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High-temperature surface superconductivity in rhombohedral graphite
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Surface superconductivity in rhombohedral graphite is a robust phenomenon which can exist even when higher
order hoppings between the layers lift the topological protection of the surface flat band and introduce a quadratic
dispersion of electrons with a heavy effective mass. We show that for weak pairing interaction, the flat-band
character of the surface superconductivity transforms into a BCS-like relation with high critical temperature
characterized by a higher coupling constant due to a much larger density of states than in the bulk. Our results
offer an explanation for the recent findings of graphite superconductivity with an unusually high transition
temperature.
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The relation between the critical temperature and the
coupling strength depends on the density of states (DOS) near
the Fermi surface; it becomes stronger as the energy dispersion
gets weaker, boosting the superconductivity. The extreme case
would be a completely dispersionless energy spectrum, a flat
band, which has been predicted in many condensed matter
systems; see, e.g., Refs. 1–4. In some cases the flat bands
are protected by topology in momentum space; they emerge
in gapless topological matter.5–13 A singular DOS associated
with the dispersionless spectrum was recently shown14 to
essentially enhance the transition temperature opening a new
route to room-temperature superconductivity. The problem is
to find the metal with such a higher order dispersion around
the Fermi sea. References 9,14, and 15 show that within
the nearest-neighbor approximation, rhombohedral graphite
(RHG) has topologically protected surface states with a flat
band at the Fermi energy, and these surface states support
high-temperature superconductivity with Tc linear in the
pairing strength, where the superconducting order parameter
is concentrated around the surfaces. A flat band forms out
of a low dispersive band that appears on the surface of a
multilayered rhombohedral graphene structure with a large
number of layers.

Experimental evidence of a high-temperature superconduc-
tivity in graphite in the form of a small Meissner effect and of
a sharp drop in resistance appeared during the past years.16,17

Recently, these findings have been ratified by observations
of zero resistance in graphitic samples up to 175 K18 and
indications of even room-temperature superconductivity in
specially prepared graphite samples.19 In Ref. 14 the high-
temperature superconductivity in graphite was related to
surface superconductivity that may form either on the outer
surfaces of the sample or on twin boundaries of or on grain
boundaries between inclusions of RHG. In the present Rapid
Communication we confirm this scenario and demonstrate that
the surface superconductivity is a robust phenomenon which
survives even when the topological protection of the flat band
is lifted. In particular, the next-nearest-neighbor hoppings
in RHG break the topological protection and, therefore, the
flat-band mechanism of superconductivity could be destroyed.
However, we show (see also Ref. 20) that, though breaking

the flat-band scenario for sufficiently low pairing potentials,
these higher order interactions provide another mechanism
of surface superconductivity which is of the BCS type but
still has a much larger coupling constant than the usual
superconductivity in bulk. The enhanced coupling constant
comes from a high DOS of heavy surface quasiparticles
emerging on the background of the preexisting flat band.

Electron dispersion. The RHG lattice and the tight-binding
couplings are depicted in Fig. 1 (left panel). The layers are
labeled by n (from the bottom), the atoms A in layer n are on
top of atoms B in layer n − 1, and d is the interlayer distance.
The tight-binding parameters satisfy21 γ0 � γ1 ∼ γ3 � γ4.
In the numerics below, we use γ0 = 2.58 eV, γ1 = 0.34 eV,
γ3 = 0.17 eV, and γ4 = 0.04 eV, which give the best fit to
the density functional theory (DFT) calculation of the surface
state dispersion.22

The RHG is a multilayered graphene structure. The conical
spectrum near the Dirac points K and K′ of the Brillouin
zone of a single-layer graphene (for details, see Ref. 21, and
references therein) is transformed into low-dispersion, low-
energy bands (see Fig. 1, right) which determine the unique
features of this system. Being interested in low energies, we
concentrate on in-plane momenta p = (px, py) close to one of
these Dirac corners. A standard Fourier series expansion near
K yields20

HK =
∑

p

N∑
m,n=1

ψ̂†
m(p)Ĥmn(K,p)ψ̂n(p), (1)

where Ĥmn(K,p) = ∑4
l=0 Ĥ (l)

mn(K,p) and

Ĥ (0)
mn(K,p) = vF (σ̂ · p)δmn,

Ĥ (1)
mn(K,p) = −γ1

[
e−i π

6 σ̂+δm,n+1 + ei π
6 σ̂−δm,n−1

]
,

Ĥ (3)
mn(K,p) = γ̃3vF

[
e−i π

3 σ̂+p+δm,n−1 + ei π
3 σ̂−p−δm,n+1

]
,

Ĥ (4)
mn(K,p) = γ̃4vF

[
ei π

6 p−δm,n−1 + e−i π
6 p+δm,n+1

]
.

Here γ̃3 = γ3/γ0, γ̃4 = γ4/γ0, p± = px ± ipy = pe±iφ , and
vF = 3a0γ0/2h̄. The Pauli matrices σ̂ and 2σ̂± = σ̂x ± iσ̂y act
on pseudospinors ψ̂n = (ψ1

n , ψ2
n )T , ψ̂†

n = (ψ1∗
n , ψ2∗

n ), where
ψ1

n = ψA
n , ψ2

n = eiπ/6ψB
n .
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FIG. 1. (Color online) Left: Rhombohedral graphite. The black and gray atoms correspond to A and B sites, respectively. Right: Cuts of
the 3d spectrum for p < pFB ≡ γ1/vF along the K-� (K-M) on negative (positive) x axis; N = 5 (red), N = 10 (blue), and N = 20 (black)
graphene layers. The DFT calculations are shown in full, tight-binding in dash-dotted, and Eq. (6) in dashed lines (the latter plotted up to their
regimes of applicability). The inset is a zoom-up of the low-energy region with tight-binding (dash-dotted) and analytical (dashed) curves. The
deviations between the dashed and other lines show up when ξp becomes dominant in Eq. (6), and are partially due to γ3 neglected there.

To construct the associated Bogoliubov–de Gennes (BdG)
Hamiltonian for the superconducting state we need also the
time-reversed “hole” Hamiltonian at K. It follows from the
particle Hamiltonian in a vicinity of the opposite Dirac point
−K which is equivalent to K′. The wave function ψh

K of a
hole excitation near K is ψh

K = ψ̄∗
−K. One can check that the

hole Hamiltonian is Hh
mn(K,p) = H ∗

mn(−K,−p). Therefore,
Hh

K has the form of Eq. (1) where ψ̂n(p) are replaced with
ψ̂ (h)

n (p). In what follows, we denote the electron wave function
by ûn = ψ̂n and the hole wave function by v̂n = ψ̂h

n .
Low-energy spectrum in the normal state. Here we study

the normal state using Hamiltonian Eq. (1) and the relative
magnitudes of the coupling constants listed above. The
Schrödinger equation takes the form

∑
m

Ĥnm(K,p)ûm(p) = (ε + μ)ûn(p). (2)

The energy is measured from the chemical potential μ. The
energy spectrum in bulk is obtained by ignoring the outermost
layers n = 1 and N and using the ansatz ûn ∝ eipzdn, where
pz is out-of-plane momentum. For zero doping μ = 0 and
for γ3 = γ4 = 0, the Fermi surface, ε(p,pz,φ) = 0, shrinks
to a spiral line vF p = γ1, φ = pzd + π/6. Projection of this
spiral onto the momentum plane q = 0 determines the area
of a flat band for surface states9 in the limit N → ∞. If only
γ4 = 0 while γ3 
= 0, equation ε = 0 for μ = 0 can still be
shown to give a Fermi surface in the form of a (corrugated)
spiral whose projection determines the surface flat band.20 This
is because the γ3 interaction preserves the same topological
invariant at the Fermi surface:9 The full Hamiltonian obeys the
same anticommutation rule [σ̂z,(Ĥ (0) + Ĥ (1) + Ĥ (3))]+ = 0 as
the initial Hamiltonian Ĥ (0) + Ĥ (1). Since γ3 does not destroy
the flat band, we restrict our analytical consideration to the case
when only γ4 is nonzero while γ3 = 0. However, our numerical
analysis is carried out using the full Hamiltonian. The results
are displayed in Fig. 1, along with the corresponding analytical
approximations and DFT calculations.

Surface states have complex pz = p′
z + ip′′

z and decay into
the bulk. For γ3 = 0 Eq. (2) in the particle channel,

vF (σ̂ · p)ûn(p) − γ1
[
ei π

6 σ̂−ûn+1 + e−i π
6 σ̂+ûn−1

]
+γ̃4

[
ei π

6 vF p−ûn+1 + e−i π
6 vF p+ûn−1

] = (ε + μ)ûn, (3)

for low energies has a solution in the form

ûn = Cei(φ− π
6 )(n−1− N

2 )

×
[
p̃n−1

(
1

ζeiφ

)
A+ + p̃N−n

(
ζ

eiφ

)
A−

]
, (4)

where p̃ = p/pFB, pFB = γ1/vF , and

ζ = p̃[(ε + μ)/γ1 − γ̃4(p̃2 + 1)]/(p̃2 − 1). (5)

Here the out-of-plane momentum p′
zd = φ − π/6 while

e±p′′
z d = p̃. The overall normalization C is found from

d
∑N

n=1[Tr û
†
nûn] = 1. For large N this gives |C|2 = d−1[1 −

p̃2] provided |A+|2 + |A−|2 = 1.
At the outermost layers, the components in Eq. (3) which

do not have γ1 couple the constants A+ and A− and determine
the surface states. For ξp,ε � γ1,

εp = μp ± ξp(1 − p̃2), ξp = γ1p̃
N , (6)

μp = p2/2m∗ − μ, m∗ = γ1
/(

4γ̃4v
2
F

)
. (7)

The interaction γ4 breaks the symmetry between the con-
duction and valence bands in a way similar to a shift in μ

due to doping. The spectrum εp has a quadratic dispersion
with the effective mass m∗ on a background of a much weaker
high-order dispersion ξp. The latter transforms into a flat
band ξp = 0 with a radius p < pFB for an infinite number
of layers, N → ∞. The effective mass is much larger than the
characteristic band mass m3 in 3D graphite. Indeed, we have
m∗/m3 ∼ γ1/γ4 where we estimate h̄2/(m3a

2
0) ∼ γ0 as the

conduction band width in graphite. We see that m∗/m3 � 1.
This dispersion is compared with the results of numerical
diagonalization of H (K,p) in Fig. 1 using γ̃3 = 0.066 and
γ̃4 = 0.016.
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BdG equations are constructed using the particle and hole
Hamiltonians of Eq. (1) coupled through the superconducting-
order-parameter field �. As distinct from the quasiparticle
energy measured from the chemical potential upwards, E =
μ + ε, the energy of holes is measured from μ downwards,
E = μ − ε. We have∑

m

τ̌3 ⊗ [Ĥnm(K,p) − μδnm]�̌m + �̌n�̌n = ε�̌n. (8)

Here we introduce objects in the Nambu space

�̌n =
(

0 �n

�∗
n 0

)
, �̌n =

(
ûn

v̂n

)
, τ̌3 =

(
1 0
0 −1

)
.

Whereas more complicated symmetries are also possible,
below we assume for simplicity s-wave superconducting
pairing. Each component of the Nambu vector �̌n is a
pseudospinor. For analytical consideration we assume that
�n = 0 for n 
= 1,N . This is justified by the numerical
solution of the self-consistency equation using the full BdG
equations.14,20 In this case, Eq. (8) for n 
= 1,N does not
contain �, so that one can use the normal-state solution,
Eq. (4), where we have Nambu vectors Ǎ± = (A±, B±)T

instead of the corresponding scalars, and the Nambu matrix
ζ̌ , Eq. (5), with τ̌3ε instead of ε.

At the outermost layers, the terms with û0, v̂0 and
ûN+1, v̂N+1 in Eq. (8) disappear. We find

τ̌3ξpǍ− = (ε̃ − τ̌3μ̃p)Ǎ+ − �̌1Ǎ
+, (9)

τ̌3ξpǍ+ = (ε̃ − τ̌3μ̃p)Ǎ− − �̌NǍ−, (10)

where ε̃ = ε(1 − p̃2)−1, μ̃p = μp(1 − p̃2)−1. Equations (9)
and (10) provide the surface-state spectrum and determine
four independent surface states.

If �1 = �N , the spectrum is ε̃2 = (μ̃p ± ξp)2 + |�|2. If
the number of layers N is large, ξp → 0 for p < pFB, the
two surface states decouple, yielding ε̃2 = μ̃2

p + |�|2 at each
surface. In this case, Eq. (9) at layer n = 1 yields A+ = U ,
B+ = V or A+ = V , B+ = U , where

U = 2− 1
2 [1 + μ̃p/ε̃]

1
2 , V = 2− 1

2 [1 − μ̃p/ε̃]
1
2 . (11)

Surface superconductivity. The gap at a layer n in the sample
is determined by the mean-field self-consistency equation
with a 3D coupling potential W . As was shown in Ref. 14,
the surface states dominate over the bulk states due to a
much larger DOS. Therefore, even though the potential W

is nonzero and constant for all the layers, the self-consistent
order parameter is concentrated only near the surfaces and
decays rapidly into the bulk due to the structure of the basis
wave functions. For a large number of layers when ξp = 0, the
self-consistency equation for the gap value at the surface takes
the form

1 = W

d

∫
FB

d2p

(2πh̄)2

(1 − p̃2)

ε̃
tanh

ε

2T
. (12)

Here we used Eq. (11) to find the integrand, and the integration
is carried out over momenta within the flat band, p < pFB.
This is the central result of this communication. We stress that
it is based on the band structure of RHG along with the same
assumptions as the standard BCS model. The superconducting
coupling is described by the energy g = (W/d)p2

FB/h̄2. It can

FIG. 2. (Color online) Self-consistent surface gap vs coupling
g. The black line (in the middle) shows the results based on the
exact diagonalization of the BdG equations for N = 20 with μ = 0,
the blue (bottom) line is Eq. (12) at μ = 0, and the red (top) line
corresponds to μ = μopt that maximizes � for given g. For large g,
the gap tends towards the flat-band limit � ∝ g. For g � 4πα (upper
inset), the gap is exponentially suppressed, � ∝ exp(−4πα/g). The
lower inset shows the (normalized) gap as a function of μ for a few
values of g.

also be expressed in terms of the usual BCS coupling constant
λ = ν3W where ν3 = m3p3F /2π3h̄3 is the 3D density of states
and p3F is the Fermi momentum in 3D graphite. Assuming the
conduction band width in 3D graphite of the order of γ0 we
have g/γ1 ∼ λ(γ1/γ0) if h̄/a0p3F ∼ 1.

The overall behavior of � vs the coupling energy is plotted
in Fig. 2. The quadratic dispersion comes with an energy
scale α = 2γ̃4γ1, which determines a crossover between
exponentially suppressed and flat-band superconductivity. For
g � 4πα and for zero doping, Eq. (12) yields the flat-band
result,14 � = g/8π for T = 0, and the critical temperature
satisfying � = 3kBTC . Due to its linear dependence on the
interaction strength, the critical temperature is proportional
to the area of the flat band and can be essentially higher than
that in the bulk. For large values of the coupling constant
g, � penetrates further into the bulk,20 and the surface
superconductivity is transformed into bulk superconductivity
for g ≈ 8πγ1. Doping in the flat-band regime destroys the
surface superconductivity.14 Both �0 and Tc vanish at the
critical doping level |μ| = 2kBTc.

For g � 4πα the weak dispersion Eq. (6) with a heavy
mass m∗ dominates. The integral in Eq. (12) is logarithmic
which results in a BCS-like expression (for T = 0)

� = [α2/(α − μ)]e−1/λ2 , λ2 = g(1 − μ/α)2/4πα,

where α = 2γ1γ̃4. The estimate for g gives λ2 ∼ λ(γ1/γ4).
This is a much larger coupling constant than λ for bulk super-
conductivity. The gap disappears at μ = α. The crossover from
the BCS-like to the flat-band regime occurs at g ∼ 4πα and
� ∼ α. The coherence length ξ0 = h̄vg/� ∼ a0(γ0/γ1)e1/λ2 is
much longer than the interatomic distance a0. These analytical
results are compared in Fig. 2 to the numerical solution of the
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self-consistency equation using the full Hamiltonian, Eq. (8).
We see that the gap in the intermediate region α ∼ g is
enhanced by an optimum doping; i.e., the critical temperature
is very sensitive to the presence of impurities (lower inset in
Fig. 2). This complies with the experimental results for doped
graphite.16

Effect of fluctuations. The quality of the mean-field
approximation is determined by the Ginzburg number Gi
which is a measure of the relative magnitude of order-
parameter fluctuations. For usual 3D superconductors Gi � 1
due to a small ratio of the critical temperature to character-
istic energy of electrons (i.e., the Fermi energy). Here we
demonstrate that the mean-field approach also works well
when the quadratic dispersion dominates over the flat band.
In this case the fluctuation free energy density for T not
too close to Tc is F1 ∼ ν2�

2
1/2, where ν2 = m∗/2πh̄2 is

the 2D DOS with the effective mass m∗ from Eq. (7). The
energy of an area πξ 2

0 with a radius of ξ0 = h̄vg�
−1
0 is F1 ∼

πξ 2
0 F1 = γ̃4γ1(�2

1/�
2
0), where �0 is the mean-field gap. Since

F1 ∼ T we find �2
1/�

2
0 = Gi ∼ Tc/γ̃4γ1. When the quadratic

dispersion dominates, one has Tc � γ1γ̃4 with Gi = e−1/λ2 �
1. Thus the average fluctuation of the order parameter is small
compared to its mean-field value.23 However, at the crossover
to the flat-band regime, Gi ∼ 1 and the mean-field approach is
not exact. We use it only as an initial step towards a full theory
of high-temperature surface superconductivity. We stress that
the surface superconductivity here appears in a sample that
is three-dimensional in other respects. Therefore, Coulomb
repulsion is screened and can be neglected. Other graphene-
specific phenomena such as sheet corrugations and fluctuating
electron-hole puddles do not seem to be relevant either.

Summary. RHG is a promising candidate for high-
temperature surface superconductivity due to its (approximate)
topologically protected flat band. In general, flat bands
are susceptible to instabilities with respect to some other
ordered states; for example, a magnetic state could also
be possible. Being interested here in superconductivity and
supported by the experimental evidence,16–19 we assume
that superconductivity dominates and leave the problem of
interplay between various instabilities to further work. Besides
surfaces, superconductivity may arise around stacking faults
and interfaces between different stackings of graphite, as
long as the system contains more than a few layers of RHG
embedded inside the Bernal phase.20 Recent observations of
high Tc in graphite16–19 are compatible with surface or interface
superconductivity described by our theory. Our predictions
can be used for search or for an artificial fabrication of layered
and/or twinned systems with high- and even room-temperature
superconductivity. With the hopping parameters used above,
the crossover between the flat-band and BCS-like regimes
takes place around gc ∼ 4πα ≈ 0.39γ1 ≈ 0.15 eV (see Fig. 2
and Ref. 22) corresponding to the mean-field Tc(gc) ≈ 20 K.
For g > gc we find Tc ∼ (g/γ1) × 50 K. This is much greater
than the bulk gap expected for the same magnitude of
coupling.
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5T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, Pis’ma Zh. Eksp.
Teor. Fiz. 94, 252 (2011) [JETP Lett. 94, 233 (2011)].

6S. Ryu and Y. Hatsugai, Phys. Rev. Lett. 89, 077002 (2002).
7A. P. Schnyder and Shinsei Ryu, Phys. Rev. B 84, 060504(R) (2011);
P. M. R. Brydon, A. P. Schnyder, and C. Timm, ibid. 84, 020501(R)
(2011).

8F. Guinea, A. H. Castro Neto, and N. M. R. Peres, Phys. Rev. B 73,
245426 (2006).
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