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Coexistence of the superconducting energy gap and pseudogap above and below the transition
temperature of cuprate superconductors
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We express the superconducting gap �(T ) in terms of thermodynamic functions in both s- and d-wave
symmetries. Applying to Bi2Sr2CaCu2O8+δ and Y0.8Ca0.2Ba2Cu3O7−δ we find that for all dopings �(T ) persists,
as a partial gap, high above Tc due to strong superconducting fluctuations. Therefore in general two gaps are
present above Tc, the superconducting gap and the pseudogap, effectively reconciling two highly polarized views
concerning pseudogap physics.
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On cooling a superconductor (SC) below Tc coherent pair-
ing of electrons opens a gap, �, centered at the Fermi level. In a
conventional SC �(T ) closes at Tc but for underdoped cuprates
a partial gap is found to persist above Tc and this is widely
attributed to the so-called pseudogap.1 The origin of the pseu-
dogap is deeply contentious. One view is that it is some form of
precursor SC state while another is that it arises from some cor-
relation that competes with the SC state,1 so that the two gaps
coexist below Tc. The inherent physics for each scenario is fun-
damentally different. In the former case a phase-incoherent SC
state2 emerging from resonating-valence-bond physics high
above Tc

3 is often invoked, implying a very large SC energy
gap which falls rapidly with increasing doping. In the latter
case, it is the pseudogap, arising from some independent com-
peting correlation, that has the large energy scale and the pseu-
dogap closes abruptly at a putative ground-state quantum crit-
ical point lying within the SC dome at pcrit = 0.19 holes/Cu.4

Because these scenarios differ so radically it remains a
central challenge to identify the nature of these energy gaps.
Is there, indeed, one or two distinct gaps? Here we present a
method to calculate �(T ) from the electronic specific heat. We
show that for the cuprates at any doping, � appears to remain
finite above Tc reflecting a partial gap arising from strong SC
fluctuations and, in the underdoped region, coexists there with
the pseudogap. Thus, in a sense, both scenarios are correct.
There are two gaps above Tc just as there are two gaps below Tc

so that both fluctuations and competing pseudogap correlations
play key roles in high-Tc superconductor (HTS) physics.

Using a high-resolution differential technique Loram et al.5

have been able to isolate the electronic specific heat from the
much larger phonon term in a number of high-Tc cuprates.
This has allowed many important conclusions to be drawn,5

including the fact that due to strong SC fluctuations, the
mean-field (MF) transition temperature T

mf
c determined from

entropy conservation lies well above the observed Tc value (by
up to 50 K).6,7 Hereafter, we drop the descriptor “electronic”
and by the terms specific heat CP , specific-heat coefficient
γ ≡ CP /T , entropy S, internal energy U , and free energy F ,
we mean the electronic components of these.

We draw largely on Ferrell8 and extend to include d-wave
SCs. Starting from the BCS Hamiltonian he shows

(
∂F

∂Tc

)
T

= −ζα2N (0)TcQ(t), (1)

where N (0) is the DOS at the Fermi level, t ≡ T/Tc, Q(t) ≡
(�(T )/�0)2, and we include the additional factor ζ = 1.
For an anisotropic gap we take � to be the amplitude of
the k-dependent gap. In this case Ferrell’s �(T )2 should
be replaced by a Fermi surface average 〈�k(T )2〉 = ζ�(T )2

where ζ = 1 for s wave and 1/2 for d wave. The BCS gap ratio
α ≡ �0/kBTc = (π/γE)eC where γE = 1.781 . . . is Euler’s
constant and C = 0 for s wave while C = ln 2 − 1/2 for
d wave.9 Ferrell then integrates Eq. (1) over all Tc > T to
effectively obtain

�F (T ) = Fn(T ) − Fs(T ,Tc)

= ζN (0)�2
0 t2

∫ 1

t

t ′−3 Q(t ′) dt ′. (2)

Ferrell’s intention was to adopt a model T dependence of
Q(t) from which to calculate �F (T ). Our task is the opposite,
to calculate �(T ) from �F (T ) derived from specific-heat data.
By differentiating each side of Eq. (2) with respect to T and
rearranging we obtain

ζN (0)�(T )2 = 2�F (T ) + T �S(T )

≡ 2�U (T ) − T �S(T ), (3)

which expresses �(T ) directly in terms of thermodynamic
functions �F , �S = Sn − Ss , and �U = Un − Us .

Quite generally, for a second-order MF phase transition
near Tc, �F (T ) = − 1

2�γc(T − Tc)2, so

�(T )2 → 2T 2
c �γc

ζN (0)
(1 − T/Tc) , (4)

where �γc is the jump in γ at Tc. This means that
the coherence length ξ (T ) = h̄VF /π�(T ) has the correct
(1 − t)−1/2 dependence near Tc.

We have computed [2�U (T ) − T �S(T )]/2�U (0) for
both s- and d-wave weak-coupling BCS and in Fig. 1(a) we
compare these (solid curves) with the theoretical T dependence
of [�(T )/�0]2 (dashed curves). For both symmetries there is
excellent agreement across the entire T range and the gap
amplitude satisfies

�F (0) = �U (0) ≡ U0 = 1
2ζN (0)�2

0. (5)

This is just the ground-state condensation energy. The inset
shows the individual contributions 2�U and T �S to �(T ).
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FIG. 1. (Color online) (a) The temperature dependence of the
square of the normalized SC gap function [�(T )/�0]2 for s-wave and
d-wave weak-coupling BCS (dashed curves). These are compared
with the values of this parameter calculated from Eq. (3) using
[2�U (T ) − T �S(T )]/2�U (0). The inset shows the T dependence
of each contribution 2�U and T �S. (b) The T dependence of
the SC gap function �(T ) calculated using Eq. (3) for d-wave
strong-coupling BCS with 2α = 4.28 (weak coupling), 5, 6, and 7.

�U (T ) passes through a maximum while subtraction of the
entropy term recovers the canonical monotonic T dependence
of the s- or d-wave gap.

Ferrell’s theory is strictly for weak-coupling BCS, based on
the logarithmic relation between the pairing interaction and Tc.
Extending to strong coupling we may employ the Padamsee
α-model approximation10 where the ratio α ≡ �0/kBTc is
the only adjustable parameter and �(T )/�0 is assumed to
follow the weak-coupling BCS form for all α. As α cancels
in Eq. (2) we might still consider using Eq. (3) to calculate
�(T ). In the case of Pb, a strong-coupling superconductor, we
have calculated �F and �S from critical-field measurements,
and thence �(T ) using Eq. (3). We find excellent agreement
with measurements of the gap from tunneling including the
flattening of �(T ) relative to the BCS T dependence. This
gives us confidence to extend beyond weak coupling, as may
be necessary for the cuprates.

Accordingly, we used the α model to calculate �F and
�S for 2α = 4.28 (weak coupling), 5, 6, and 7 in a d-wave
scenario, employing the same method as Padamsee et al.10

Figure 1(b) shows �(T ) calculated for each case using Eq. (3).
The fine black curve under the blue dashed curve for 2α = 4.28
is the weak-coupling BCS gap, for which the match is exact.
In the figure γn is the normal-state (NS) value of γ , which
is assumed to be T independent. In strong coupling, γn is
enhanced by a factor (1 + λ) above its Sommerfeld value, viz.

γn = 2
3π2k2

BN0(1 + λ), (6)

where λ is the usual electron-boson coupling parameter in
Eliashberg theory11 and N0 is the bare band DOS, un-
renormalized by electron-boson or Coulomb effects. Thus

�(T ) in Fig. 1(b) is expressed in units of
√

2
3πkBTc

√
1 + λ.

Leaving aside the absolute magnitude of �, the T de-
pendence of � evidently flattens with increasing coupling.
Though this violates the main premise of the α model, the
α model could potentially be refined by calculating �(T )
iteratively. For the time being, Eq. (3) is a satisfactory
approximation for strong coupling if 2α < 5, as we find for the
cuprates.12

We apply this analysis to the electronic specific heat of the
cuprates reported by Loram et al.5 Figure 2(a) shows the pre-
viously reported analysis6 of γ (T ) for Y0.8Ca0.2Ba2Cu3O6.75

used to determine T
mf
c . At this doping (p = 0.185) the

pseudogap is absent and the NS coefficient γn(T ) is essentially
constant (dashed line). γ

mf
s is the MF γ in the SC state

deduced by entropy balance; namely the area abc equals
the area cde. Also by entropy balance the gray shaded area
under the fluctuation contribution equals the hatched area
which therefore defines T

mf
c . By integrating γ (T ) − γn(T )

in Fig. 2(a) we obtain �S = Ss − Sn and similarly �Smf =∫ T

0 (γ mf
s − γn)dT . These are plotted in Fig. 2(c) by the solid

and dashed curves, respectively, where only every fourth data
point is shown. These may in turn be integrated to generate

0

1

2

3

4

5

(a
T

c

mfT
c

e

d

c
b

a

Δγmf

γ(
T

) 
 (

m
J/

g.
at

.K
2 )

γ
n

γ
s

mf

0 20 40 60 80 100 120
-20

-10

0

10

(c)

(b)

Δmf(T )
Δ(T)

ΔS
mf

/3ΔS/3

ΔS
  (

m
J/

g.
at

.K
) 

   
  

Δ 
(m

eV
)

temperature, T (K)

)

FIG. 2. (a) Reproduced from Ref. 6: Analysis of the specific-heat
coefficient γ (T ) for Y0.8Ca0.2Ba2Cu3O6.75 to determine the mean-
field Tc value T mf

c , showing the deduced MF coefficient γ mf and
the symmetric fluctuation contribution (gray shading). By entropy
balance the hatched area equals the shaded area under the fluctuation
term. (b) Solid curve: The SC energy gap �0 calculated using
Eq. (3). Dashed curve: Its MF value �

mf

0 calculated from γ mf in (a).
(c) Solid curve: The entropy difference �S = Ss − Sn calculated by
integrating (γ − γn) from (a); dashed curve: �Smf calculated by
integrating (γ mf − γn) from (a).
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�F (T ) and �Fmf (T ) and these combined with T �S(T ) and
T �Smf (T ) to generate �(T ) and �mf (T ) using Eq. (3). These
are plotted in Fig. 2(b) where N (0) is obtained using Eq. (6)
with λ = 0. The actual gap should be larger by the factor√

1 + λ.
Firstly, we note that �mf (T ) almost precisely follows

the BCS temperature dependence. This means that the HTS
systems are close to weak-coupling behavior as we have
previously deduced6 thus justifying the basic assumptions
of our analysis. Even if λ is appreciable one could invoke
the Padamsee approach to renormalize the magnitude of �

provided 2�/kBT
mf
c does not greatly exceed the BCS value

of 4.3. Second, with increasing temperature �(T ) starts to
fall below �mf (T ) at the onset of SC fluctuations below
Tc. At Tc there is an inflexion in �(T ) which then remains
finite and falls only slowly to zero above Tc. As it does so it
becomes less well defined due to the square root in Eq. (3).
At Tc the coherent SC state vanishes and this finite residual
“gap” reflects a fluctuation-induced loss, above Tc, of spectral
weight in the DOS at EF , just as described by Fig. 10.2 in
Larkin and Varlamov.13

A similar analysis was carried out for many other doping
levels for both Y0.8Ca0.2Ba2Cu3O7−δ and Bi2Sr2CaCu2O8+δ .
Now we must take into account the effects of the prox-
imate van Hove singularity (vHs) on the overdoped side
[γn(T ) rises with decreasing T ] and the pseudogap on
the underdoped side [γn(T ) falls with decreasing T ]. To
do this we still use entropy balance but employ a rigid
ARPES-derived dispersion, which implicitly contains the
vHs, to determine the doping evolution of the background
γn(T ) and Sn(T ). We use the model of Storey et al.14

which includes a non-nodal NS pseudogap at (π,0) reflecting
the formation of hole pockets as described, for example,
by the Fermi-surface-reconstruction model of Yang, Rice,
and Zhang.15 The pseudogap closes abruptly at p ≈ 0.19.
For more details see the Supplemental Material.12 For
Bi2Sr2CaCu2O8+δ the data for S(T ) and the dispersion-derived
Sn(T ) are already reported by Storey et al.14 By integrating
�S(T ) = S(T ) − Sn(T ) we obtain �F (T ) which is shown in
Fig. 3(a) for 11 dopings from under- to over-doped.

From �F (T ,p) and T �S(T ,p) we calculate �(T ,p) using
Eq. (3). This is plotted in Fig. 3(b) and as before the deduced
gap does not vanish at Tc. Rather, it inflects there and then
persists some 20 K above Tc in overdoped samples and up to
70 K above Tc for underdoped samples. Residual gaps above
Tc are not new; however they are usually confused with the
pseudogap.16 We distinguish the two gaps as follows.

The residual gap that we observe above Tc arises from SC
fluctuations near Tc which are distinguished by a fluctuation
term in γ (T ) which is symmetric over a narrow range about
Tc [see gray shaded areas in Fig. 2(a)]. The pseudogap is
altogether different. Its effects are not centered on Tc but extend
over a broad temperature range up to 300 K or more, and is
distinguished by the following:

(i) A broad suppression of S(T )/T as T is reduced,5,12

corresponding precisely to the suppression of the spin suscep-
tibility, χs(T ), long observed in NMR.17

(ii) The abrupt reduction in the jump �γc at Tc with the
opening of the pseudogap at p = 0.19 holes/Cu. As p is
reduced below 0.19 �γc is rapidly diminished, reflecting a
crossover from strong to weak superconductivity.
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FIG. 3. (Color online) The T dependence of (a) the conden-
sation free energy �F (T ) and (b) � obtained using Eq. (3), for
Bi2Sr2CaCu2O8+δ . Curved arrows show increasing doping from
p = 0.12 to p = 0.22. Note that the absolute value of �(T ) is
larger than that shown by a factor of

√
1 + λ. Inset: The doping

dependence of the BCS ratio �F (0)/γn(T mf
c )2 determined for

Y0.8Ca0.2Ba2Cu3O7−δ . The BCS value of 0.17 is preserved for
p � 0.19 but falls rapidly with the opening of the pseudogap.

(iii) A relative insensitivity to the effect of a magnetic field
or impurities18,19 in distinct contrast to the pairing gap arising
from SC fluctuations.

As �(T ) persists above Tc, even in overdoped samples
where the pseudogap is absent, it must therefore arise from
SC fluctuations above Tc. On theoretical13 and experimental20

grounds, this will cause a gaplike loss of spectral weight
and an associated entropy loss which underlies the residual
�(T ). In further support, Gomes et al.21 observe a spatially
inhomogeneous partial gap above Tc in tunneling spectroscopy
up to a temperature Tp,max which closely matches our T

mf
c .

Such a gap is also seen in ARPES.22 This partial gap also
probably underlies the anomalous Nernst effect observed in
under- and overdoped samples between Tc and T

mf
c .23

Returning to Y0.8Ca0.2Ba2Cu3O7−δ , similar results are
found. Figure 4(a) shows a false-color plot of the magnitude of
�(T ,p) across the p-T phase diagram, along with Tc(p) and the
previously determined T

mf
c (p).6 A finite gap extends above Tc

and indeed above T
mf
c , though neither the gap nor T

mf
c extend

as high as in the case of Bi2Sr2CaCu2O8+δ . To emphasize
the crucially important distinction between pseudogap and SC
correlations we also plot in Fig. 4(a) previously determined
T ∗ values for Y1−xCaxBa2Cu3O7−δ (epitaxial films: down-
triangles, polycrystalline: up-triangles). T ∗ was determined in
the usual way by the downturn from linear resistivity, with
the added precaution of using a magnetic field to distinguish
between SC fluctuations and the pseudogap near Tc.18,19 T ∗
cuts through the crescent of finite �(T ,p) above Tc, falling to
zero at p ≈ 0.19.
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FIG. 4. (Color online) False color plot of (a) the SC gap,
�(T ,p), and (b) the BCS-normalized condensation free
energy �F (T )/γn(T mf

c )2 across the p-T phase diagram for
Y0.8Ca0.2Ba2Cu3O7−δ . In (a) the color scale runs from 20 meV (red)
to 0 meV (blue) and in (b) from 0.18 (red) to 0 (blue). Also shown
is the observed Tc and T mf

c determined previously (Ref. 6). The SC
gap extends well above Tc while �F (T ) is cut off at Tc. Also shown
is T ∗(p) (white line) previously reported for Y1−xCaxBa2Cu3O7−δ

(epitaxial thin films: down-triangles; polycrystalline: up-triangles)
and also as reported by Daou et al.24 (magenta squares) for
YBa2Cu3O7−δ single crystals. In (a) the dashed white curve is the
envelope of the pseudogap in the underdoped region and the residual
SC gap in the overdoped region. In (b) �F (0)/γn(T mf

c )2 adopts the
BCS value 0.17 across the overdoped region but collapses rapidly at
T ∗ confirming that the T ∗ line does indeed terminate at p = 0.19.

This issue continues to be debated. Many groups espouse
a T ∗ line similar to the white dashed curve in Fig. 4(a) that
extends above the SC dome, across the overdoped region. Daou
et al.24 are a recent example. We therefore also plot Daou’s
T ∗ data points (magenta squares) for YBa2Cu3O7−δ and they
are in excellent agreement with our data shown by the white
triangles and solid white curve. The white dashed curve is the
envelope above Tc of a finite-gap-like feature, whether the SC
gap or the pseudogap. Unless these gaps are distinguished it

is not surprising that many groups have failed to see that T ∗
terminates abruptly at p ≈ 0.19.

Definitive evidence for the termination of T ∗(p) at
p = 0.19 is shown in Fig. 4(b). Here we plot a false color
plot of the ratio �F (T )/γn(T mf

c )2 across the phase diagram.
Note that we have used T

mf
c and not Tc as the normalizing

energy scale. The value of this ratio at T = 0 is also plotted
in the inset to Fig. 3(a). The universal BCS d-wave value for
this ratio is 0.17 and, indeed, this value is obtained across the
entire overdoped region for p � 0.19. But with the opening
of the pseudogap for p < 0.19 the ratio is seen in Fig. 4(b)
to collapse abruptly, clearly delineating the termination of the
pseudogap T ∗ line. Moreover, this shows that the pseudogap
and superconducting gap coexist below Tc as they do above Tc.
We are thus obliged to conclude that T ∗(p) cuts the SC dome
and terminates at p ≈ 0.19, contrary to the inference of Daou
et al.24 though in fact their data are fully consistent with our
scenario.

Finally, our values of �0 are lower than those observed
previously with, e.g., infrared measurements,25 where the
amplitude is about 25 meV. But recall that �(T ) in Figs. 3
and 4 is yet to be enhanced by the factor

√
1 + λ.

In summary, we have shown that the SC gap �(T ) may
be calculated from the electronic specific heat and we apply
this to the cuprates. For all dopings a residual finite �(T )
extends up to 70 K above Tc reflecting a fluctuation-induced
loss of spectral weight at EF . This crescent of residual SC
gap above Tc is cut by the T ∗ line showing that two gaplike
features are present above Tc, one extending across the entire
SC phase diagram due to strong SC fluctuations and the other
present only in the optimal and underdoped region due to
the pseudogap. The ratio U0/γn(T mf

c )2 adopts the BCS weak-
coupling value (0.17) across the entire overdoped region down
to p ≈ 0.19 where the pseudogap opens and the ratio then
collapses rapidly, thus exposing an abrupt crossover to “weak”
superconductivity as the Fermi surface reconstructs.
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