

π2v3
t

coth

(
h̄ω

2kBT

)
(1 − cos ωt).

(14)

We find that the time-dependent part has an extremely
small amplitude of the order of 10−4 and performs un-
derdamped oscillations of the form sin(ωt)/t . Further, the
time-independent part is also small (of the same order as

the time-dependent part). Therefore the phonons, indeed, do
not cause any significant pure dephasing, which allows for
the common observation of TLSs with a decoherence time
T2 ∼ 2T1 in experiments.9 It is also worthwhile to note that if
we ignore αk in Eq. (14), the time-independent part of this
integral is essentially the same as that in the exponent of
the factor that renormalized �0 in Eq. (10) (setting αk ∼
gk for high-frequency phonons). This means that prior to
systematically addressing the role of high-frequency phonons
in TLS renormalization, we would have falsely concluded that
the off-diagonal part of the TLS density matrix decays near
instantly29 by a factor of e−10. Thus the polaron transformation
acts by effectively shifting the effect of constant depahsing by
high-frequency phonons to that of renormalizing the tunneling
strength of the TLS.

Finally, we would like to point out that these estimates of
decoherence are due to the interaction with phonons only. We
do not always expect TLSs to have T2 ∼ 2T1 as there will be,
in general, other sources of decoherence (such as the TLS-TLS
interactions analyzed in Sec. IV) coupled to the TLS, making
T2 shorter.

D. Phononic band-gap engineering

Since TLS decoherence is strongly influenced (with T2

being of the order of T1) by relaxation processes, one may
expect to get a significant increase in coherence times if we
are able to increase the lifetime of the TLS excited state. It
has been demonstrated that due to their favorable decoherence
and relaxation properties, the TLSs can be used themselves
as accidental qubits.30 Therefore getting longer coherence
times could enable new types of quantum-computing related
experiments. Since we find that phonon-induced decay largely
explains the relaxation rate, the most obvious way of achieving
longer lifetimes for TLSs is to open up a gap in the phonon
spectrum by drilling holes at regular intervals into the Al
superconducting device. Such phononic crystal structures
have, in fact, been recently experimentally realized.31 We find
that a reasonable gap of about 2 GHz can be opened up near
the 8 GHz frequency mark32 [see Fig. 3(b) illustrates the band
gap in terms of dimensionless parameters], by drilling holes at
intervals of a = 0.24 μm in a square lattice shape, and with a
filling fraction f = 0.60. This gap, however, exists primarily
for phonons being radiated in the x-y plane [see Fig. 3(a)].
Thus TLSs can still radiate in many other directions even with
the phononic crystal structure in place. To make the TLS truly
immune to decay via phonons, we propose that the fabrication
of the entire device be performed on a thin film no greater
than 0.24 μm in thickness. This procedure renders the phonon
of the wavelengths of interest (those that cause TLS decay)
to become effectively 2D; they now reside in a complete band
gap, and are in principle, not susceptible to decay via phonons.

As we mentioned earlier, pure dephasing should go to
negligibly small values (as observed in experiments17) at the
symmetry point (Ez = 0) for TLSs, as their energy is tuned
by applying strain. At this point, decoherence from all noise
sources, is almost entirely relaxation driven (of which we
believe phonons to be the major source of energy relaxation),
and such an experimental scheme may prove to be useful in
dramatically enhancing TLS coherence times.
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FIG. 3. (Color online) (a) The proposed design of the qubit. Note that the holes are drilled in a square lattice pattern at regular intervals
of 0.24 μm and the qubit must be fabricated on a substrate no greater than the same length, (b) The band structure for kz = 0. �, X, and M

represent the points (kxa,kya) = (0,0), (0,π ), and (π ,π ), respectively. The band gap extends from ωa/vt = 3.57 to ωa/vt = 4.23.

IV. TLS-TLS INTERACTIONS AND DECOHERENCE

Since we find the TLS pure dephasing due to phonons to
be negligible, the role of TLS-TLS interactions in dephasing
and perhaps even relaxation must be addressed. TLS-TLS
interactions have been studied in previous works.33–35 In
particular, Black and Halperin33 found that by treating the
problem classically, neglecting the dynamics of the TLSs, one
can arrive at an expected phonon strain36 mediated dipole-
dipole-like interaction between the TLSs of the following form
(in the TLS eigenbasis):

VI = Cij (r̂ij )

4

1

r3
ij

(
Ez

i

Ei

σ z
i + �i

Ei

σ x
i

)(
Ez

j

Ej

σ z
j + �j

Ej

σ x
j

)
,

(15)

where i and j are indices of interacting TLSs and Cij (r̂ij ) is
a material-specific constant that depends only on the direction
of the vector connecting TLSs i and j . To provide for an
estimate, Black et al.33 perform rms angular averaging over
the direction r̂ij and find for typical values of TLS-phonon
interaction, phonon velocities, etc., Crms ∼ 1.6 × 10−42 J cm3.
We will use this result of Black et al.33 as the basis
for discussing the decoherence of TLSs due to TLS-TLS
interactions. For completeness of this paper, and to establish a
connection between the polaron approach and previous works,
in Appendix D, we show how this interaction follows from the
polaron transformation procedure in the appropriate limit.

For the contribution of other TLSs to the decay rate of
a given TLS, we need to estimate the average interaction
V res

I of our chosen TLS with near resonant TLSs. The energy
window in which we consider TLSs to be resonant is given
by max (1/T1,V res

I ), where T1 is the relaxation time of our
chosen TLS due to phonons. We take, for example, a TLS
of energy 2E ∼ 10 GHz, and T1 ∼ 1 μs as found earlier.
Using the density of states ν ∼ 1045 J−1 m−3, and assuming
1/T1 	 V res

I , the spatial density of TLSs in resonance is given
by ρres = ν(1/T1), and consequently the average interaction
strength V res

I ∼ Crmsρres = Crmsν(1/T1) ∼ 0.5 KHz. Thus our

assumption 1/T1 	 V res
I is justified. The decay rate then

is given by (V res
I )2SX(ω = 2Ei), where SX is the correlator

of the bath of TLSs that couples to the σx
i term of our

TLS i in Eq. (15). For large frequencies, SX(ω) is primarily
given by the 〈[σx

j (ω),σ x
j (−ω)]+〉 correlators37 of the bath

TLSs that are Lorentzians centered at ω = 2Ej with width
1/T2,j , where T2,j is the decoherence time of TLS j . For the
case of resonant TLSs, Ej ∼ Ei , the decay rate is given by
(V res

I )2T2,j ∼ 10−3 KHz, which is significantly smaller than
the contribution to decay by phonons. Here, we used the
experimental observation that for most TLSs in the energy
range of 10 GHz, as our example TLS, T2,j is of the order
T1,j ∼ 1/MHz. Thus, statistically, we expect that TLS decay
due to other TLSs is negligible. Nevertheless, we would like
to point out that when a selected TLS’s energy is tuned by
applying strain, it is bound to come into resonance with some
TLSs. Coupling between such TLSs depends on the distance
between them, so it should have strong variations from one
resonance to another. At such TLS resonances, we expect to
find considerable variation in the T1 in the range of strain,
where the difference of TLS energies is comparable to their
coupling. These rapid resonance variations of the relaxation
rate can make it difficult to verify the smooth trend T1 ∝ 1/E

profile that we obtained earlier.
We now look at the contribution of other TLSs in the de-

phasing of our TLS. We expect only TLSs that are thermally
active (of half-energy Ej below the temperature T ) to
contribute to dephasing. Assuming that the temperature of the
system is lower than the energy of the TLS, we are examining
(under typical experimental conditions T ∼ 100 mK is a few
times smaller than TLS energy 2E ∼ 10 GHz), these thermally
activated TLSs are expected to be slower than our TLS [recall
from Eq. (12) that decay times typically decrease with decreas-
ing TLS energies]. The dephasing due to such slow TLSs can
be obtained only after averaging over many experimental runs,
each of which would correspond to a different but near static
configuration of the bath. The flipping of such slow TLSs thus,
merely shifts the energy of our TLS, at the scale of the typical
interaction energy V nonres

I . As we discuss below, dephasing
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due to such TLSs is qualitatively different from a bath that
operates at time scales faster than our TLS.38

For the general case of a Gaussian bath, one finds that
the pure dephasing induced decay of the off-diagonal density
matrix element of the TLS is given by39

〈σ−
i (t)〉 = exp

[
−1

2

∫
dω

2π
SZ(ω)

sin2(ωt/2)

(ω/2)2

]
, (16)

where SZ(ω) is the symmetrized bath correlator in the Fourier
domain, SZ(ω) = 2

∫ ∞
−∞ dteiωt 〈[Vz(t),Vz(0)]+〉. Here, Vz is

sum total of the interaction terms from all TLSs j = i that
couple to the σ z

i operator of TLS i in Eq. (15). At low
frequencies, the major contribution to SZ(ω) comes from the
correlators

∑
j 〈[σ z

j (ω),σ z
j (−ω)]+〉 that are given by37

〈[
σ j

z (ω),σ j
z (−ω)

]
+
〉 = 2T1,j

1 + ω2T 2
1,j

1

(cosh Ej/kbT )2
. (17)

Thus only TLSs with half-energy Ej < kbT contribute to
dephasing, which is why we consider only thermally activated
TLSs. Given the 1/r3 nature of the interaction between
TLSs, nearest-neighbor TLSs are expected to most strongly
affect TLS decoherence properties, and make a dominant
contribution to the net bath correlator SZ(ω). Motivated by
these observations, to bring out the difference between pure
dephasing due to a slow bath and a fast one, we consider
a bath with correlator SZ(ω) = A2�/(�2 + ω2), which is a
telegraph noise with a switching rate � and interaction strength
A, and we evaluate the exponent in Eq. (16) in the two regimes,
1/� 	 t , appropriate for a slow bath and 1/� 
 t for a fast
bath, where the time t that we are interested in, is set by the
time scale at which the TLS under examination decoheres (say
around 1 μs). Now, the scale at which the integral decays in
the exponent of Eq. (16) is set by either SZ(ω), which decays
at the scale � or [sin2(ωt/2)]/ω2 that decays at the scale 1/t .
For a short-correlated bath, we find 〈σ−(t)〉 ∼ exp[−(A2/�)t].
For a slow bath, with � 
 1/t , we find instead 〈σ−(t)〉 ∼
exp(−A2t2) wherein the only time scale is given by 1/A. In
the present case, we are in the regime where the TLS bath’s
switching rate, set by � ∼ 1/T1,j 
 1/t ∼ 1 μs. That is, the
TLS bath is slower than the TLS under examination.

Thus, in the case of dephasing of a given TLS by other
TLSs, the only scale that decides the additional contribution to
dephasing is the given A, or in this case, V nonres

I and the decay
is Gaussian, that is, exp[−(V nonres

I )2t2]. To estimate V nonres
I , we

first note that the density of thermally activated TLSs is given
by ρnonres ∼ νT , where T is the temperature and, consequently,
V nonres

I ∼ CrmsνT ∼ 0.5 MHz, at T = 100 mK. Since this is of
the order of linewidth of our TLS, we expect strong variations
in the values of 1/T2 whereby the nearest-neighbor thermally
active TLS strongly influences the decoherence property of
a given TLS. When this nearest-neighbor distance is shorter
than the typical distance rtyp ∼ (1/νT )1/3 ∼ 100 nm for T =
100 mK, we expect that interactions with TLSs will dominate
the dephasing of our TLS. However, if this distance is larger
than rtyp, we expect TLS decoherence to be set by phonons,
with T2 ∼ 2T1. Nevertheless, from the above analysis, it seems
reasonable to expect that for most TLSs of energies of the order
of 10 GHz, T2 will be at least of the same order as T1, which
is what one finds in experiments.

To complete this discussion, we point out that the different
nature of decoherence due to phonons (via decay) and TLS-
TLS interactions (via pure dephasing) allows us to simply
add up their corresponding contributions to the decay of the
off-diagonal term of the TLS density matrix. In a single
experimental run, the TLS bath shifts the frequency of our
TLS slightly, simply modifying oscillation frequencies in a
Ramsey experiment. The Gaussian form of decay due to
TLS-TLS interactions appears upon averaging over many
experimental runs. Hence we suggest that to analyze such
experimental data, one should carefully fit the decay with a
more general two-parameter fit of exp (−A2t2 − Bt), where
B should be approximately 1/(2T1). It is also important to
note that the interaction A = V nonres

I ∝ (Ez/E)i for the TLS i

under observation. This means that at the point of TLS energy
minima (Ez

i = 0, when tuned by applying strain), one should
achieve minimal dephasing. At this point, decoherence is truly
driven by phononic relaxation, which can be minimized via
the fabrication scheme described in Sec. III D.

Again, we remind our reader that this tuning of pure
dephasing to zero at the symmetry point of the TLS holds very
generally in our theory. Since all the coupling of the environ-
ment to the TLS via its σx operator is strongly suppressed
(by the same large factor that the tunneling is suppressed
by), the TLS’s coupling to the environment is expected to
be primarily through its dipole operator, represented by σz

in the charge basis. Consequently, the interaction of the TLS
with the environment in its eigenbasis must be of the form
(Ez/E)σz + (�/E)σx , which means that as we approach the
symmetry point of the TLS, where Ez = 0, the pure dephasing
rate becomes entirely negligible, yielding a decoherence time
T2 → 2T1 at this point. As far as we know, experiments17 are
in complete agreement with this statement.

V. CONCLUSIONS AND OUTLOOK

We conclude with the understanding that tunneling systems
observed in many amorphous solids, as propounded by
Anderson et al.3 and Phillips4 are actually electrons dressed
by optical frequency phonons tunneling between atoms rather
than atoms or group of atoms tunneling in double well
structures. This reasoning is motivated by the fact that coupling
strengths in these materials suggested by experiments both on
bulk solids and in JJ qubits are too large to ignore their impact
on the renormalization of the TLS parameters. Further, once we
assume that it is indeed an electron that is the tunneling object,
the explanation of the coupling to acoustic phonons becomes
transparent, the density of such TLSs can be estimated to the
correct order of magnitude as seen in experiments, and the
coupling of such TLSs to the JJ qubit is also easily explained.

Due to renormalization of TLSs by optical frequency
phonons, the decoherence and relaxation properties are also
significantly altered, and in particular pure dephasing due
to phonons becomes insignificant. TLS dephasing is then
given primarily by interaction with other TLSs, while the
low-temperature relaxation rate is given primarily by phonon
induced decay. In particular, we find that pure dephasing due
to the bath of TLSs leads to a Gaussian in time decay of the
off-diagonal density matrix element, with an effective time
scale given by the average interaction of the TLS with other
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thermally activated TLSs in the bath. For T = 100 mK, we
find this time scale for pure dephasing to be of the order of
the decay rate (due to phonons) of TLSs of energy in the GHz
range, explaining quantitatively why for most TLSs at such
energies, experiments find T2 to be of the order of T1 if not
twice, with T1 ∼ 1 μs.9

We also provide an explanation for the existence of a
minimum in the energy of the TLS as a function of strain,
and predict that phonon induced decay must produce the
intriguing signature of a maximum of relaxation time T1

at this symmetry point contrary to usual expectations. The
renormalization procedure we present also has the important
consequence that any coupling to the environment must be
through the dipole (σz) operator in the TLS charge basis.
This directly leads to the practically important result that the
dephasing rate of the TLS must become insignificantly small as
it is tuned to its symmetry point by the application of stain and
explains why experiments consistently observe that T2 ∼ 2T1

at this symmetry point.17 An important outstanding issue is
that of explaining the temperature dependence of the decay
rate of the TLS; we believe this to be a result of coupling
not only to phonons, but also to the other parts of qubit
environment, including nonequilibrium quasiparticles40 in the
superconducting Al layer.

Finally, we presented a schematic of an experimental setup
that should result in suppressing phonon-induced decay of
TLSs, enhancing their lifetime, and consequently decoherence
times, significantly. This experimental scheme becomes more
viable as TLSs are tuned to their energy minimum as strain
is varied, since we expect dephasing by other TLSs at this
symmetry point to be minimal. While we do not expect this to
improve the coherence properties of superconducting devices
themselves, (for whom these TLSs are a major source of
decoherence37,41–43), this scheme could have an important
impact on not only improving the viability of TLSs for use as
quantum memories,30 but should also allow us to understand
better the other sources of noise that decohere the TLSs, once
the influence of phonons is significantly reduced. A better un-
derstanding of these aspects of the TLS should eventually help
improve the practicability of both superconducting devices and
optomechanical resonators44 where these TLSs significantly
limit the coherence times and Q factors, respectively, as well
as engineer exciting new nanomechanical devices with strong
nonlinearities of phonon modes.
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APPENDIX A: TLS-ACOUSTIC PHONON COUPLING
INDUCED BY PHONON NONLINEARITY

The origin of Gruneizen parameter lies in nonlinear phonon
coupling, HNL = γ x2ε(r). The form of this term is based of
the following intuition: the first generic nonharmonic term
has to be cubic in the phonon fields; it must involve two
optical phonon field terms whose frequencies nearly cancel
each other so as to give a resultant acoustic frequency, and
that the coupling to acoustic phonons must be via a derivative
of the acoustic phonon field. In effect, HNL serves to modify
the stiffness constant k of the optical phonon mode, which
allows us (using the definition of the Gruneizen parameter
η = d ln ω/dε, k = mω2) to arrive at the following relation:
γ = ηk. Thus we can write the following Hamiltonian:

Ho + Hop + HNL = E0
z σz + �0σx + p2

2m

+ 1

2
k[1 + ηε(r)]x2 + λx(σz + c). (A1)

Eliminating the optical phonon mode now follows the same
procedure as before, the only difference being a modified value
for k, and we finally obtain

HTLS + Hac = Ezσz + �σx − cEp/[1 + ηε(r)]σz, (A2)

where Hac is the last term in the above equation, and
corresponds to the interaction of the TLS with acoustic
phonons.

Expanding the above in ηε(r) gives us the desired acoustic
phonon-TLS coupling, and hence reproduces the Hamiltonian
in Eq. (1). Since ηε(r) 
 1 (at T = 100 mK, 〈

√
ε2(r)〉 <

10−8), all terms beyond the first order in ε(r) can be safely
neglected.

APPENDIX B: POLARON TRANSFORM

We begin with the general Hamiltonian coupling a TLS
and a bath of phonons as in Eq. (7) and apply to it the polaron
transformation U mentioned in Eq. (8). Then H̃ = U †HU is
given by

H̃ = E′
c + E′

zσ̃z + �σ̃x +
∑

k

(ak + a
†
−k) σ̃z (gk − αk)

+
∑

k

ωka
†
kak + �0σ̃+(e−2α − 〈e−2α〉T )

+�0σ̃−(e2α − 〈e2α〉T ) +
∑

k

(ak + a
†
−k)(ckgk − βk).

(B1)

Here, σ̃ are the Pauli matrices in the U -transformed basis. The
values of E′

c and E′
z are

E′
c =

∑
k

(
− 2

β∗
k ckgk

ωk

− 2
α∗

k gk

ωk

+
∣∣α2

k

∣∣
ωk

+
∣∣β2

k

∣∣
ωk

)
,

E′
z = Ez

0 −
∑

k

(
2
β∗

k gk

ωk

+ 2
α∗

k ckgk

ωk

− 2
α∗

kβk

ωk

)
, (B2)

� = �0〈e2α〉T , α =
∑

k

αk/ωk(ak − a
†
−k).
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Note that the reality of these terms is guaranteed by
the conditions on the hermicity of the Hamiltonian and
the unitarity of the polaron transformation (which requires
αk = α∗

−k and βk = β∗
−k). Now, from the form of U in Eq. (8),

one can see that the polaron transformation is simply a unitary
transformation that allows us to go from a basis of independent
TLS (σ ) and phonon variables to the new TLS variable (σ̃ )
that corresponds to a correlated motion of phonons and the
unrenormalized TLS. The philosophy then is to somehow
optimize these correlations such that the free energy of the
polaronic TLS system, which now is only weakly correlated
to the residual bath, is minimized. To do so, one introduces
the set of parameters αk and βk that describe the amplitude
of phonon displacements correlated with the TLS’s internal
state and provide a variational space over which to minimize
the free energy of the polaronic TLS. The optimal values of
αk and βk thus represent the mean phonon displacements in
correlation with TLS state and the residual coupling with the
bath represents fluctuations about this mean displacement that
has vanishing vacuum expectation values.

Given the polaron-transformed Hamiltonian H̃ in Eq. (B1),
we need to estimate the minimum of the free energy. But
first, we must complete the squaring of the phonon field to
eliminate the last term in Eq. (B1). This is brought about by
the transformation ã

†
k = a

†
−k − (βk − ckgk)/ωk . In fact, this

transformation eliminates βk (replacing it with ckgk) from
the transformed Hamiltonian completely leaving us with a
variational state dependent only on αk . It is important to note
that this last transformation leaves the coefficients of σ̃+ and
σ̃− unchanged in Eq. (B1), and these can now be treated as
perturbations to the phonon and TLS parts of the Hamiltonian,
as their expectation values in the thermal ensemble of phonons
is zero. In the process of separating these these final terms,
we arrived at the mean-field estimate for the renormalized
tunneling, � = �0〈e2α〉.

To perform the approximate minimization of the free
energy, we minimize the Bogoluibov-Peierls upper bound
on the free energy (which here is simply the free energy
of the TLS and phonons decoupled from each other) F =
Ec − (1/β) ln Z + Fph. Z is partition function of the TLS,
e−βE′ + eβE′

with E′ =
√

E′2
z + �′2

0 , and Fph is the free energy
of the phonons, which is independent of αk . The result of this
is the following equation on αk:

(αk − gk) +
(

�

E

)2 2E

ωk

αk tanh(βE) coth

(
βωk

2

)
= 0.

(B3)

Solving this leads to the main results in Eq. (10). Also, note
that since gk is real for this case, so is αk and we consequently
drop the usage of extra symbols such as ∗ and ||.

APPENDIX C: CALCULATION OF DECAY RATE

The first step in this procedure is to diagonalize the TLS
part of the Hamiltonian in Eq. (9). The Hamiltonian can then
be represented by

Ho = Eσ̃z + V
†

1 σ̃+ + V1σ̃− + Voσ̃z, (C1)

where

Vo = Ez

E

∑
k

(gk − αk)(ak + a
†
−k) + �0

2

�

E
X + �0

2

�

E
X†,

V
†

1 = 1

2

(
Ez

E
+ 1

)
�0X + 1

2

(
Ez

E
− 1

)
�0X

†

(C2)
− �

E

∑
k

(gk − αk)(ak + a
†
−k),

X = (e−2α − 〈e−2α〉T ).

The time evolution of the density matrix in the Born-Markov
approximation45 is described by the equation

dρ

dt
= −

∫ ∞

0
dsTrB[VI (t),[VI (t − s),ρS(t) ⊗ ρB]]. (C3)

Expanding the right-hand side (RHS) of Eq. (C3) out
and keeping only the slowly fluctuating terms (the rotat-
ing wave approximation), we arrive at the estimates for
T1 and T2:

1

T1
=

∫ ∞

0
dsei2Es〈V †

1 (s)V1(0)〉 + H.c.

+
∫ ∞

0
dse−i2Es〈V1(s)V †

1 (0)〉 + H.c.,

1

T2
= 1

2T1
+ 4Re

[∫ ∞

0
〈Vo(s)Vo(0)〉

]
. (C4)

More explicitly,

1

T1
= 2π

(
�

E

)2 ∑
k

(gk − αk)2 (2nk + 1) δ(ωk − 2E)

+ 8π

(
�

E

)
�

∑
k

αk

ωk

(gk − αk) (2nk + 1) δ(ωk − 2E)

+�2

[(
Ez

E

)2

+ 1

]
Re

[∫ ∞

0
ei2Esds(eG(s) − 1)

]

+�2

[(
Ez

E

)2

− 1

]
Re

[∫ ∞

0
ei2Esds(e−G(s) − 1)

]

+�2

[(
Ez

E

)2

+ 1

]
Re

[∫ ∞

0
e−i2Esds(eG(s) − 1)

]

+�2

[(
Ez

E

)2

− 1

]
Re

[∫ ∞

0
e−i2Esds(e−G(s) − 1)

]
,

(C5)

1

T2
= 1

2T1
+ 2�2

(
�

E

)2

Re

[∫ ∞

0
ds(e−G(s) + eG(s) − 2)

]
,

(C6)

where,

G(s) = 4
∑

k

(
αk

ωk

)2

[(nk + 1)e−iωks + nke
iωks]. (C7)

Adding up the processes involving only 1 phonon operator
in Eq. (C5) gives the result in Eq. (11). As for the pure
dephasing rate, �φ = 1/T2 − 1/2T1 being negligible, a quick
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way to see this is to realize that if we expand the exponentials
in Eq. (C6), the first nonvanishing term comes with two Bose
distribution functions, proportional to n(ω)[n(ω) + 1] (with
the same frequency), which decays rapidly for frequencies at
which αk is appreciable.

APPENDIX D: TLS-TLS INTERACTIONS USING
POLARON TRANSFORMATION

To get a full description of the TLS-TLS interaction,
one needs to include the full tensorial structure for the
strain field that couples to the TLS. In particular, one has
εαβ(�r) = (1/2)[∂αuβ(�r) + ∂βuα(�r)], where uα(�r) is the phonon
displacement field at position �r . To include this full description,
we also have to consider the three different phonon operators
or equivalently the transverse and longitudinal modes of
the phonon fields, and append gk with tensor indices αβ.
Again, for the purpose of this paper, to get an estimate of
the interaction strength between TLSs, we avoid this detail
that does not change the power law of the interaction but
simply introduces more tensorial structure, and show how
one can attain the expected 1/r3 interaction via the polaron
transformation method.

We now consider the Hamiltonian of two TLSs (identified
by indices 1 and 2 at positions �0 and �r , respectively), coupled
to the phonon strain field as before,

H =
∑
i=1,2

E
z,o
i σ z

i + �o
i σ

x
i +

∑
k

gk
1

(
σ z

1 + ck
1

)
(ak + a

†
−k)

+
∑

k

gk
2

(
σ z

2 + ck
2

)
(ak + a

†
−k)ei�k·�r +

∑
k

ωka
†
kak.

(D1)

In what follows, we will include ei�k·�r in gk
2 .

We now introduce the polaron transformation that allows
for phonons to shift according to both TLS’s states

U = exp

[
−

∑
k

(ak − a
†
−k)

1

ωk

(
αk

1σ
z
1 + αk

2σ
z
2 + βk

)]
. (D2)

For the unitarity of U , we require αk
i = (α−k

i )∗ and βk = β∗
−k .

This is supplemented with the hermiticity of the Hamilto-
nian (D1), which demands that gk

i = (g−k
i )∗. The transformed

Hamiltonian under the polaron transformation is now

H̃ = Ec + Ez
1σ

z
1 + Ez

2σ
z
2 + �o

1σ
x
1 〈e−2α1〉T + �o

2σ
x
2 〈e−2α2〉T

+EIσ
z
1 σ z

2 +
∑

k

(
V k

1 σ z
1 + V k

2 σ z
2

)
(ak + a

†
−k)

+
∑

k

ωka
†
kak +

∑
k

(ak + a
†
−k)Xk

+
∑
i=1,2

�o
i σ

+
i

(
e−2αi − 〈e−2αi 〉T

)
+�o

i σ
−
i (e+2αi − 〈e−2αi 〉T ), (D3)

where Xk = βk − ck
1g

k
1 + ck

2g
k
2 . Again, before we can estimate

the free energy, we need to eliminate the free linear term in
the phonon fields, which requires shifting the phonon fields by
Xk , as defined in Eq. (D3). As in Appendix B, this amounts
to setting βk = ck

1g
k
1 + ck

2g
k
2 , thus eliminating βk from the

variational procedure. The expressions for the terms in our
Hamiltonian now reduce to (with Xk = 0)

Ec =
∑

k

−
∣∣ck

1g
k
1 + ck

2g
k
2

∣∣2

ωk

+ (
αk

1

)∗
(
αk

1 − 2gk
1

)
ωk

+ (
αk

2

)∗
(
αk

2 − 2gk
2

)
ωk

, Ez
i = E

z,o
i −

∑
k

2ck
i

∣∣gk
i

∣∣2

ωk

,

�i = �i〈e−2αi 〉T = �o
i exp

[
−2

∑
k

∣∣αk
i

∣∣2

ω2
k

coth

(
βωk

2

)]
,

EI =
∑

k

−2
(
αk

1

)∗

ωk

(
gk

2 − αk
2

/
2
) − 2

(
αk

2

)∗

ωk

(
gk

1 − αk
1

/
2
)
,

V k
i = gk

i − αk
i . (D4)

Thus we find again that Ez
i ’s are independent of the varia-

tional parameter αk
i , and that �i is determined by the phonon

displacements due to each TLS independently. However, if
EI = 0, then αk

i ’s are coupled and the renormalization of �i

is indeed influenced by other TLSs.
In principle, one must now minimize the free energy

considering the spectrum of the Hamiltonian HMF = EC +∑
i E

z
i σ

z
i + �iσ

x
i + EIσ

z
1 σ z

2 , which is not a simple task. It is
also important to remind oneself that we cannot interpret EI

itself as the complete interaction strength between TLS 1 and
TLS 2. The polaron transformation approach merely sets up an
effective Hamiltonian in which the phonons have been shifted
to their mean-field positions. The remnant interaction with the
phonon fields have zero expectation values, or are fluctuations,
which, in principle, can give an interaction between the TLSs.
These in general involve considering the full dynamics of TLSs
and phonons and cannot be replaced by a simple effective
Hamiltonian. Such a task is beyond the scope of this paper.

The results of Black et al., however, can be achieved
by considering the regime in which spins do not have any
dynamics, i.e., in the limit � → 0. In such a scenario, the
spins are essentially static and the system is classical. The only
variables that depend on αk

i ’s are now EI and Ec. Regardless
of the temperature of the system, minimization of free energy
requires simply setting αk

i = gk
i . This can be seen by noting

that ∂Ec

∂(αk
1 )∗ = (gk

1 − αk
1) and ∂EI

∂(αk
1 )∗ = (gk

2 − αk
2), that is, only

proportional to αk
i − gk

i . This simplification has the important
consequence that the remnant interaction with phonons is also
completely eliminated, V k

i = 0, which allows us to understand
EI as the complete interaction energy. In this scenario, we find

EI = −
∑

k

(
gk

1

)∗
gk

2

ωk

+
(
gk

2

)∗
gk

1

ωk

. (D5)

Now, for gk
1 = gk and gk

2 = gke
i�k·�r with gk = γzk

√
h̄/2ρωk

as before, we find that the sum over k in Eq. (D5) is simply
a Fourier transform over something that is independent of
any power of k, that is, EI = −γ 2

z /(ρv2)
∑

k ei�k.�r . This may
seem peculiar in that ordinarily this would imply a δ-function
interaction, but it must be noted that in three dimensions,
the Fourier transformation of any T (r̂)/r3 interaction is also
independent of any power of k but, in general, involves
dependence on the direction of k. Suggestively, if we include
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anisotropies of the form (in̂1 · k̂) and (in̂2 · k̂) (with n̂1 and
n̂2 defining dipole axes for TLSs 1 and 2, respectively) in
gk

1 and gk
2 , respectively, we arrive at the classical dipole-

dipole interaction with the magnitude γ 2
z /(4πρv2r3) and the

appropriate tensor structure.
For the purpose of this paper, it suffices to show that the

polaron transformation can be used to yield the effective
interaction between TLSs in the limit that � → 0, that is,

upon neglecting the effect of TLS dynamics on phonon
displacements. For the more complete result, the reader should
look at the paper by Black and Halperin,33 where upon
obtaining the complete TLS-TLS interaction, they perform
rms averaging over the angular structure of the interaction to
arrive at an estimate of Crms in Eq. (15). Finally, to arrive at the
result in Eq. (15) one simply rotates the basis to diagonalize
the individual TLS Hamiltonians in Eq. (D3)
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