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Treating both many-body polarization and dispersion interactions is now recognized as a key element in
achieving the level of atomistic modeling required to reveal novel physics in complex systems. The quantum
Drude oscillator (QDO), a Gaussian-based, coarse grained electronic structure model, captures both many-body
polarization and dispersion and has linear scale computational complexity with system size, hence it is a leading
candidate next-generation simulation method. Here, we investigate the extent to which the QDO treatment
reproduces the desired long-range atomic and molecular properties. We present closed form expressions for
leading order polarizabilities and dispersion coefficients and derive invariant (parameter-free) scaling relationships
among multipole polarizability and many-body dispersion coefficients that arise due to the Gaussian nature of
the model. We show that these “combining rules” hold to within a few percent for noble gas atoms, alkali metals,
and simple (first-row hydride) molecules such as water; this is consistent with the surprising success that models
with underlying Gaussian statistics often exhibit in physics. We present a diagrammatic Jastrow-type perturbation
theory tailored to the QDO model that serves to illustrate the rich types of responses that the QDO approach
engenders. QDO models for neon, argon, krypton, and xenon, designed to reproduce gas phase properties, are
constructed and their condensed phase properties explored via linear scale diffusion Monte Carlo (DMC) and
path integral molecular dynamics (PIMD) simulations. Good agreement with experimental data for structure,
cohesive energy, and bulk modulus is found, demonstrating a degree of transferability that cannot be achieved
using current empirical models or fully ab initio descriptions.
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I. INTRODUCTION

Many-body polarization and dispersion interactions are
fundamental driving forces from which the physics of con-
densed matter emerges. One classic example is liquid water,
where many-body polarization effects substantially enhance
the molecular dipole moment from its gas-phase value,
contributing to water’s high dielectric constant and generally
unique physical properties;1 the importance of polarization
in ionic solids and solutions has long been recognized.2–4

Surface tension is sensitive to many-body dispersion forces,5

particularly in systems stabilized by dispersion such as hy-
drophobic aggregates and assemblies.6,7 Treating these long-
range interactions is therefore key to gaining an understanding
of complex systems.

Atomistic simulation is an important technique that is
used to probe the properties of many-body systems and gain
physical insight. However, atomistic modeling is limited by
the input description of the interactions, whether from an
ab initio electronic structure theory such as local density
functional theory (LDA),8,9 or empirical potentials.2,10,11 As
the complexity of the systems of interest has grown, current
simple models have been found to be insufficient and the
importance of models treating many-body polarization and

dispersion interactions accurately and efficiently has corre-
spondingly increased although the critical nature of these
forces was acknowledged early in the field’s development.2,3,7

The Drude oscillator model12–15 mimics the electronic
response of an atom or molecule by replacing the true set
of electrons and protons with a single negatively charged
light quasiparticle, harmonically bound to a positively charged
heavy quasinucleus. Treated classically,12,16 the model yields
many-body dipole polarization. However, treating the model
quantum mechanically, the quantum Drude oscillator (QDO),
in the spirit of a coarse-grained electronic structure, leads
to both many-body multipole polarization and dispersion
interactions beyond the dipole approximation; the model can
be solved with linear scaling in system size.17,18 It is therefore
of current interest to explore the use of the QDO model as
a basis for describing long-range forces in the condensed
phase to be applied as part of an empirical force field17,18 or
to supplement electronic structure computations that cannot
describe dispersion well, for example using quantum dipole-
limit Drude oscillators.19–24

In this paper, the ability of the QDO model to treat
long-range forces in condensed phase systems is assessed. We
first analyze analytically the properties of the model. Since the
QDO is based on Gaussian on-site interactions, invariant ratios
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of dispersion and polarization response coefficients arise.
However, these Gaussian invariants are followed surprisingly
well by experimental and theoretical results obtained for atoms
and closed-shell molecules indicating that this simple model
is powerful. The predictions of the classical Drude oscillator
model (CDO), the basis for many polarizable models,2–4,25–28

are discussed as the h̄ → 0 limit of the QDO. Second, we
develop a Jastrow-type diagrammatic expansion method for
the QDO in order to discern the higher-order many-body
responses predicted by the QDO model. Third, a simple
scheme is proposed to fit the QDO model’s baseline parameters
and the model’s predictions are compared to response coeffi-
cients of atoms and closed-shell molecules. Last, we discuss
the development of empirical potentials based on the QDO
approach and apply them to study the condensed phase of
several noble gases using linear scale techniques.17,18

II. THE QDO MODEL BASICS

The QDO model replaces the “on-site” electron-nucleus
Coulomb interaction (within a tight-binding picture of elec-
tronic structure theory) with an effective harmonic term and
replaces Fermi statistics with Boltzmann statistics as the
quantum Drude particles are distinguishable (tethered to sites).
The quantum Drude “quasiparticle” (a drudon) has charge −q,
which is balanced by an oppositely charged classical particle,
the Drude “nucleus” placed at the center of oscillation. The
Drude nucleus and Drude particle interact with other particles
via Coulombic forces at long range. Each quantum Drude
particle is characterized by three parameters, mass, frequency,
and charge, {μ,ω,q}. Exchange repulsion, which is absent by
construction from the QDO model, must be incorporated effec-
tively through the introduction of short-range cutoff functions
to the Coulomb interaction (regularization) and a nontrivial
short-range nuclear-nuclear pair potential at minimum.

Utilizing the QDO model to provide a Born-Oppenheimer
surface for the treatment of insulators augmented by
Coulomb regularization and pair potentials (or more advanced
approaches)29 to model short-range interactions,10 may prove
to be a powerful approach. Indeed, the goal of this paper is to
demonstrate that such an exchange-less model is rich through
the presentation of analytical results and studies of exemplar
applications; this is distinct from taking a model with exchange
symmetry and attempting to solve it neglecting exchange.

The unperturbed QDO Hamiltonian is

Ĥ0 = h̄2

2μ
∇2

r + 1

2
μω2(r − R)2,

where the center of oscillation is R and the solution in spherical
polar coordinates is given in Ref. 30. For a system of N QDO’s
interacting with M fixed point charges, the Hamiltonian is

Ĥ =
N∑

k=1

Ĥ0k +
N∑

k=1

M∑
j=1

Qjqk

(
1

|Rk − R̃j |
− 1

|rk − R̃j |
)

+ 1

2

N∑
k �=k′=1

qkqk′

(
1

|Rk − Rk′ | + 1

|rk − rk′ |

− 1

|rk − Rk′ | − 1

|Rk − rk′ |
)

(1)

with {Q,R̃} the charge and position of the fixed point charges.
The regularization of the Coulomb interactions is left for later
discussion as this does not affect the asymptotic relations to
be given next.

III. ATOMIC POLARIZABILITIES IN THE QUANTUM
DRUDE MODEL

A. General formalism

The response of an electrically polarizable atom or
molecule in an inhomogeneous static field E can be described
through an expansion in induced multipole moments.31 The
induced dipole moment is given by

μi =
∑

j

αijEj +
∑
jk

AijkE
′
jk + 1

2

∑
jk

βijkEjEk

+ 1

3

∑
jkl

BijklEjE
′
kl + 1

6

∑
jkl

γijklEjEkEl . . . ,

the induced quadrupole moment by

�ij =
∑

k

AkijEk +
∑
kl

CijklE
′
kl + 1

6

∑
k�

BklijEkEl . . . ,

and the induced octupole moment by

�ijk = · · · + α3,ijklmnE
′′
lmn · · · .

Here, Ei , E′
ij , E′′

ijk are components of the applied field and its
first and second gradients, respectively.

The response coefficients given above are now described:
the linear dipole polarizability is α (which will be denoted as α1

below). The first two of the nonlinear hyperpolarizabilities are
β and γ , whilst B is the first nonlinear multipole (higher than
dipole) hyperpolarizability. The third-rank tensor A describes
the dipole-quadrupole polarizability and determines the dipole
response due to a field gradient and the quadrupole response
due to the field. C is the quadrupole polarizability,31 which we
will denote α2 below. The octupole-octupole polarizability,
for which no commonly agreed upon symbol exists to our
knowledge, is denoted, here, as α3. We note that for spherically
symmetric (unperturbed) systems, βijk ≡ 0 and Aijk ≡ 0 and
the tensors α1, γ , B, and C each have one independent
component.32

B. Polarizabilities of the QDO model

The polarizabilities of the spherically symmetric QDO
model of this work can be examined by studying the perturbing
effect of a test charge δ placed at a large distance R̃ from
the center of oscillation along the z axis [Eq. (1) with
M = 1,N = 1]. This perturbation to H0 can be expressed in
spherical polar coordinates whose origin is at the center of the
QDO oscillation as

H ′(r,θ ) = qδ

|R̃ + r| − qδ

R̃

= qδ

∞∑
�=1

(
r�

R̃�+1

) (
4π

2� + 1

)1/2

Y�0(θ ),
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with the Y�0(θ ) the m = 0 spherical harmonic functions.30

Polarizablities arise from second-order perturbation theory, as
developed in Supplemental Material,33,34

E(2) = −
∑
�=1

e2α�

R̃2�+2
,

(2)

α� =
(

q2

μω2

) [
(2�− 1)!!

�

] (
h̄

2μω

)�−1

.

This defines the dipole polarizability αdip ≡ α1 (DD), the
quadrupole polarizability αquad ≡ α2 (QQ), the octupole polar-
izability αoct ≡ α3 (OO), and so on; the polarizablity tensor of
the spherically symmetric QDO model is diagonal, αlml′m′ →
αlδll′δmm′ , as described in Ref. 33. In the classical limit, h̄ → 0,
only the dipole polarizability is nonzero:

αdip ≡ α1 = q2

μω2
, α� = 0, ∀� > 1.

Hence the classical Drude oscillator (CDO) model formally
contains dipole polarization effects only, at this level of
perturbation theory.

As described above, some responses are absent as a result
of the spherical symmetry of the QDO model (βijk ≡ 0 and
Aijk ≡ 0, for instance). Hyperpolarizabilities, which couple
even orders of a homogeneous field, such as γ (DDDD),
the second hyperpolarizability, are also absent because the
model contains no anharmonicity.33 The model does pos-
sess multipole hyperpolarizabilities, starting with the dipole-
dipole-quadrupole hyperpolarization B = 3q3/(2μ2ω4) (see
Ref. 33). Note, B is a classical quantity, independent of h̄, and
thus is reproduced within the CDO. Later, we will develop a
diagrammatic method based on the Jastrow approach35 that
allows an intuitive understanding of the type of responses that
are present/absent in the QDO model.

C. Polarizability invariants of the QDO model

The quantum Drude oscillator model is based on Gaussian
on-site interactions. Due to this Gaussian nature, simple
relationships amongst the response coefficients arise, that is,
Gaussians only possess one independent moment. The first
three polarizabilities of the QDO model can be written as

αdip ≡ α1 = q2

μω2
, (3a)

αquad ≡ α2 = 3

4

(
h̄

μω

)
α1, (3b)

αoct ≡ α3 = 5

4

(
h̄

μω

)2

α1 . (3c)

From this form, the following invariant emerges:

γpol ≡ 2
√

5 α2

3
√

α1α3
= 1, ∀ QDO,

which holds for all quantum Drude models; it is an invariant of
the model. Note that the quantity ( h̄

2μω
) is the spatial variance

of the quantum Drude quasiparticle (that is, the width of
the unperturbed QDO’s Gaussian ground-state wave function
squared).
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FIG. 1. (Color online) QDO model invariant polarizability scal-
ing relation γpol for three classes of atoms and molecules: alkali-metal
atoms (group I), noble gases (group VIII), and small molecules
(first-row hydrides). All three classes show good agreement with
the QDO prediction, the horizontal lines in the figure, especially the
noble gases. The γpol for the three classes are offset for clarity as
indicated in the legend/insert.

In assessing the approximations inherent in the QDO model,
it is important to determine to what extent γpol is preserved
for atoms and molecules. We have selected a test suite of
systems, which includes the noble gases, the alkali metals,
and the first row hydrides. The latter are reasonably close
to spherical in shape and we have used the isotropic part of
the molecular polarizability tensors to make the comparison;
a single QDO again has spherical symmetry. Figure 1 (and
Ref. 33) shows the results of the tests. The quantity ln(γpol) is
presented because the relationship is multiplicative and could
equally well be inverted. Agreement with the QDO invariant
is surprisingly good. For more complex molecules, one would
not expect a single QDO to be a good representation; however,
we posit, encouraged by the distributed electric multipole and
polarizablility based approach,31,36 that a model with several
quantum Drude particles, each representing a molecular
moiety, would give a good description of real systems (i.e.
with distributed electric multipoles as well as point charges
used to describe a moiety’s fixed charge distribution and a set
of QDO’s not necessarily centered on atomic sites to describe
its response to external perturbation).

IV. DISPERSION IN THE QUANTUM DRUDE MODEL

The standard dispersion energy between two atoms A and
B separated by a distance RAB,

Edisp = −
∑

n=6,8,10,...

CAB
n

/
Rn

AB, (4)

arises from a second-order perturbation theory treatment of
electronic structure.31 The coefficient C6 captures induced-
dipole–induced-dipole fluctuation interactions, C8 cap-
tures induced-dipole–induced-quadrupole interactions, and
C10 captures induced-dipole–induced-octupole plus induced-
quadrupole–induced-quadrupole interactions. There are fur-
ther two-body interactions, which arise in a third-order in
perturbation theory37 beginning at O(R−11

AB ). For nonspherical
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molecules, there exist also terms with odd powers in RAB

starting at O(R−7
AB). For nearly spherical molecules such as the

first-row hydrides (for example, the water molecule),38 these
terms make small contributions. At the three-body level, the
leading interaction between spherically symmetric moieties A,
B, and C is the Axilrod-Teller-Muto39 dispersion interaction:

E3disp = CABC
9 × 3 cos a cos b cos c + 1

R3
ABR3

ACR3
BC

(where a is the angle formed at vertex A, and so on).
The QDO model has been used to develop a basic

understanding of dispersion13,31 as it allows the dispersion
coefficients to be calculated in closed form.40 In Ref. 33, we
present a derivation of CAB

n ,n = 6,8,10 starting from Eq. (1)
with M = 0,N = 2 following Ref. 31. We obtain

CAB
6 = 3

2
αA

1 αB
1

h̄ωAωB

(ωA + ωB)
,

CAB
8 = 15

2

[
αA

1 αB
2

h̄ωAωB

(ωA + 2ωB)
+ αA

2 αB
1

h̄ωAωB

(2ωA + ωB)

]
,

CAB
10 =

[
21αA

1 αB
3

h̄ωAωB

(ωA + 3ωB)
+ 21αA

3 αB
1

h̄ωAωB

(3ωA + ωB)

+ 70αA
2 αB

2
h̄ωAωB

(2ωA + 2ωB)

]
, (5)

in agreement with Ref. 40. If the Drude particles are of identical
species, ωA = ωB = ω, αA = αB = α, then

CAA
6 = 3

4α1α1h̄ω, CAA
8 = 5α1α2h̄ω,

(6)
CAA

10 = (
21
2 α1α3 + 35

2 α2α2
)
h̄ω.

It is possible to evaluate three-body dispersion coefficients
(such as Axilrod-Teller-Muto triple induced dipole dispersion
term)39 using spherical polar coordinates and Clebsch-Gordan
coefficients following Stone.31 However, we can also use the
diagrammatic approach developed below to yield

CABC
9 = 1

2
αA

1 αB
1 αC

1
h̄ωAωBωC(ωA + ωB + ωC)

(ωA + ωB)(ωB + ωC)(ωA + ωC)
,

CAAA
9 = 3

16
α3

1h̄ω,

as given in Appendix B. The one component limit agrees with
that presented for the one component dipole limit QDO model
studied in Ref. 41.

A. Dispersion coefficient invariants of the QDO model

As was the case with the polarizabilities, the Gaussian
nature of the QDO model leads to invariant relationships
amongst the dispersion coefficients. The four single-species
dispersion terms can be simplified as follows:

C6 = 3

4
α1α1h̄ω, C8 = 5

(
h̄

μω

)
C6,

(7)

C10 = 245

8

(
h̄

μω

)2

C6, C9 = 1

4
α1 C6,

where the response coefficients for interacting QDO’s of
identical species are written as CAA

n →Cn, CAAA
9 →C9. These

relationships lead to the identical species two-body scaling
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FIG. 2. (Color online) QDO model invariant two-body dispersion
scaling relation γdisp for the same three classes of atoms and molecules
as in Fig. 1. All satisfy the relation quite closely.

law:

γdisp ≡ 7

2
√

10

C8√
C6C10

= 1 ∀ QDO, (8)

the three-body dispersion invariant relationship

γ3disp ≡ α1C6

4C9
= 1 ∀ QDO, (9)

and the nonidentical species dispersion relation

γmix ≡
(

3

2
αA

1 αB
1

ωAωB

ωA + ωB

) /
CAB

6

=
(

CAA
6

αAαA
+ CBB

6

αBαB

) / (
2

CAB
6

αAαB

)
= 1 ∀QDO, (10)

where

h̄ωs ≡ 4

3

Css
6(

αs
1

)2 (s ∈ {A,B}). (11)

The above result is similar to the empirical combining rule
of Moelwyn-Hughes.42,43 Finally, the three-body nonidentical
species dispersion scaling relation is

γ3mix ≡
[
αA

1 αB
1 αC

1

CABC
9

] [
h̄ωAωBωC(ωA + ωB + ωC)

(ωA + ωB)(ωB + ωC)(ωA + ωC)

]
= 1 ∀ QDO, (12)

which is closely related to the empirical combining rule of
Refs. 44,45.

The degree to which the QDO dispersion invariants given
above describe real systems is assessed in Fig. 2, where
ln(γdisp) is given for our selected set of atoms and molecules
(see also Ref. 33). The invariant holds rather well. The
QDO model three-body dispersion scaling law seems to
define a rough upper bound for atoms and simple molecules,
ln(γ3disp) � 0 as shown in Fig. 3 (see also Ref. 33). Figures 4
and 5 demonstrate that the QDO model mixed dispersion
coefficient invariant also holds well. In summary, the QDO
model shows promise to be simply transferable to complex
systems, capturing not just the many-body induction but also
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FIG. 3. (Color online) QDO model invariant three-body disper-
sion scaling relation γ3disp for the same three classes of atoms and
molecules as in Fig. 1. All obey the relation quite closely. This time
notice that all the values are above the line; it appears there is a
systematic tendency for the QDO model to overestimate the value of
C9, but to a very modest degree.

many-body dispersion to a reasonable approximation, even for
complex multicomponent assemblies.

V. DISCUSSION OF QDO MODELS AND RELATION TO
DIAGRAMMATIC PERTURBATION THEORY

The QDO approach has been shown to give a good de-
scription of the low-order dispersion and polarization response
coefficients for an important set of atoms and molecules. In
order to make further progress in assessing the capabilities
of the model, we have developed a Jastrow-type diagrammatic
framework35,46–50 the details of which are given in Appendix A.
The diagrammatic framework reveals (a) the responses that
must vanish by symmetry, (b) the structure of the responses

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

ln
(m

od
el

/e
xp

t)
 fo

r 
C

6A
B

noble-gas, noble-gas
alkali-metal, alkali-metal

H, noble-gasl
Li, noble-gas

alkali-metal, noble-gas

FIG. 4. (Color online) QDO model-invariant mixed-species two-
body dispersion scaling relation γmix for combinations of noble-gas
and alkali-metal atoms. The interactions predicted between similar
species are more accurate than those between unlike species, but
those are also quite close. Alkali atoms are unusual species, which
behave quite differently to closed-shell species as reflected in the
model parameters in Table I.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

ln
(m

od
el

/e
xp

t)
 fo

r 
C

9A
B

C

alkali-metal, alkali-metal, alkali-metal
H2O, H2O, other

H2O, other molecule, other
all other combinations

FIG. 5. (Color online) QDO model invariant mixed-species three-
body dispersion scaling relation γ3mix for different combinations of
atoms and molecules. As in Fig. 3, the model appears to have a small
systematic tendency to overestimate C9, but the prediction is still
remarkably close. It is worth bearing in mind that the three-body
dispersion is a small energy and it is difficult to measure C9 directly.

in terms of h̄ and perturbation theory order, (c) that dispersion
arises as loops by analogy with the bubble diagrams of
particle physics, and (d) the plethora of responses including
cross interactions between polarization and dispersion that
the model engenders. Although the QDO is a simplified
or coarse grained electronic structure, within the underlying
approximations, it contains long-range responses to all orders.

The major response classes of our diagrammatic expansion
are shown Fig. 7; the diagrams that exist in the dipole limit
are given in Fig. 8. They can be interpreted intuitively given
the following guide (illustrated in Fig. 6). Each (yellow) box
represents an instance of the electrostatic potential between
two particles (one at either end), which can be written as a
multipole expansion.31 Multiple (yellow) boxes thus indicate
successive levels in perturbation theory. That is, a single
(yellow) box indicates energies that appear at first order—the
straightforward electrostatic interaction. Two (yellow) boxes
connected at only one end represent the interaction between
fields at a particular particle, specifically, the interaction of
a field with the multipole-moment induced by the same
or another field—this is the polarization (an energy term
that arises from second-order perturbation theory).31 Three
(yellow) boxes connected at one junction therefore represent
hyperpolarization (third order).31 Four such boxes represent
second hyperpolarization (fourth order) and so on.

Diagrams where all ends of the (yellow) boxes are con-
nected (no free ends) indicate terms which exist even when
there are no permanent fields present (that is, there are no
fields at first order). These are pure dispersion/van der Waals
energies, which start at second order (see Fig. 8 for the
dispersion diagrams in the dipole limit). Note that these terms
form loops (akin to “bubble diagrams” in particle physics,
where they contribute to the self-energy of the quantum field
except that in this case, the quantum field is made up of discrete
QDO’s at variable locations rather than a lattice representing a
continuous field). Note that many-body polarization (involving
permanent fields, but more than one junction), many-body
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1 2 

2 

1 3 

FIG. 6. (Color online) Selected diagrams (yellow and black) interpreted in terms of QDO’s (blue cloud, red centers) and charges (green). A
shift of the center of the blue cloud indicates polarization. Dispersion does not show such shifts in mean-field atomic representations like this,
but does appear as loops in the diagrams. For the yellow and black diagrams, a yellow bar indicates a primitive electronic multipole interaction
Q�mT�m�′m′Q�′m′ .31 The number of thin black lines coming out of one end of a yellow bar indicates �, the kind of multipole (0 = monopole,
1 = dipole, 2 = quadrupole, and so on) involved at that particle in the interaction. The diagrams show, in order, the simple Coulomb potential
between two charges, three-body dispersion, simple two-body polarization, polarization at a single center, many-body polarization, two-body
dispersion, and polarization dispersion. Mathematical expressions corresponding to elements of the diagrams are also shown for the first two
diagrams (omitting prefactors for clarity).

dispersion (loops with more than two junctions), and even
polarization-dispersion interactions (permanent fields and
loops) are all described as well. The connectors indicate tensor
inner products of multipole field gradients. The multiplicity
of line ends at the end of a box indicate which multipole is
involved in that interaction. A single line at the end of box
indicates a dipole, double lines indicate a quadrupole, and so
on. Figure 6 illustrates how the diagrams imply interactions
between QDO’s and an external Coulomb field.

One important property of the diagrammatic perturbation
theory presented here is that it allows classification and
interpretation of the terms generated (i.e., the QDO model is
sufficiently simple that the perturbation theory neatly exposes
long-range intermolecular forces). The column in which a
diagram is situated indicates at which order it appears in pertur-
bation theory, and the row indicates the power in h̄ of the inter-
action. Thus only the top row (h̄0) of interactions exist for the
classical Drude oscillator. The first column of Fig. 7 represents
the regular Coulomb potential between fixed point charges.
The second column diagrams represent, in order, dipole-dipole
polarization, quadrupole-quadrupole polarization, dipole-

dipole dispersion, octupole-octupole polarization, quadrupole-
quadrupole dispersion, and dipole-octupole dispersion—all of
them the result of second-order perturbation theory. The third
column contains third-order effects, and so on.

It can be seen that higher order responses do indeed
exist within the QDO model. For example, the leading-order
cross interactions (third column, second row, middle 2) occur
when the dipole-dipole dispersion interacts with dipole- and
quadrupole polarizations, respectively. There is also a dipole-
dipole-quadrupole polarization energy (third column, first row,
bottom), and two corresponding dispersion terms (dispersion-
only diagrams, third column, third row, rightmost 2), indicating
that QDO’s have a nonzero dipole-dipole-quadrupole hyper-
polarizability, which we calculate in Appendix A.

It is important to note that using the Jastrow diagrammatic
approach it is possible to determine easily that certain
interactions must be absent. For example, there is no diagram
for three-dipole or four-dipole hyperpolarization (no diagrams
with 3 or 4 single lines joined around the same junction—more
discussion is given in Appendix A). The ability of this
framework to determine which higher order responses exist
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1st-order 2nd-order 3rd-order 4th-order 5th-order

classica
l

h̄1

h̄2

h̄3

FIG. 7. (Color online) Full diagrammatic expansion of QDO interactions. First, see Fig. 6 for explanation of the individual diagrams. The
column number, also the number of yellow bars, is the order at which each term would appear in Rayleigh-Schrödinger perturbation theory.
The row number is the power in h̄: the top row is h̄0 and shows all the interactions that are possible with a CDO (classical limit), where the
leading terms involve dipole polarization, although there are some others, including the dipole-dipole-quadrupole polarizability. The QDO has
all rows, bringing both higher-multipole interactions (multiple black lines) and dispersion (closed loops).

could become useful as the systems to which the QDO model
is applied become more advanced. We point out that the
simplicity of the QDO model (distinguishable quasiparticles),
allows the simplified perturbation theory to achieve a degree of

clarity in the study of intermolecular long-range forces13 but
does not approximate well the complete electronic structure
problem46–50 at short-range where exchange repulsion is
dominant.

Dipole limit. Dispersion only.

C6

C8

C10

C9

FIG. 8. (Color online) Two subsets of diagrams from Fig. 7. On the left are the terms that exist in the dipole limit: the quantum dipole
oscillator. These are the subset of terms that can be captured using dipole-limit methods such as matrix diagonalization. Note that a classical
dipole oscillator would capture only the top row of these; a very limited subset. On the right are the pure dispersion terms. These are the Van der
Waals interactions that persist even where there are no charges or fields. Note that there are three-body and four-body (and higher) dispersion
terms, and third-order two-body terms.
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TABLE I. Quantum Drude parameters determined from C6, C8,
and α1.

Species ω μ q

H 0.4273 0.6099 0.7080
Li 0.0687 1.2545 0.9848
K 0.0630 0.8101 0.9670
Rb 0.0603 0.7343 0.9274
Cs 0.0531 0.6939 0.8950
He 1.0187 0.5083 0.8532
Ne 1.2965 0.3491 1.2494
Ar 0.7272 0.3020 1.3314
Kr 0.6359 0.2796 1.3741
Xe 0.5152 0.2541 1.3570
H2O 0.6287 0.3232 1.1257
NH3 0.5603 0.3541 1.2722
CH4 0.5794 0.2615 1.2313
BH3 0.8776 0.1165 1.0793

VI. PARAMETERIZATION OF QDO MODELS

The closed form expressions that relate the baseline
QDO parameters, {q,μ,ω}, to polarizabilities and dispersion
coefficients can be rearranged into a form that allows a set of
leading order responses to be reproduced exactly. Here, we
choose to fix the set {α1,C6,C8},

ω = 1

h̄

4C6

3α2
1

, μ = h̄

ω

5C6

C8
, q = −

√
μω2α1, (13)

although other choices are possible. We take q to be negative
as the QDO particle represents a coarse grained electronic
structure. QDO parameters determined from Eq. (13) for the
atoms and simple molecules in our test set can be found in
Table I and are presented graphically in Fig. 9. Interestingly,
α2, α3, C10, and C9 (see Tables II–IV) as well as the leading-
order dispersion coefficient between unlike species given in
Tables V and VI are reproduced well by QDO models
parameterized according to Eq. (13).

The QDO parameters selected using the scheme proposed
here show a progression within a chemical group but are quite
similar to each other (see Fig. 9). It is interesting to note
that the effective charge parameter q is clustered around 1e.
The noble gases Ne, Ar, Kr, Xe, seem to be well described
using ω ≈ 0.6 and μ ≈ 0.2; while the alkali atoms Li, K,
Rb, Cs can be treated using ω ≈ 0.06 and μ ≈ 0.7. This
difference in behavior is likely due to the fact that noble
gases have tightly bound closed shells, whereas alkali-metal
atoms have an extra valence electron that forms a loosely
bound electronic state [hence the low binding energy h̄ω

and wide distribution (σ 2 = h̄/2μω), which allows for large
polarization effects]. Large polarizabilities in turn produce
strong dispersion interactions.51 Note that the parameters for
the first-row hydrides (water, ammonia, methane) are similar
to those of the noble gases. In contrast to the group I atoms, the
smaller polarizabilities of the first-row hydrides are due to their
tightly bound, closed outer electronic shells (like the noble
gases). At room temperature, h̄ω/kT ≈ 60 for the alkalis, and
≈600 for the others, which indicates that all the model atoms
are strongly dominated by the ground-state wave function, as
assumed in our analysis.
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FIG. 9. (Color online) Model parameters {ω,m,q} from fits to
C6, C8, and α1, for three classes of atoms and molecules: alkali metal
atoms (group I), noble gases (group VIII), and small near-spherical
molecules (first-row hydrides). Interestingly, the charge parameter
q is about 1e and varies the least (note the different y scale). The
parameters for noble gases and the small molecules are more similar
to each other than to the alkali metal atoms. The difference in
parametrization (factor of ten in the ground-state energy h̄ω) reflects a
difference in behavior, which is likely due to the fact that noble gases
and small molecules are both closed-shell species, whereas alkali
metal atoms have a loosely bound and thus more mobile valence
electron, which is also what makes them reactive.

The similarity of QDO parameters for closed-shell first-row
hydrides and noble gas atoms suggests that if the QDO model
can treat the condensed phase properties of noble gases (as has
already been shown to be the case for xenon),18,52 it will also
yield a good description of other unreactive species, including
molecular groups such as methyls, amines, hydroxyls, and
even ions (at least non-transition-metal ions). It is worth noting

144103-8



QUANTUM DRUDE OSCILLATOR MODEL OF ATOMS AND . . . PHYSICAL REVIEW B 87, 144103 (2013)

TABLE II. Quantum Drude model polarizabilities.

α1/a
3
0 α2/a

5
0 α3/a

7
0

Species model (=expt) model expt ln
(

model
expt

)
model expt ln

(
model
expt

)
H 4.5 12.95 15 −0.15 82.8 131.3 −0.46
Li 164 1428 1383 0.03 2.76 × 104 3.68 × 104 −0.29
K 291 4277 4597 −0.07 1.40 × 105 1.50 × 105 −0.07
Rb 322 5453 5979 −0.09 2.05 × 105 2.13 × 105 −0.04
Cs 409 8321 9478 −0.13 3.76 × 105 3.40 × 105 0.10
He 1.38 2.00 2.44 −0.20 6.43 10.6 −0.50
Ne 2.66 4.41 6.42 −0.38 16.25 34.27 −0.75
Ar 11.1 37.91 50.21 −0.28 287.7 531.3 −0.61
Kr 16.7 70.44 95.55 −0.30 660 1260 −0.65
Xe 27.3 156.4 212.6 −0.31 1991 3602 −0.59
H2O 9.92 36.61 32.37 0.12 300.3 313.2 −0.04
NH3 14.56 55.04 88.08 −0.47 462.3 − −
CH4 17.27 85.5 104.8 −0.20 940 1121 −0.18
BH3 12.98 95.2 . . . . . . 1552 . . . . . .

that group I atoms are radicals, highly reactive species that we
do not expect to model with the nonreactive QDO approach
beyond the present study of long-range asymptotic responses.

VII. QDO-BASED MODELS FOR NEON, ARGON,
KRYPTON, AND XENON

Here, we describe the development of QDO models for
the noble gases. In Ref. 52, a QDO model of xenon was fit
using experimental data for the polarizabilities and dispersion
coefficients, as above, to determine the three principal model
parameters {μ,ω,q} via Eq. (13), and then was augmented with
Coulomb regularization and a short-range internuclear pair-
wise repulsion potential. Here, we develop the QDO models
for neon, argon, and krypton using the same approach. We then
apply the models to determine the ground-state properties of
their solid phases using linear-scale NC-DMC method18 and
the thermodynamic properties of their liquid phase at state
points related by the classical law of corresponding states via
a linear-scale PIMD simulation.17 The aim of this exercise

is to assess the transferability and applicability of the QDO
approach to simple systems in addition to xenon.

A. Fitting QDO models: long-range asymptotics

Using Eq. (13) of Sec. VI, the principal QDO parameters
{μ,ω,q} for Ne, Ar, Kr, and Xe, were fit to reproduce the
desired set of corresponding leading order response coeffi-
cients, {C6,C8,α1} (see Tables I and II). Short-range Coulomb
regularization and classical pair potentials are described next.

B. Short-range damping of Coulomb interactions
in the QDO model

Drudons are distinguishable quasiparticles obeying Boltz-
mann statistics whose purpose is to describe accurately the
long-range response of atoms or molecular groups. Since
Fermi statistics are neglected, a short-range empirical damping
of the model’s Coulomb interactions are introduced to mimic
this effect. It is not clear what functional form this Coulomb
regularization should take. In Ref. 52, the simple potential

TABLE III. Quantum Drude model dispersion coefficients.

C6/Eha
6
0 C8/Eha

8
0

Species model expt ln
(

model
expt

)
model expt ln

(
model
expt

)
H 6.49 6.47–6.51 (−0.003)–(+0.003) 124.5 124.0–125.0 (−0.00)–(+0.00)
Li 1385 1380–1390 (−0.004)–(+0.004) 8.04 × 104 7.89–8.19 × 104 (−0.02)–(+0.02)
K 4000 3970–4030 (−0.007)–(+0.008) 3.92 × 105 3.84–4.00 × 105 (−0.02)–(+0.02)
Rb 4690 4640–4740 (−0.011)–(+0.011) 5.30 × 105 5.16–5.43 × 105 (−0.03)–(+0.03)
Cs 6665 6630–6700 (−0.005)–(+0.005) 9.040 × 105 8.58–9.50 × 105 (−0.05)–(+0.05)
He 1.46 1.44–1.47 (−0.010)–(+0.010) 14.05 13.9–14.2 (−0.01)–(+0.01)
Ne 6.88 6.48–7.27 (−0.056)–(+0.059) 76.0 55.5–96.5 (−0.24)–(+0.31)
Ar 67.2 63.6–70.8 (−0.052)–(+0.055) 1530 1180–1880 (−0.21)–(+0.26)
Kr 133 124–142 (−0.065)–(+0.070) 3740 2940–4540 (−0.19)–(+0.24)
Xe 298.5 272–325 (−0.085)–(+0.093) 1.14 × 104 8900–13900 (−0.20)–(+0.25)
H2O 46.4 46.4 (0.00) 1142 1142 (0.00)
NH3 89.08 89.08 (0.00) 2245 2245 (0.00)
CH4 129.6 129.6 (0.00) 4277 4277 (0.00)
BH3 110.9 110.9 (0.00) 5423 5423 (0.00)
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TABLE IV. Quantum Drude model dispersion coefficients (continued)

C10/Eha
10
0 C9/Eha

9
0

Species model expt ln
(

model
expt

)
model expt ln

(
model
expt

)
H 2926 3270–3290 (−0.12)–(−0.11) 7.3 7.2–7.22 (+0.01)
Li 5.72 × 106 6.50–7.05 × 106 (−0.21)–(−0.13) 5.68 × 104 5.66 × 104 (+0.00)
K 4.71 × 107 4.40–4.76 × 107 (−0.01)–(+0.07) 2.91 × 105 2.87 × 105 (+0.01)
Rb 7.32 × 107 6.64–7.18 × 107 (+0.02)–(+0.10) 3.78 × 105 3.65 × 105 (+0.03)
Cs 1.50 × 108 1.23–1.40 × 108 (+0.07)–(+0.20) 6.81 × 105 6.62 × 105 (+0.03)
He 166.2 181–184 (−0.10)–(−0.09) 0.50 0.49–0.49 (+0.02)–(+0.02)
Ne 1029 826–1520 (−0.39)–(+0.22) 4.57 4.11–4.38 (+0.04)–(+0.11)
Ar 4.27 × 104 3.49–6.09 × 104 (−0.36)–(+0.20) 186.5 172–180 (+0.04)–(+0.08)
Kr 1.29 × 105 1.09–1.70 × 105 (−0.28)–(+0.17) 555.3 511–536 (+0.04)–(+0.08)
Xe 5.33 × 105 4.28–6.75 × 105 (−0.24)–(+0.22) 2037 1790–1910 (+0.06)–(+0.13)
H2O 3.44 × 104 3.24 × 104 (+0.06) 115.07 102.73 (+0.11)
NH3 6.93 × 104 6.16 × 104 (+0.12) 324.25 306.87 (+0.06)
CH4 1.73 × 105 1.46 × 105 (+0.17) 559.55 543.67 (+0.03)
BH3 3.25 × 105 2.35 × 105 (+0.33) 359.87 . . . . . .

form

φxy(r) = qxqy

[
1 − exp

(−r4/γ 4
xy

)]/
r (14)

was suggested, where x and y stands for Drude particle d or
nucleus n, as appropriate. The convenient choice of Ref. 52 is
not claimed to be optimal or unique but goes to zero at r = 0
and to unity in the limit r goes to infinity.

TABLE V. Comparison of model and experimental dispersion
coefficients between unlike species.

Species CAB
6 /Eha

6
0

A B model expt. � ln

He Ne 3.140 3.120 0.01
He Ar 9.748 9.720 0.00
He Kr 13.53 13.60 −0.01
He Xe 19.80 20.10 −0.01
Ne Ar 20.63 20.70 −0.00
Ne Kr 28.41 28.70 −0.01
Ne Xe 41.20 42.30 −0.03
Ar Kr 94.30 94.30 −0.00
Ar Xe 140.0 141.0 −0.01
Kr Xe 198.5 199.0 −0.00

H Li 65.46 66.30 −0.01
H K 107.8 113.0 −0.05
H Rb 114.9 122.0 −0.06
H Cs 130.6 137.0 −0.05
Li K 2348 2350 −0.00
Li Rb 2542 2540 0.00
Li Cs 3013 3020 −0.00
K Rb 4330 4330 −0.00
K Cs 5146 5150 −0.00
Rb Cs 5586 5575 0.00

H He 2.804 2.820 −0.01
H Ne 5.771 5.710 0.01
H Ar 20.17 20.00 0.01
H Kr 28.81 28.50 0.01
H Xe 43.76 42.90 0.02

Since the QDO model of xenon constructed in Ref. 52
performed reasonably well, we adopt Eq. (14) here. Rather
than refit the {γ } for each noble gas, the values for the xenon
model of Ref. 52 were assumed to be “universal” and scaled
in proportion to the corresponding LJ diameters denoted L;
for example, {γ (Ne)} ≡ (LNe/LXe){γ (Xe)}. Values are given in
Table VII.

C. Short-range classical pair-wise repulsion

Elegant QDO models containing only short-range Coulomb
regularization could, in principle, be developed. However,
this has been difficult to realize in practice whilst keeping

TABLE VI. Comparison of model and experimental dispersion
coefficients between unlike species (cont.).

Species CAB
6 /Eha

6
0

A B model expt. � ln

He Li 21.82 22.50 −0.03
He K 35.71 39.80 −0.11
He Rb 37.96 43.20 −0.13
He Cs 42.77 46.80 −0.09
Ne Li 42.64 43.90 −0.03
Ne K 69.72 78.90 −0.12
Ne Rb 74.07 86.10 −0.15
Ne Cs 83.33 91.60 −0.09
Ar Li 171.2 174.0 −0.02
Ar K 280.8 305.0 −0.08
Ar Rb 298.7 331.0 −0.10
Ar Cs 337.4 362.0 −0.07
Kr Li 254.3 259.0 −0.02
Kr K 417.4 451.0 −0.08
Kr Rb 444.3 489.0 −0.10
Kr Cs 502.4 538.0 −0.07
Xe Li 408.4 408.0 0.00
Xe K 671.3 709.0 −0.05
Xe Rb 715.0 769.0 −0.07
Xe Cs 810.0 850.0 −0.05
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FIG. 10. (Color online) Repulsive wall of selected empirical
potentials. From top to bottom, the curves are BWSLS potentials
for xenon (X2) and krypton (K2);54 composite ESMSV,57 MTT,56

HFDID1,58 and BFW53 for argon; ESMSV potential for neon.55

Circles are the experimental data as cited in Ref. 56.

simple (practical) functional forms and fitting procedures.
Therefore a “classical” pair-wise repulsion interaction Vrep(r)
acting between the Drude centers is added to the QDO model,
following the basic tenants outlined in Ref. 10. One way to
determine such a “repulsive wall” is to calculate the Born-
Oppenheimer (BO) surface of the regularized QDO model
dimer using NC-DMC simulations,18 and then to compare the
result with a high-quality empirical gas phase pair potential.
The required short-range “classical” pair potential can be
defined to be the difference between these two functions such
that the QDO model reproduces properties built into the gas
phase pair potential in the low-density limit. We chose to fit
the difference data to a triexponential form following Ref. 52,

Vrep(r) =
3∑

i=1

κi exp(−r/λi), (15)

which is not unique or presumed optimal but is sufficiently
flexible to fit the data.

For noble gases, there are a number of accurate gas phase
empirical pair-potentials described in the literature, broadly
based on the (SCF) Hartree–Fock/dispersion decomposition.10

The BWSLS potential was selected for use in the krypton and
xenon cases.54 For neon, we employed the potential of Ref. 55
as our baseline. Finally, for argon, we used the potential of
Ref. 56. The short-range repulsive parts of the considered
potentials are compared in Fig. 10. Several argon potentials
are presented in the figure for comparison. These choices of
baseline empirical potential are based on convenience and not
on extensive testing.

Using the principal QDO parameters, {μ,ω,q}, presented
in Table I, the regularization presented, above, and the
NC-DMC18 method, we calculated the BO surface of the
regularized QDO model for each (isolated) noble gas dimer
at 20–25 internuclear separations in the range between 0.5L

and 2L. This range covers the potential well and the repulsive
wall (L is the Lennard-Jones diameter often denoted σ ). In
the NC-DMC calculations, we used Nw = 200 walkers and an

TABLE VII. Parameters for the quantum Drude model of several
noble gases. All quantities are in atomic units, unless stated
otherwise.

Ne Ar Kr Xea

L (nm) 0.26743 0.3405 0.368 0.4055
κ1 (MHa) 265.447 26.6754 6.98489 60.1475
κ2 (MHa) 761.389 21.5104 26.0932 63.8244
κ3 (MHa) −1026.76 −48.1804 −33.0672 −123.961
λ1 (bohr−1) 3.117951 1.059684 1.914719 1.7033100
λ2 (bohr−1) 3.111181 2.250861 1.924938 1.6995777
λ3 (bohr−1) 3.112895 4.280202 1.922674 1.7013642
εsurf 1.52 1.90 2.27 2.85

aShort-range repulsion parameters for Xe are different from pub-
lished previously.52

imaginary time step of h̄τω = 0.01. In a typical run, after the
initial equilibration of 5 × 104 steps, the energy was averaged
over further 106 steps. We next fit the triexponential function
of Eq. (15) to the difference between the empirical potential
and the calculated QDO energy surface. The parameters of the
short-range pair potentials determined using this approach are
given in Table VII. The QDO energies with their fitted pair
repulsion included (symbols) are compared in Figs. 11–13 to
the empirical potentials (full line); the results obtained at short
range are given as insets.

D. Fitting QDO models: beyond the noble gases

In the previous sections, we have described a simple
procedure to fit QDO models for the noble gases based
on principles described in pioneering work on intermolec-
ular forces.2,10,32 Many-body, long-range interactions were
introduced with suitable cutoffs within the QDO model,
and short-range interactions subsequently added. Historically,
short-range interactions have been fit to a combination of
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FIG. 11. (Color online) Fitting the short-range repulsion for neon.
Full line is the ESMSV potential,55 crosses are the NC-DMC results
plus triexponential fit. On the inset: diamonds are the difference
between the ESMSV potential and the results of the damped NC-
DMC calculation, full line is a triexponential fit.
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FIG. 12. (Color online) The same as in Fig. 11, only for argon
using the MTT potential.56

quantum-mechanical computations and experimental data.
This basic approach has also been applied to develop models
of water25 and alkali halides,2 for instance. It should be noted
that a “perfect” pair potential (from perhaps a coupled cluster
or a even full CI computation) would fail to predict condensed
phase systems if pertinent many-body effects are not taken
into account as demonstrated by Barker7 for the noble gases,
for example. More recently, a technique has been developed to
limit the error associated with fitting (short-range interactions)
to insufficiently flexible functional forms.29

In order to develop accurate force fields to treat molecular
systems, or molecular moieties, more advanced approaches
have been proposed. Stone has pioneered the use of distributed
multipoles to describe the charge distribution of ab initio
computations31,59 and others have developed techniques to
place polarizable sites in such system from ab initio input.36

The baseline model for long-range interactions is often taken to
be the CDO (i.e., plus electrostatics). At present, van der Waals
interactions are added as two-body terms with coefficients
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FIG. 13. (Color online) The same as in Fig. 11, only for krypton
using the BWLSL (K2) potential.54

taken either from experiment or computed from quantum
chemistry. Based on the results presented here, it would seem
natural and plausible to replace the CDO with the QDO in order
to potentially generate more powerful and accurate models
(note, using gas phase, two-body, van der Waals coefficients
can lead to an error in the condensed phase predictions if
three-body terms are neglected).7

It has been a “holy grail” to develop a fully ab initio
approach for potential function generation. Three exemplar
papers in this area are Refs. 11,27,28, which rely on CDO’s.
These approaches follow the basic outline of the previous
paragraph as regards long-range interactions and as stated
above, replacing the CDO’s of these models with QDO’s would
be an interesting research endeavor. The precise methodology
used to partition the energy from fully ab initio computations,
while interesting and important, is beyond the current, more
narrow, discussion.

Lastly, the full QDO model could be used to correct
local density functional theory computations following the
work using the dipole limit QDO19–23 or to augment mixed
approaches such as the effective fragment model.60 However,
the solution to the full model is more difficult than the
dipole limit and such a combined approach would require
development. Success would allow bond making and breaking
processes to be explored, i.e., a reactive force field with an
improved treatment of long-range interactions.

E. Scaling of the QDO approach with system size

Using the adiabatic path integral molecular dynamics
method to simulate the QDO model,17,52 the computational
complexity of a QDO calculation scales as N , where N is
the number of atoms in the system. The O(N ) scaling arises
because in the discrete path integral picture of quantum statis-
tical mechanics61 under the Boltzmann statistics appropriate
for the QDO model, each classical particle (here each drudon)
is replaced by a ring polymer of P beads with each bead
representing a time slice of the imaginary time propagator; the
number of imaginary time slices, P , is independent of N . The
“intrapolymer” interactions are the nearest time slice; bead i of
particle j interacts via a harmonic spring with beads i + 1 and
i − 1 of the same particle j , only, resulting in order N scaling
for this portion of computation, i.e., with fixed prefactorP .
The beads interact via the external potential in a time ordered
fashion, that is, only particles of the same bead number i

interact with each other via the external potential, which also
yields order N scaling, with prefactor P . In periodic systems,
the scaling is slightly increased to N ln N if the Coulomb
interactions inherent in the QDO model’s external potential are
evaluated via particle mesh type methods,62,63 for instance, or
simply N if periodic fast multipole techinques are employed.64

Since path integral molecular dynamics methods can be
efficiently parallelized65 and very large parallel machines are
available, the prefactor P can be effectively reduced.

The question of convergence with the sampling time of
the method is also important. Our path integral molecular
dynamics technique is designed to sample the phase space
of a statistical mechanical system at finite temperature using
the QDO model to provide an accurate BO surface. Thus the
method is order N in the same sense as the standard molecular
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TABLE VIII. Comparison of the calculated and experimental
zero-temperature properties of noble-gas solids. The quoted energies
are per atom.

Ne Ar Kr Xe

� 0.490 0.154 0.0840 0.0522
Ecalc(a0) (mHa) −0.7342 −3.0255 −4.3324 −6.0080
Eexp(a0) (mHa)a −0.6528(16) −2.948(19) −4.25(8) −6.10(8)
�Eqc (mHa) 0.233 0.294 0.230 0.204
acalc (Å) 4.4632 5.3154 5.6466 6.1417
aexp (Å) 4.4635 5.3002 5.6458 6.1320
�aqc (Å)b 0.1741 0.0635 0.0370 0.0248
Bcalc (GPa) 0.94(10) 3.11(30) 3.09(20) 3.26(20)
Bexp (GPa) 0.99(10) 2.58(15) 3.21(16) 3.65(20)
�Bqc (GPa) 0.73 0.49 0.31 0.20

aReference 70.
bReference 71.

dynamics or Monte Carlo techniques. If the statistical me-
chanical system of interest has a rough energy landscape or
is near a phase transition, then the simple order N scaling
breaks down for the path integral based QDO technique in
the same way as for standard methods. However, many of the
phase space sampling acceleration methods that aid standard
molecular dynamics and Monte Carlo methods can be applied
to enhance sampling in the path integral based QDO model.

F. DMC simulations of noble gas FCC crystals at T = 0 K

In order to validate the QDO models for the noble gases
presented above, we first test the ability of the models to
reproduce the experimentally measured properties of noble
gas face centered cubic (FCC) crystals66 near T = 0 K. The
NC-DMC method was employed to simulate these perfect
crystals in conjunction with the Ewald summation technique
to treat the Coulomb interactions. To remove finite size
effects, the results were extrapolated to the thermodynamic
limit using the appropriate scaling laws; system sizes ranging
from N = 4 to N = 500 atoms were studied. Implementing
twist average boundary conditions (k-point sampling)67 would
eliminate the need for the extrapolation at the expense of a
more complicated computation.

In order to estimate the bulk ground-state properties of the
considered noble gases crystals, including lattice constants,
cohesive energies, and bulk moduli, we calculated the total
energy for a range of lattice spacings, a, around the experi-
mental result (8–12 points between 0.96aexp and 1.04aexp). The
results were fit to the Birch-Murnaghan equation of state.68

Since the atomic nuclei were treated classically, nuclear
quantum corrections69 need to be applied to make meaningful
comparison with experiment. This is accomplished, within
first-order perturbation theory, using the nuclear quantum
corrections determined in Ref. 69 for Lennard-Jones models
of each noble gas crystal as a baseline. For example, we
estimate EQDO ≈ E

(CN)
QDO + (ELJ − E

(CN)
LJ ), where CN denotes

classical nuclei and LJ Lennard-Jones model; the difference
is assumed to remove model dependence to first order. The
extrapolated results, together with available experimental data
are collected in Table VIII; the extrapolations are themselves
given graphically in Supplemental Material.33

Ar

r / nm
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2
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QDO

FIG. 14. (Color online) The radial distribution functions for argon
calculated using the QDO model via PIMD (red line), the MTT
potential56 (blue dash-dotted line), and the Lennard-Jones model
(green dashed line) at the reduced density ρ∗ = 0.7 and reduced
temperature T ∗ = 1.25.

The QDO model lattice parameters show uniformly good
agreement with experiment. The QDO model energies also
agree well with experiment (<3% deviation for all species
except neon, which shows an 8% deviation; this will require
future work to understand). QDO model predictions of the
bulk modulus agree with experimental measurements within
the estimated error bars of experiment and our computations.

G. Liquid phase simulations

In order to assess the ability of QDO model noble gases
to describe accurately the liquid phase, we performed a
series of finite temperature P = 80 bead (Trotter number)
PIMD simulations52 at the thermodynamic state ρ∗ = 0.7 and
T ∗ = 1.25, which lies in the liquid phase of both the generic LJ
fluid, and all the physical systems studied here, Ar, Kr, and Xe
(i.e., when converted appropriately using the Lennard-Jones
parameters of Ref. 69). A convergence study with Trotter
number is given in Supplemental Material.33 The simulated
QDO model radial distribution functions for three gases are
compared to results produced using the underlying empirical
gas phase pair potential and the LJ potential69 in Figs. 14–16.
The slight differences between the models and violations of
corresponding states of the QDO model will be explored in
future work.

VIII. SUMMARY AND CONCLUSIONS

In this paper, an assessment of the ability of the QDO model
to treat the long-range asymptotic behavior of atoms and sim-
ple molecules has been performed. Closed form expressions
for polarizabilities and dispersion coefficients are presented
and invariant scaling relations/combining rules are constructed
that reflect the underlying Gaussian nature of the model. We
find that the scaling laws are satisfied surprisingly well for
(real) atoms and molecules. A diagrammatic perturbation of
the Jastrow type is described that demonstrates the (many)
allowed responses of this Gaussian-based, exchange-less,
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FIG. 15. (Color online) The radial distribution functions for
krypton calculated using a QDO model using PIMD (red line),
BWLSL (K2) potential54 (blue dash-dotted line), and Lennard-Jones
model (green dashed line) at the reduced density ρ∗ = 0.7 and
reduced temperature T ∗ = 1.25.

approach. This is consistent with the surprising realism that
simple models based on Gaussian statistics often exhibit.
The QDO model is therefore a strong candidate to serve
as a baseline for building long-range forces into atomistic
descriptions of complex systems.

We have shown how to parametrize the quantum Drude
model {q,μ,ω} to treat atoms and small molecules using their
dipole polarizability α1, and dominant dispersion coefficients
C6 and C8, making it possible to create simple models, which
yield realistic long-range forces. We discovered that these
parameters vary little for closed-shell/unreactive chemical
species (noble gases and first-row hydrides), suggesting that
other such closed form species (which are the norm in

Xe
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FIG. 16. (Color online) The radial distribution functions for
xenon calculated using a QDO model using PIMD (red line), BWLSL
(X2) potential54 (blue dash-dotted line), and Lennard-Jones model
(green dashed line) at the reduced density ρ∗ = 0.7 and reduced
temperature T ∗ = 1.25.

nonreactive molecular dynamics simulations), will also turn
out to be well suited to a quantum Drude model based
framework. The developed QDO models for neon, argon,
krypton, and xenon based on the general principles elucidated
in early work on long-range forces10,32 perform well both for
the structural and thermodynamic properties studied here. It
will be of interest in the parametrization of more complex
systems to use the QDO to perhaps replace the more basic
classical Drude oscillator model underlying many current force
field models11,26–28,31,36,59 and/or to enhance the results of
ab initio computations as in Refs. 19–24.
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APPENDIX A: DIAGRAMMATIC EXPANSION
FOR QDO MODELS

We can express the ground-state wave function of a system
of interacting QDO’s, exactly, as the noninteracting case with
a Jastrow-type modification F (x). If the “drudon” coordinates
are represented in the vector x and the potential by φ(x),

�0(x) = exp
[
−μω

2h̄
x2 + F (x)

]
is our ansatz,

(Ĥ − E0)�0(x)

�0(x)
= φ(x) − h̄ωx·∇F (x)

+ h̄2

2μ
∇F (x) · ∇F (x) + h̄2

2μ
∇2F (x) − E0.

We note that since QDO particles are distinguishable, �0(x) is
positive semidefinite, and the Jastrow factor F (x) is a strictly
real function. As the QDO model is spinless, issues of spin-
contamination, which arise in the Jastrow-Slater approach to
electronic structure, are absent. Hence it is natural to apply the
Jastrow approach to the QDO model; the simplicity and yet
richness of the QDO approach avoids complexities inherent in
the strongly related coupled cluster46 and Fermi-hypernetted
chain48 approaches to the full electronic structure problem
and exposes the physics of long-range forces of interest here
as noted in Ref. 13.

If we had the exact closed form expression for F (x), then
Eq. (A1) would be solved and both sides would be equal to
zero. However, we can also solve it iteratively. The natural first
perturbation is (following Ref. 18) the one that cancels the first
two terms in the RHS:

φ(x) − h̄ωx·∇F (x) = 0.

If φ(x) and F (x) are expressed as a multipole expansion,
then each term is a simple polynomial φ�(x), making F�(x)
simple to find; it is of the same form but possesses a different
prefactor. For example, F�(x) = 1

�h̄ω
φ�(x). Clearly, terms with

�=0, which means terms like x0, cannot be canceled in this
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way. They are constant terms such as φ(0) that do not vary
in space and are canceled by adding them to the ground-state
energy E0 instead.

We can go further. Using the perturbation generated by the
first cancellation, the third and fourth terms on the right-hand
side of Eq. (A1) are now remainder terms:

h̄2

2μ
[∇F (x)]2 = 1

2�2μω2
[∇φ(x)]2 ,

h̄2

2μ
∇2F (x) = h̄

2�μω
∇2φ(x),

(for the Coulomb potential, ∇2φ=0, but there are important
higher order perturbations that are constructed in this way but
are nonzero). These remainder terms can be canceled in turn by
a second round of perturbations added to F (x). As the leftover
terms are also polynomials, the cancellation perturbation again
is of the same form, with only a different prefactor. The new

perturbations yield new remainder terms, which can in turn be
canceled by a third round of perturbations to F (x), and so on.
Although evaluating these expressions in closed form can be
complex, the form of each term is relatively simple to write
down, and this gives us insight into the types of interactions that
are present. This is precisely the goal of a diagrammatic theory.

It is convenient to label the terms with two subscripts n

and m: n is the number of instances of the bare potential φ

(or its fields/gradients), which appear in the interaction. It is
equivalent to the corresponding level in Rayleigh-Schrödinger
perturbation theory. Higher levels in n are generated by
[∇F ]·[∇F ]-type operations, involving new interactions be-
tween existing fields and terms. m is the power in h̄, the
“level of quantumness” of the interaction. Higher levels in m

are generated by ∇2F operations, involving the divergence
of existing fields or terms. New terms created from the
diagrammatic energy expansion in Fig. 7 were generated by
the following iteration neglecting the multipole factors �:

Gn,m(x) = h̄2

2μ

n−1∑
ν=1

m∑
μ=0

[∇Fν,μ] · [∇Fn−ν,m−μ] (from terms left and above left)

+ h̄2

2μ
∇2Fn,m−1 (from terms above),

Fn,m(x) ≈ 1

h̄ω

[
Gn,m(x) − Gn,m(0)

]
(ignore �),

En,m = Gn,m(0).

Note that the two kinds of terms bring different factors: each
time a new F term is generated, it brings a factor of 1/h̄ω, but
every time the divergence operator is applied it brings a factor
h̄2/2μ. If we continue to ignore �,

[∇F ]·[∇F ] ⇒ h̄2

2μ

(
1

h̄ω

)2

= 1

μω2
= α

q2
,

∇2F ⇒ h̄2

2μ

(
1

h̄ω

)2

= α

q2
h̄ω (a new factor of h̄) .

The contributions to the energy En,m are constant terms, and
they do not contribute to further iterations of the wave-function
perturbation. They sum together to form the ground-state
energy E0. Diagrams belonging to En,m may be found in the
column n (also the number of yellow boxes), row m of Fig. 7.
n is also the number of yellow boxes in the diagram, and m

is also the number of inner products (black connectors), more
than the bare minimum required to join the boxes together.

A (yellow) box represents the Coulomb potential. On
its own it represents that the portion of the energy that
is independent of the QDO parameters (depending only on
any permanent multipole moments of the molecule). The
interaction potential is always between two particles, so the
boxes are drawn long. A line end coming out one end of a
(yellow) box represents the potential’s first (vector) derivative
at that particle, which is a dipole field. Two line ends at one box
end represent the potential’s second derivative at that particle,
a quadrupole field. Two such line ends joined represent a
tensor dot product (summation over an index) between two

such fields, an interaction, at a particular QDO particle (thus
the lines must be short):

= φ, = ∇αφ, = ∇α∇βφ,

= α [∇αφ] [∇αφ] .

The subsequent energy terms derived via [∇F ]·[∇F ]
operation involve joining two existing diagrams with a new
line to form a new diagram. The line represents an interaction
between the fields and a particle at a particular point, so these
connector lines are all drawn short. This also constrains which
interaction diagrams are “legal:”.

[∇F ]·[∇F ]−−−−−−−−→

TABLE IX. Polarizability elements for various symmetries.32

Number of independent elements

Symmetry ααβ βαβγ γαβγ δ Aα,βγ Bαβ,γ δ Cαβ,γ δ

Sphere 1 0 1 0 1 1
D∞h 2 0 3 0 4 3
C2v 3 3 6 4 9 6
C1 6 10 15 15 30 15
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(a) Aαβγ

dipole-quadrupole

polarization

is absent.

(b) βαβγ

3-dipole

hyperpolarization

is absent.

(c) Bαβγδ

2-dipole-quadrupole

hyperpolarization

is present.

(d) γαβγδ

4-dipole

hyperpolarization

is absent.

FIG. 17. (Color online) Allowed/forbidden interaction-diagrams:
interactions that are allowed by the QDO model can easily be
determined by checking if it is possible to join the requisite parts with
black lines and no loose ends. Loose ends would indicate derivative
tensors; energies must be scalars.

The terms created via ∇2F add a new connector to an existing
diagram to form a new diagram (along with a power in
h̄). This can create loops, which represent dispersion terms
(akin to “bubble diagrams” as described in the text), or
parallel connectors, which indicate (further) derivatives of the
Coulombic field, i.e., multipoles. That is, single connectors
represent dipole interactions, double connectors represent
quadrupole interactions, and triple connectors represent oc-
tupole interactions:

∇2F−−−→
+

A single QDO has spherical symmetry. As given in
Table IX, it can therefore has only a few independent com-
ponents in its polarizability tensors and some tensors vanish
entirely. For example, the dipole-quadrupole polarizability
Aαβγ and the three-dipole hyperpolarizability βαβγ are both
forbidden by symmetry, while the two-dipole-quadrupole hy-
perpolarization and the four-dipole hyperpolarizability tensors
each have one independent component. Figure 17 shows
that our diagrammatic technique correctly predicts that Aαβγ

and βαβγ vanish (by symmetry) but also correctly predicts
that the four-dipole hyperpolarizability is forbidden by the
Gaussian nature of the QDO (see also Ref. 33). If a four-dipole
hyperpolarizability tensor is desired, then on-site anharmonic
interactions must be added to the QDO model. We also note
that more than one QDO can be placed in a molecular frame to
break spherical symmetry if desired. We leave these intriguing
possibilities for future work.

APPENDIX B: THREE-BODY DISPERSION
(IN THE DIPOLE LIMIT)

In Appendix A, we split the potential φ(x) into polynomials
of order � and solve F� for each φ�:

x · ∇F�(x) = � F�(x) = φ�(x) ⇒ F�(x) = φ�(x)

h̄�ω
,

but we wish to build the wave function for a combination of
QDO’s with an arbitrary set of parameters. This means that
ω are not all identical. In this case, it is makes sense to split
the potential φ(x) into contributions φij...(xi,xj , . . . ) and then
further split these into φij...,��′... of order � in xi , �′ in xj etc.,
so that we can solve Fij,��′... for each φij,��′.... For example, for
a two-body potential, where i and j are particle indices:

φij,��′(x) = 1

�!�′!
x�

i T
(�+�′)
ij x�′

j ,

where T
(�+�′)
ij ≡∇(�)∇(�′)(1/Rij ) is a tensor of rank (� + �′),

we have(
h̄ωi xi

∂

∂xi

+ h̄ωj xj

∂

∂xj

)
Fij,��′(x)

= h̄
(
�ωi + �′ωj

)
Fij,��′(x) = φij,��′(x),

which gives

Fij,��′(x) = φij,��′(x)

h̄(�ωi + �′ωj )
.

If we restrict the calculation to the dipole limit, that means
�=�′ =1, and all expressions are quadratic with two indices
in x, and therefore relatively simple. Proceeding as before,

� ∝ exp
[
−μω

2h̄
x2 − ∑N

n=1F
(n)(x)

]
,

×
∑
ij

[
h̄ωi xi

∂F (n)(x)

∂xi

+ h̄ωj xj

∂F (n)(x)

∂xj

]

≡ G(n−1)(x) − G(n−1)(0),

where

G(0)(x) = φ(x) = 1

2

∑
ij

qiqjxiTij xj

is the physical potential and higher terms are

G(1)(x) = − h̄2

2μ
∇F (1) ·∇F (1) + h̄2

2μ
∇2F (1),

G(2)(x) = − h̄2

2μ
[2∇F (1) ·∇F (2)] + h̄2

2μ
∇2F (2),

G(3)(x) = − h̄2

2μ
[2∇F (1) ·∇F (3) + ∇F (2) ·∇F (2)]

+ h̄2

2μ
∇2F (3),

and so on.
This yields, in sequence,

F (1) =
∑
ij

qiqj

h̄(ωi +ωj )
xiTij xj , G(1) = −

∑
ijk

qiq
2
j qkxiTijTjkxk

2μj (ωi +ωj )(ωj +ωk)
, F (2) = −

∑
ijk

qiq
2
j qkxiTijTjkxk

2μjh̄(ωi +ωj )(ωj +ωk)(ωi +ωk)
,

G(2) = −h̄

8

∑
ij

(
q2

i

μiω
2
i

) (
q2

j

μjω
2
j

)
ωiωj

ωi +ωj

TijTji ← two-body dispersion
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−
∑
ijk�

qiq
2
j q

2
k q�xiTijTjkTk�x�

μiμj (ωi +ωj )(ωj +ωk)(ωi +ωk)(ωk+ω�)
,

F (3) = −
∑
ijk�

qiq
2
j q

2
k q�xiTijTjkTk�x�

μiμjh̄(ωi +ωj )(ωj +ωk)(ωi +ωk)(ωk+ω�)(ωi +ω�)
,

G(3) = −
∑
ijk

h̄ q2
i q

2
j q

2
k TijTjkTk�

μiμjμk(ωi +ωj )(ωj +ωk)(ωi +ωk)(ωk+ωi)(2ωi)
+ O(x2,T 4).

The first term of G(3) is the three-body dispersion. We can symmetrize it in the indices i,j ,k, yielding

G(3) = − h̄

24

∑
ijk

(
q2

i

μiω
2
i

) (
q2

j

μjω
2
j

) (
q2

k

μkω
2
k

)
ωiωjωk(ωi + ωj + ωk)

(ωi + ωj )(ωj + ωk)(ωi + ωk)
TijTjkTik .

Evaluating the T tensors leads to

G(3) = −h̄

8

∑
ijk

α1iα1jα1k ωiωjωk(ωi + ωj + ωk)

(ωi + ωj )(ωj + ωk)(ωi + ωk)

[
3 cos( ˆijk) cos( ˆjki) cos( ˆkij ) + 1

]
R3

ijR
3
jkR

3
ik

.

The sum can be rearranged to remove double counting, which elucidates the total contribution from each triple:

−h̄

8

∑
ijk

→ − (3!)h̄

8

∑
i>j>k

= −3h̄

4

∑
i>j>k

.
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