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Topological magnon insulator in insulating ferromagnet
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In the ferromagnetic insulator with the Dzyaloshinskii-Moriya interaction, we theoretically predict and
numerically verify a topological magnon insulator, where the charge-free magnon is topologically protected for
transporting along the edge/surface while it is insulating in the bulk. The chiral edge states form a connected loop
as a 4π - or 8π -period Möbius strip in the spin-wave vector space, showing the nontrivial topology of magnonic
bands. Using the nonequilibrium Green’s function method, we explicitly demonstrate that the one-way chiral edge
transport is indeed topologically protected from defects or disorders. Moreover, we show that the topological
edge state mainly localizes around edges and leaks into the bulk with oscillatory decay. Although the chiral
edge magnons and energy current prefer to travel along one edge from the hot region to the cold one, the
anomalous transports are identified in the opposite edge, which reversely flow from the cold region to the hot
one. Our findings could be validated within wide energy ranges in various magnonic crystals, such as Lu2V2O7.
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I. INTRODUCTION

A topological insulator, as a state of quantum matter, is
characterized by an insulating bulk band gap and conducting
gapless edge/surface states protected by symmetries.1,2 It has
been theoretically predicted and experimentally observed in
a variety of systems and becomes a hot spot because of its
theoretical importance in condensed matter physics and wide
potential applications in dissipationless spin-based electronics
(spintronics).3 However, due to the fact that the spin transport
in topological insulators is carried by electrons, dissipations
can not be really avoided.

Magnon Hall effect, as a consequence of the
Dzyaloshinskii-Moriya (DM) interaction4,5 that plays a role
of vector potential similar to the Lorentz force, has been
predicted and observed in magnetic insulators.6–8 Compared
with spin current, where the dissipation from Joule heating is
still inevitable due to the electronic carriers, the magnon Hall
effect is more promising in device applications because of the
long-range coherence of charge-free spin wave.9–11 Magnons
are collective excitations of localized spins in a crystal
lattice and can be viewed as quantized quasiparticles of spin
waves. Recently, magnon excitation,12,13 localization,14 and
interference15 have been experimentally realized. The techni-
cal advancements offer the perspective of various magnonic
devices, and a new discipline – magnonics – has emerged
and is growing exponentially.16–20 The charge-free property
of magnon makes it promising to achieve dissipationless
transport and control in insulating magnets.

Therefore, it should be of interest for both theorists and
experimentalists to find an intriguing quantum state that
magnon, while insulated in the bulk, can nondissipatively
transport along edges/surfaces in the absence of backscattering
from defects and disorders due to the nontrivial topology
of magnon’s band structures. We name this state topological
magnon insulator (TMI) and believe that due to the robust dis-

sipationless magnon transport, the TMI in insulating magnets,
could provide widely potential applications in nondissipative
magnonics and microspintronics.

II. SPIN-WAVE HAMILTONIAN

The magnon Hall effect was experimentally observed in
insulating ferromagnet Lu2V2O7

7 with a pyrochlore lattice,
in which the magnetic atom vanadium has a corner-sharing-
tetrahedra sublattice, that is, a stacking of alternating kagome
and triangular lattices along the [111] direction, as shown in
Fig. 1(a). To study magnon transport in the ferromagnetic
insulator, the Hamiltonian can be written as4,5,21

H =
∑
〈mn〉

[−J �Sm · �Sn + �Dmn · (�Sm × �Sn)] − gμB
�H0 ·

∑
n

�Sn,

(1)

where �Sn is the spin angular momentum at site n, −J denotes
the nearest-neighbor coupling, �Dmn is the DM interaction
between site m and n, and the last term comes from the Zeeman
effect under an external field �H0.

As shown in Fig. 1(b), in a single tetrahedron the DM vector
is perpendicular to the corresponding bond and parallel to the
surface of the surrounding cube.7,22,23 Since the component
of �Dmn perpendicular to �z = �H0/H0 does not contribute to
the Hamiltonian (1) up to quadratic order of the deviation of
�S,7 we only retain Dmn = �Dmn · �z. When applying a magnetic
field along the �z = [111] direction, all the projections of the
DM interaction between interlayer sites m and n are zero
(D13 = D23 = D43 = 0); and all the ones for innerlayer sites
are nonzero and equal (D12 = D24 = D41 = D). Therefore,
with the magnetic field along the [111] direction, the kagome
sublattice structure will play a key role for the presence of TMI
effect in Lu2V2O7. In addition, the two-dimensional kagome
lattice sheet could be obtained through doping one quarter of
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FIG. 1. (Color online) (a) Pyrochlore crystallographic structure of
the sublattice of magnetic atoms V of Lu2V2O7. (b) Two tetrahedrons
in the pyrochlore lattice, where DM vectors on bonds 1-3, 1-2, and
2-4 are indicated by orange arrows. (c) Schematic magnetic flux
due to DM interaction in the [111] plane of the pyrochlore lattice,
i.e., a kagome lattice. The coupling of two sites along the arrows is
(J + iD)S while the opposite direction corresponds to (J − iD)S.
(d) The quasi-one-dimensional kagome-lattice strip. The area en-
closed by the dotted line can be regarded as a center which is
connected to two semi-infinite leads in equilibrium at temperatures
TL (left) and TR (right). The two big arrows schematically depict the
magnitudes and directions of energy flows along the lattice edges
when TL > TR . The width of the strip example is W = 5, which is
defined as the number of atoms in the left column of each unit cell.

the sites [e.g., site 3 in Fig. 1(b)] of a pyrochlore lattice by
nonmagnetic atoms.24–26

In the following we first discuss a general kagome lat-
tice with DM interaction; later we will incorporate actual
parameters of a thin film of Lu2V2O7 with a kagome layer of
vanadium sublattice. Using the relation of Sx = 1

2 (S+ + S−)
and Sy = 1

2i
(S+ − S−), we can rewrite the Hamiltonian (1) on

a kagome lattice as

H = −
∑
〈mn〉

(
J + iD

2
S−

mS+
n + J − iD

2
S+

mS−
n

)

−
∑
〈mn〉

JSz
mSz

n − h
∑

n

Sz
n, (2)

where h = gμBH0. Now, applying the standard Holstein-
Primakoff transformation,27,28 one can straightforwardly ob-
tain the quadratic spin-wave Hamiltonian:

H =
∑
mn

b+
mHmnbn + E0, (3)

where b+ (b) denotes the operator raising (lowering) the spin
component along the �z direction. E0 = −JS2 ∑

n Mn/2 −
NhS is the ground-state energy with N the total number of sites
and Mn the number of nearest neighbors of the site n. Hmn =
H ∗

nm = (J ± iD)S and Hnn = JSMn + hS. Figure 1(c)
illustrates the direction of the DM interaction vector, that
is, the coupling between two sites along the direction of
that arrow corresponds to (J + iD)S, while the coupling of
the opposite direction corresponds to (J − iD)S. Due to the
different types of loops in a unit cell of the kagome lattice, the
DM interaction avoids cancellation and thus induces the Hall

effect.6 As a consequence, the preserved DM interaction acts
as a vector potential for the propagation of magnons similar
to the magnetic field for the propagation of electrons, which
is crucial for the manifestation of TMI effect. The magnetic
field decides the direction of spins at the ground state, and the
induced Zeeman effect term just shifts the dispersion relation.
We set magnetic field H0 = 0+ in the part of theoretical
model calculations, and will input finite H0 in the part for
real-material calculations. Except in Sec. VII, dimensionless
units and S = 1/2, J = 1 are used without loss of generality.

III. CHERN NUMBERS OF BULK STATES

Equation (3) resembles the tight-binding model, and each
unit cell has three sites. For a two-dimensional periodic
kagome spin lattice, we can perform the Fourier transformation
as

b �Rl+�rm
= 1

Nu

∑
�k

e−i�k( �Rl+�rm)bm(�k). (4)

Here, Nu is the number of unit cells. �Rl + �rm is the position of
the mth site in the lth unit cell. Thus the spin-wave Hamiltonian
can be written in the momentum space.

Following the standard method to calculate the Berry
phase,29–31 we can obtain the Berry curvature of the nth band as

Bn
kxky

= i
∑
n′ �=n

ϕ
†
n

∂HSW
∂kx

ϕn′ϕ
†
n′

∂HSW
∂ky

ϕn − (kx ↔ ky)

(εn − εn′ )2
. (5)

Here εn and ϕn are the eigenvalue and eigenvector of the
spin-wave Hamiltonian. The associated topological Chern
number is obtained through integrating the Berry curvature
over the first Brillouin zone as

Cn = 1

2π

∫
BZ

dkxdkyB
n
kxky

. (6)

If the DM interaction is zero, the Berry curvatures of the three
bands are shown in Figs. 2(a)–2(c): The maximum points
have the opposite values; the sum of the Berry curvatures
are zero, that is, the Chern numbers are zero at zero DM
interaction as shown in Fig. 2(g). Therefore, the magnon Hall
effect and topological magnon insulator effect are absent. If
the DM interaction is nonzero, the Berry curvatures change
dramatically and can not cancel each other. As shown in
Fig. 2(d), in the whole momentum space, the Berry curvature
of the first band is positive, which corresponds to the Chern
number with the value of 1 as shown in Fig. 2(g). And the
Berry curvatures of the third band shown in Fig. 2(f) also
can not cancel each other and the Chern number is −1. The
Berry curvature of the second band also changes, but the Chern
number stays zero. The topological magnon insulator is only
possible when the DM interaction is nonzero.

IV. FINITE SIZE EFFECT FOR THE DISPERSION
RELATION OF QUASI-1D KAGOME LATTICE

According to the spin wave Hamiltonian Eq. (3), we can
calculate the dispersion relation (ε vs kx) of the quasi-1D
periodic lattice, as shown in Fig. 1(d). In this figure, the
leftmost column has five sites, thus we denote the width as
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FIG. 2. (Color online) (a), (b), and (c) The Berry curvature of
the three bands at zero DM interaction. (d), (e), and (f) The Berry
curvature of the three bands at nonzero DM interaction (D = 0.2).
For all the insets (a)–(f), the horizontal and vertical axes correspond
to wave vector kx and ky , respectively; the unit is 2π/a, where a is the
lattice spacing. (g) The Chern numbers of the three energy bands for
the two-dimensional periodic kagome lattice. The dotted, solid, and
dashed lines correspond to Chern numbers of the first, the second,
and the third bands, respectively.

W = 5; in each unit cell of the quasi-1D kagome lattice there
are 6W − 1 sites. As shown in Fig. 3, with increasing strip
width, more modes appear in the energy bands; the edge states
will be gradually fixed and independent of size.32 If the width
W � 20, we find that the states in the bulk gap, that is, the
edge states tend to be fixed, and in the bulk energy bands there
are more and more branches. From W = 20 to W = 80, the
edge states almost have no changes.

In the bulk energy gaps, we find the edge states tend to
touch each other at the points A,B,C as shown in Fig. 3(d).

FIG. 4. (Color online) The energy differences vs the width of the
periodic kagome strip at the anticrossing points. The solid, dashed,
and dotted lines correspond to energy differences at anticrossing
points A, B, and C, respectively in Fig. 3(d).

The energy difference of the corresponding edge states at the
points A,B,C is shown in Fig. 4. As the width increases,
the energy difference decreases exponentially. If the system
width is finite, the states in two edges have nearly equal
energy and momentum near the anticrossing points A,B,C;
thus they can couple together to open an energy gap which
decays exponentially with width increasing.33 When the strip
width increases to infinity, the edges are separated too far to
interact with each other; thus they could have degeneracy in
the dispersion relation. As shown in Fig. 4, the gap at point
A decays faster than that at B and C, thus we can find the
crossing at A in the upper gap earlier than that in the lower
gap. And after W � 20, the energy differences at all three
points A,B,C are very small, therefore it is quite reasonable
that we use W = 80 in all the following numerical calculations

FIG. 3. The dispersion relations of the periodic kagome strip lattices with different width sizes. The insets (a), (b), (c), and (d) correspond
to W = 2, W = 5, W = 20, and W = 80, respectively.
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FIG. 5. (Color online) The dispersion relation of chiral magnonic
edge modes with nonzero DM interactions. (a) and (b) are dispersion
relations in the range of kx ∈ [0,8π/a] for D/J = 0.1 and 0.4,
respectively. (c) A conventional cylinder strip with two boundaries,
of which each has a period of 2π . (d) A Möbius strip which only has
one boundary of 4π period. (e) A looped Möbius strip which only
has one boundary of 8π period.

to study the chiral edge state transport in the quasi-1D lattice
with large-enough width.

V. TOPOLOGICAL MAGNON EDGE MODES

Because of the DM interaction, two edge states within both
energy gaps are twisted so that for each state ε(π/a − kx) �=
ε(π/a + kx), and they cross at kx = π/a in the first Brillouin
zone, where a is the lattice spacing. As shown in Fig. 5(a) for
the case of D/J = 0.1, in the upper bulk band gap, the two
edge modes form a continuous state with a period of 4π , which
can not be disturbed to open a gap by weak disorders so that
edge modes are topologically protected. However, when DM
interaction is zero, the two edge states are easy to be perturbed
to separate and open a gap, because they do not cross each other
although they degenerate. In the lower bulk band gap, we find
that four edge states will contribute to magnon transport within
the energy gap. When D/J ≈ 0.4 or larger, in both energy gaps
there are four edge states [see Fig. 5(b)]. In a period of 8π , any
two of the four edge states have degeneracies and cross each
other at different points in the momentum space. All four edge
states form a continuous state with a period of 8π to transport
magnons along two edges of the strip.

We can understand the topology of the edge states as
follows. With zero DM interaction, the edge states are similar
to the two boundaries of the conventional cylindric strip as
shown in Fig. 5(c), both of which have a period of 2π in the
Brillouin zone and transport separately along two edges. Due
to the nonzero DM interaction, two edge states are twisted so
that they cross each other and go into the other energy band
after 2π in momentum space, thus form a closed loop with a
period of 4π . These edge states are similar to the one-sided
Möbius strip with only one boundary, as shown in Fig. 5(d),
where a line drawn starting from a point at the boundary will
meet back at the “other side” after a circle of 2π , then go
back to the original point after a whole period of 4π . The two
edge states form one closed loop winding the bulk energy gap
between the two bands, which are thus topologically protected
from distortions. At larger DM interaction, four edge states
contribute to the transport in the bulk gap, cross each other,
and connect to form a closed 8π -period loop which can be
interpreted as the one boundary of a looped Möbius strip as

shown in Fig. 5(e). This looped Möbius strip also has only one
boundary winding around the strip surface, thereby having the
same topology as that of the conventional Möbius strip shown
in Fig. 5(d).

The topological chiral edge state is related to the band
topology characterized by Chern numbers of the bulk
states,31,32,34–36 as shown in Fig. 2(b). Since there are three
sites in each unit cell, the two-dimensional infinite kagome
lattice with Hamiltonian (3) has three bands. When the DM
interaction is absent, all the Chern numbers of three bands
are zero so that there is no TMI effect. Accordingly, the
winding numbers of edge states are zero as well, thus they
are not topologically protected. With nonzero DM interaction,
the Chern numbers of the lowest and highest energy bands
become ±1 that indicate the nontrivial topology; the one of
the middle energy band is still zero. According to the relation
between the Chern number and the winding number,32 the
winding numbers of edge states in both bulk gaps have the
same value of 1 or −1, which is consistent with the only one
closed loop winding the bulk gap regardless of the period of
4π , 8π , or others.

VI. TOPOLOGICAL MAGNON TRANSPORT:
THE NEGF METHOD

To intuitively illustrate the topological magnon transport
carried by chiral edge states, we choose some unit cells of the
kagome lattice strip as a center region and set the rest as two
semi-infinite leads in equilibrium at temperatures TL and TR ,
respectively [see Fig. 1(d)]. We then apply the nonequilibrium
Green’s function method37 to calculate the local density of
magnons and the local energy current density of magnons.
For the nonequilibrium magnon transport in such system, the
Hamiltonian can be written as follows:

H =
∑

Hα +
(∑

lm

(
bL+

l HLC
lm bC

m + bC+
m HCR

ml bR
l

) + H.c.

)
,

(7)

where Hα = ∑
lm bα+

l Hα
lmbα

m,α = L,C,R; here L,C,R de-
note the left lead, the center part, and the right lead,
respectively. The Hamiltonian matrix of the full system is

H =

⎛
⎜⎜⎜⎝

HL HLC 0

HCL HC HCR

0 HRC HR

⎞
⎟⎟⎟⎠ . (8)

The retarded Green’s function is defined as

Gr (t,t ′) = −iθ (t − t ′)〈[b(t),b+(t ′)]〉, (9)

where we set h̄ = 1 for notational simplicity. In nonequilib-
rium steady states, the Green’s function is time-translationally
invariant so that it depends only on the difference in time. Thus,
the Fourier transform of Gr (t − t ′) = Gr (t,t ′) is obtained as

Gr [ε] =
∫ +∞

−∞
Gr (t)eiεtdt. (10)
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Without interaction, the free Green’s functions for three parts
in equilibrium can be written as

[(ε + iη) − Hα)]gr
α[ε] = I, α = L,C,R, ga

α[ε] = gr
α[ε]†,

(11)

and there is an additional equation relating gr and g<:

g<
α [ε] = fα(ε)

[
ga

α[ε] − gr
α[ε]

]
, (12)

where fα(ε) = 〈b+b〉 = [eε/Tα − 1]−1 is the Bose-Einstein
distribution function at the α part with temperature Ta; we
have set kB = 1.

For the quadratic Hamiltonian, the magnon transport is
ballistic. The lesser Green’s function can be solved as

G<[ε] = Gr [ε]	<[ε]Ga[ε], (13)

where Ga = (Gr )† and the self energy

	r,<[ε] = HCLg
r,<
L [ε]HLC + HCRg

r,<
R [ε]HRC. (14)

The retarded Green’s function has the same form as for the
electron case

Gr [ε] = [ε + iη − HC − 	r [ε]]−1. (15)

The local density of magnon is given by38

ρn = ih̄G<
nn(ε)

πa
. (16)

The local energy current is given by39

jmn(ε) = ε

2π
Re[G<

mn[ε]Hnm − G<
nm[ε]Hmn]. (17)

At the interface between the left lead and the center part, it
reads

jmn(ε) = ε

2π
Re

[
GCL,<

mn [ε]HLC
nm − GLC,<

nm [ε]HCL
mn

]
. (18)

Taking the trace to sum over all the local current in the
interface, and integrating over all the energy, we then get the
Landauer-like formula as

J =
∫ ∞

0

∑
jmndε

=
∫ ∞

0
dε

ε

2π
Tr{Re(GCL,<[ε]HLC − GLC,<[ε]HCL)}

= 1

2π

∫ ∞

0
ε [fL(ε) − fR(ε)]T [ε]dε, (19)

where the transmission is

T [ε] = Tr{Gr [ε]�L[ε]Ga[ε]�R[ε]}, (20)

with the �α functions given by �α = i(	r
α − 	a

α).
Based on the formula Eq. (17), we can calculate the

equilibrium or nonequilibrium magnon transport in the lattice.
Figure 6 shows the edge state magnon transport in the bulk gap
at a fixed magnon energy ε = 1.5 in the thermal equilibrium.
The forward (left-to-right) thermal current carried by magnons
travels along one edge, and the backward (right-to-left) current
with the same magnitude transports along the other one, as
shown in Fig. 6(a). Near both edges the local magnon currents
form many chiral vortices due to the nonzero DM interaction.
Moreover, both the current and the magnon density of states are
symmetrically localized at two edges. We plot the local current

FIG. 6. (Color online) The local energy current and density of
state for edge magnon transport at equilibrium. (a) The uniform
kagome lattice. (b) The lattice with a defect at the upmost site of
the left fifth column. The red arrows, the blue dots, and the small
black dots correspond to the local energy current, the local density
of magnon, and atom sites, respectively. The color of the arrows and
dots indicates the magnitude of the local current and density of states,
respectively. Parameters are ε = 1.5, TL = TR = 1.0, D/J = 0.1,
and a = 1.

and the local density of states for the edge mode with ε = 1.5
in Fig. 7. We find both the local current and the local density
of states decay exponentially from the edge to the center with
some oscillations. The oscillations come from the vortex of the
energy current in the kagome lattice. Thus the magnon with
energy ε = 1.5 in the lower bulk band gap indeed localizes at
the two edges of the quasi-1D lattice. The magnon with other
energies in the bulk gaps also has the similar picture.

When a defect is present at one edge, the current take a
detour around it and transports ahead without backscattering,
as illustrated in Fig. 6(b). Although the defect dramatically
affects the local density of magnons and destroys the local
current vortex, the global currents along two edges keep intact
compared to those of the uniform lattice, and their summation
keeps zero since the net transport vanishes at equilibrium.

As shown in Figs. 8(a) and 8(b), when two leads are held at
different temperatures the magnons and energy current prefer
to flow along one edge from the hot lead to the cold one. The
transport around the other edge however shows an interesting
anomalous behavior that the magnons and energy reversely
flow from the cold lead to the hot one. Nevertheless, we note
that this does not violate the second law of thermodynamics
because the forward (hot-to-cold) energy current transported
along one edge is larger than the backward one (cold-to-hot)
along the other edge so that the total transport is still from the
hot part to the cold one. If we only swap two temperatures
(TL ↔ TR), the transport will prefer the other edge but with
the directions of local edge currents unchanged. If we merely
reverse the DM interaction (D → −D), the transport will
change to prefer the other edge with the local currents reversed
but with the total average current unchanged. If we swap both
the temperatures and the DM interaction, the local currents
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FIG. 7. (Color online) (a) Local energy current vs the coordinate
along the y direction. The solid and dashed lines correspond to the
local currents in two different columns in one unit cell. (b) Local
density of states of magnons vs the coordinate along the y direction.
The solid, dashed, and dotted lines correspond to the local density
of states in three different columns in one unit cell. The energy of
magnon is ε = 1.5 in the lower bulk band gap.

will just reverse their directions but keep the same magnitudes,
which is a consequence of the time-reversal invariance.

It is worth noticing that for the chiral edge state, although
both the current and the magnon density of states mainly
localize around two edges, they leak into the bulk with oscil-
latory decay. The oscillatory motion results from the quantum
interference due to the edge boundaries, which is similar to the
properties of the localized edge phonon modes40 and electron
transport in graphene.41 This phenomenon indicates that even
for the topological chiral edge state, the transport within the
bulk of a topological insulator can not be really avoided. A
topological insulator is not a perfect “insulator,” not only
referring to the edges/surfaces, but also for the bulk.

When a defect is present around one edge, the one-way
edge current in the TMI is able to take a detour around it and
transport ahead without backscattering, see Figs. 8(c) and 8(d).
Although the defect dramatically affects the local density of
magnons and the vortex pattern of local currents, the global
currents along two edges keep intact compared to those of
the uniform lattice. This means that the chiral edge state in
the bulk gap is indeed topologically protected from the lattice
defect or weak disorders.

VII. THIN FILM OF LU2V2O7

In the insulating ferromagnet Lu2V2O7, the orbitals of
the d electrons are ordered to point to the center of mass
of the vanadium tetrahedron, and a virtual hopping process
stabilizes the ferromagnetic order of the vanadium spin in this
orbital-ordered state.7,42 The vanadium sublattice in Lu2V2O7

FIG. 8. (Color online) The local energy current and density of
state for edge magnon transport at nonequilibrium. The red arrows,
the blue dots, and the small black dots correspond to the local energy
current, the local density of magnon, and atom sites, respectively. The
color of the arrows and dots indicate the magnitude of the local current
and density of states, respectively. The uniform kagome lattice are
with (a) TL = 1.2,TR = 0.8 and (b) TL = 0.8,TR = 1.2. The lattice
with a defect at the upmost site of the left fifth column are with (c)
TL = 1.2,TR = 0.8 and (d) TL = 0.8,TR = 1.2. Other parameters are
ε = 1.5, D/J = 0.1, a = 1, W = 80.

has a pyrochlore structure composed of corner-sharing
tetrahedra, that is, a stacking of alternating kagome and
triangular lattices along the [111] direction. Considering the
strong constraint of the crystal symmetry and using Moriya’s
rules,5 possible DM (Dzyaloshinskii-Moriya) interactions
on a single tetrahedron can be determined as7 �D12 =
D0√

2
(−êy − êz), �D24 = D0√

2
(−êx − êy), �D41 = D0√

2
(−êx − êz),

�D13 = D0√
2
(−êx + êy), �D23 = D0√

2
(+êx − êz), �D43 = D0√

2
(−êy

+ êz), see Fig. 9. Here D0 denotes the strength of the
DM interaction; the numbers 1, 2, 3, and 4 denote the site
in a single tetrahedron. If we apply a magnetic field �H0,
then all the spin angular momentum in the direction along
�l = �H0/H0, with H0 the magnitude of �H0. We know the
component of the DM vector perpendicular to �l does not
contribute to the spin-wave Hamiltonian, thus we only retain
the projections of the DM interaction along the �l direction,
i.e., Dl

mn = �Dmn · �l. If we apply a magnetic field along
the �l = [111] direction, then Dl

13 = Dl
23 = Dl

43 = 0 and

Dl
12 = Dl

24 = Dl
41 = −√

2√
3

D0.43 Therefore, if the magnetic
field is applied along the [111] direction, the magnon
Hall effect and topological magnon insulator effect only
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FIG. 9. (Color online) Two tetrahedrons in the pyrochlore lattice
of the atom vanadium of the ferromagnet Lu2V2O7. On a single
tetrahedron, all the DM vectors on bonds 1-2, 2-4, 4-1, 1-3, 2-3, and
4-3 are shown by the arrows.

come from the noncancellation of different types of DM
interaction loops in the unit cell of the kagome lattice. The
effective DM interactions between interlayer sites have no
contributions. According to the experimental observation in
Ref. 7, the DM interaction is obtained D0/J = 0.32, thus
we use D = −√

2√
3

D0 = −√
2√

3
· 0.32J = −0.26J for the DM

interaction of the thin film of Lu2V2O7 with the kagome layer.
Since in Ref. 7 we have JS = 8Ds/a

2
0 with a0 = 9.94 Å, the

spacing between unit cells of the pyrochlore structure and
Ds = 21 meV Å

2
the spin stiffness constant, then we get the

coupling J = 3.4 meV and a =
√

2
2 a0 = 7.03 Å. Based on

these parameters, we calculate the dispersion relations for the
quasi-1D kagome lattice, as shown in Fig. 10(b).

As shown in Fig. 10(a), the energy current of magnon is
not affected by defect or disorder in the range of [4.45,5.98] ∪
[8.79,10.31] meV. These energy intervals coincide with the
bulk gaps in the magnon spectrum where the topological
magnonic edge states can be identified [see Fig. 10(b)].

FIG. 10. (Color online) (a) The current density vs energy of
magnon for uniform and edge-defect kagome lattices with the
parameters of Lu2V2O7. The solid and dotted lines correspond to the
energy current in the bulk band gaps for uniform and edge-defect
lattices, respectively. (b) The dispersion relation of the kagome
lattice with the parameters of Lu2V2O7. J = 3.4 meV, D/J = −0.26,
H0 = 1 T, TL = 21 K, and TR = 19 K.

Although certain distortions of edge states will occur as results
of the defect or disorder, the total energy current carried by
edge magnons does not change in the whole bulk energy
gap. This indicates that the defect or disorder does not open
a gap in the magnon spectrum so that the topology of the
chiral magnon edge state is robust. According to the energy
ranges, the topological magnon states have frequencies within
[1.08,1.45] ∪ [2.13,2.49] THz.

Applying different external magnetic fields will not change
the main properties of magnons, but shift the corresponding
dispersion relations, so that the frequency of topological edge
magnons can be tuned flexibly with a wide range. Also, when
the interlayer exchange couplings are considered, they only
play the role of effective on-site potentials, which just shift
the whole bands and leave the main band structural properties
unchanged. In addition, the two-dimensional kagome lattice
sheet could be obtained by doping with nonmagnetic atoms as
we mentioned before so that the interlayer exchange couplings
are ignorable. Therefore, we expect that one can observe the
TMI for the thin film of Lu2V2O7 in a wide energy range of
magnons. Our findings about the TMI could also be applied
for other magnetic crystals, including even antiferromagnetic
materials where the existence of magnons is possible.

VIII. POSSIBLE EXPERIMENTS

To realize magnonic devices as well as the predicted TMI,
the excitation and detection of magnons is the major challenge.
Recent years have witnessed a fast development in experi-
mental techniques such as ferromagnetic resonance,15 pulse-
inductive microwave magnetometer,44 time-resolved scanning
Kerr microscopy,45 and optical pump-probe techniques,46 as
well as Brillouin light scattering (BLS)47 which takes a special
role since it allows the direct measure of dispersions and band
structures. We could observe the topological edge modes by
using these techniques to measure the magnon dispersion
relation and could also verify the TMI by detecting the
magnon transport in the bulk band gap where magnons could
be selectively excited by nonthermal optical pulses48–52 or
induced by external spin-polarized current,53 so that we can
avoid the thermal transport from bulk states but extract the one
only from edge channels. We hope our theoretical predictions
about TMI could open a new window into the application of
nondissipative magnon transport, especially for the magnonic
device design, which could also shed light on the information
technology based on magnonics, and microspintronics.

Note added. Recently, we have learned of a submission54

thanks to its authors, studying the similar topological chiral
magnonic edge mode. Their results are based on a linearized
Landau-Lifshitz equation that accounts for the dipolar inter-
action instead of the DM one studied here.
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