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Minimum thermal conductivity in superlattices: A first-principles formalism
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The thermal conductivity of silicon-germanium superlattices is computed from density-functional perturbation
theory using relaxation times that include both anharmonic and interface roughness effects. A decrease in the group
velocity of low-frequency phonons in addition to the interface-disorder-induced scattering of high-frequency
phonons drives the superlattice thermal conductivity to below the alloy limit. At short periods, interplay between
decrease in group velocity and increase in phonon lifetimes with increase in superlattice period leads to a minimum
in the cross-plane thermal conductivity. Increasing the mass mismatch between the constituent materials in the
superlattice further lowers the thermal conductivity below the alloy limit, pointing to avenues for higher efficiency
thermoelectric materials.
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Superlattices have been experimentally measured to have
low thermal conductivities, in some cases even lower than their
homogeneous alloys.1–3 The reduced thermal conductivity can
lead to improvement in thermoelectric figure of merit4 or im-
pede the thermal management of semiconductor lasers.5 Mech-
anisms behind the thermal conductivity reduction have been
studied using different models including Boltzmann transport
equation,6,7 lattice dynamics,8–10 molecular dynamics,11–13

and acoustic wave equation.14 These models, however, lack
predictive power and are usually based on a specific sets
of assumptions. For example, Boltzmann equation based
models neglect phonon coherence and its consequences on
phonon band structure modification, while lattice dynamics
and acoustic wave approaches usually neglect the effect of
interfacial disorder on phonon scattering. Molecular dynamics
simulation is based on classical potentials, which lack accuracy
for thermal conductivity prediction.15 Despite the drawbacks
of these approaches, past modeling together with experimental
studies have led to the general acceptance that interface
roughness plays a strong role in the thermal conductivity
reduction, while a reduction in group velocity maybe is
important in the short-period limit.

Recently, a first-principles-based approach that relies upon
the use of harmonic and anharmonic force constants derived
from density-functional perturbation theory (DFPT)16–18 has
been developed for studying thermal conductivity in perfect
crystals19,20 as well as alloys.21 Garg et al.22 used this
approach to compute the thermal conductivity of ideal Si/Ge
superlattices with perfect interfaces from first principles and
showed that the computed thermal conductivity first decreased
and then reached a constant value with an increase in the
superlattice period. Such a trend is consistent with previous
lattice dynamics calculations8,10 based on the use of empirical
potentials. This behavior, however, is not consistent with
experimental results1 where the thermal conductivity is ob-
served to increase with period at longer periods; this suggests
the need to incorporate the effect of interfacial disorder in the
prediction of superlattice thermal conductivity.

In this Rapid Communication, we combine the three
effects—group velocity reduction, interfacial disorder, and
intrinsic anharmonic phonon scattering—in a first-principles
formalism to compute the thermal conductivity of Si/Ge

superlattices with a growth direction along [001] and with a
period of 2n atomic layers (n monolayers of Si × n monolayers
of Ge) and explain a minimum in superlattice thermal
conductivity at short periods. The interface effect is included
in two ways. First, a large unit cell, spanning one period of
the superlattice, includes phonon reflection and coherent wave
superposition, leading to new phonon band structures. Second,
interface roughness is simulated as a random mixing of Si
and Ge atoms in a narrow region around the interface. This
mass mixing is the dominant interfacial scattering mechanism
for phonons at short periods.23 To compute the interfacial
scattering rates, we replace the disordered crystal with an
ordered one and treat the disorder as a perturbation24 (an
idea proposed by Abeles25 for alloys); the use of perturbation
theory to compute scattering rates due to mass disorder has
been found to yield excellent agreement with experiments.21,26

The masses of the atoms in the relevant superlattice unit cell
at the sites of disorder are taken to be the average of Si
and Ge masses, the other atoms are assigned the mass of
Si and Ge on either side of the interface respectively. We
take the thickness of the disordered region to be four atomic
layers based on Refs. 27 and 28. The second- and third-order
interatomic force constants obtained from DFPT using the
virtual crystal approximation,29,30 where the atomic potential
at each site is an average of Si and Ge potentials (the use
of this approximation is validated in Ref. 22). The phonon
modes of this unit cell are used to compute the frequencies,
group velocities, populations, and lifetimes that enter into
the calculation of thermal conductivity. Finally, we adopt the
single-mode relaxation time (SMRT) approximation31 as an
approximate solution of the Boltzmann transport equation;32

the thermal conductivity kα (along direction α) is then given by

kα = h̄2

N�kBT 2

∑

λ

c2
αλω

2
λ nλ(nλ + 1)τλ,

where c, ω, n̄, and τ are the phonon group velocities,
frequencies, equilibrium populations, and relaxation times, λ

represents the vibrational mode (qj ) (q is the wave vector and
j the phonon branch), and T ,�, and N are the temperature,
cell volume, and size of the q-point mesh used. The scattering
rate, 1/τλ, of a phonon mode λ is taken to be the sum of a
term describing scattering due to interfacial disorder (1/τλa)
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and a term describing anharmonic scattering (1/τλb) as in
Matthiessen’s rule.

The scattering rates due to interfacial disorder are calculated
using perturbation theory:20

1

τλa

= π

2N
ω2

λ

∑

λ′
δ(ωλ − ωλ′)

∑

σ

g(σ )|�e(σ |λ′)�e(σ |λ)|2,

where σ denotes the atomic sites in the superlattice unit cell,
g takes into account the magnitude of mass disorder and
is defined as g(σ ) = ∑

i fi(σ )[1 − mi(σ )/ m( σ )]2, where i,
f, and m are the atomic species, concentration, and mass
respectively. m̄(σ ) is the average mass at site σ and e represents
the vibration eigenvector. g(σ ) is nonzero only for atomic sites
in the region of disorder; the above equation therefore allows
to compute the phonon scattering due to sublattice disorder,
which is the case for interfacial disorder. Such a perturbative
approach assumes point defect scattering in the region of
interface and leads to an ω4 dependence of scattering rates
at low frequencies. Perfect reflection of phonons is accounted
for by using the modified dispersion of the superlattice.

The anharmonic scattering rates are computed using the
lowest-order three-phonon scattering processes in the SMRT
approximation via33

1

τλb

= π
∑

q ′j ′j

|V3(−qj,q ′j ′,q ′′j ′′)|2

×{2(nq ′j ′ − nq ′′j ′′ )δ[ω(qj ) + ω(q ′j ′) − ω(q ′′j ′′)]
+ (1 + nq ′j ′ + nq ′′j ′′ )δ[ω(qj ) − ω(q ′j ′) − ω(q ′′j ′′)]},

where V3(−qj,q ′j ′,q ′′j ′′) are the three-phonon coupling
matrix elements.33

The harmonic and anharmonic force constants are obtained
on a 10 × 10 × 10 and 3 × 3 × 3 supercells, respectively.
For all density-functional perturbation theory calculations,
an 8 × 8 × 8 Monkhorst-Pack34 mesh is used to sample
electronic states in the Brillouin zone and an energy cutoff
of 20 Ry is used for the plane-wave expansion. We carefully
tested convergence of all measured quantities with respect to
these parameters. First-principles calculations within density-
functional theory are carried out using the PWscf and PHonon
codes of the Quantum-ESPRESSO distribution35 with norm-
conserving pseudopotentials based on the approach of von
Barth and Car.36

At the shortest period (11 Å) studied, both the cross-plane
and in-plane thermal conductivity are computed to be 7 W/mK
(see Fig. 1) at 300 K, significantly lower than the corresponding
values for the superlattice with perfect interfaces,22 25 and
44 W/mK, respectively, at the same temperature (shown in
the inset in Fig. 1). This indicates the dominant role played
by interfacial disorder in reducing thermal conductivity in
superlattices. Increasing the period decreases the cross-plane
thermal conductivity to below 7 W/mK (see Fig. 1) and a
minimum is observed at a period of 33 Å (in contrast with
the prediction based on molecular dynamics simulations12

where the cross-plane thermal conductivity of superlattices
with rough interfaces was found to increase monotonically
with period); along the in-plane direction, however, the thermal
conductivity increases monotonically with period without
exhibiting a minimum.
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FIG. 1. (Color online) Computed in-plane and cross-plane ther-
mal conductivity of Si/Ge superlattices as a function of superlattice
period (Å) at 300 K. Inset shows the computed thermal conductivity
of superlattices with perfect interfaces from Ref. 22 at the same
temperature.

For the shortest period superlattice (11 Å), the computed
thermal conductivity (7 W/mK at 300 K) is in excellent
agreement with the measured value for Si0.5Ge0.5 alloy;21

in this limit, interfacial disorder spans the entire superlattice
making it essentially an isotropic alloy, the large reduction
in thermal conductivity compared to pure Si and Ge is
described in terms of the mass-disorder induced scattering of
high-frequency phonons.21 Increase in period beyond 11 Å
thus results in the computed thermal conductivity to drop
below the alloy limit (see Fig. 1). Experimentally, thermal
conductivity of Si/Ge superlattices with periods between 30
and 275 Å was measured to be below that of the alloy film.1

The thermal conductivity of superlattice with a period of 44 Å,
computed here to be about 5 W/mK (see Fig. 1), is also in
good agreement with the measured value of about 4 W/mK.37

The small discrepancy can be attributed to the finite size of
the experimental sample which leads to additional boundary
scattering of phonons resulting in lower thermal conductivity,
or the perturbative nature in our treatment of the atomic mixing
at interface.

The formalism presented in this work allows an understand-
ing of the above behavior through a microscopic characteri-
zation of the parameters involved in thermal transport. For
this, we first compare the mean scattering rates of phonons
due to anharmonicity and interfacial disorder for different
superlattice periods in Fig. 2(a). Next, we look at

γ (ω) ≡ 1

�N

∑

λ

δ(ω − ωλ)γλ

to define the density of states weighted squared group
velocity 〈c2〉, lifetimes 〈τ 〉, product of lifetimes and squared
velocities 〈c2τ 〉, and a spectral thermal conductivity k̃(ω) ≡
〈c2ω2n̄(n̄+ 1)τ 〉, and compare different superlattices in terms
of these parameters in Figs. 3 and 4.

Before describing the observed thermal conductivity
behavior, we first point to another important consequence of
this work, which relates to the significance of coherent phonons
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FIG. 2. (Color online) (a) Anharmonic and interfacial scattering
rates at 300 K in superlattices of different periods (the numbers in the
legend indicate superlattice period in Å). Interfacial scattering rates
decrease with an increase in period resulting in an increase in phonon
lifetimes with period (b) variation of cross-plane thermal conductivity
at 300 K with mass mismatch between the constituent materials in
the superlattice (mass ratio of 2.5 corresponds to Si/Ge superlattices).

in conducting heat. At low frequencies, phonons scatter
mainly through the intrinsic three-phonon scattering processes,
whereas at higher frequencies (beyond ∼1 THz), scattering
due to interfacial disorder plays a more important role [see
Fig. 2(a)]. At the cross-over between the two scattering
processes (∼1 THz), the phonon mean-free path is estimated
to be about 500 nm indicating that these phonons propagate
much longer than the superlattice period and therefore undergo
wave interference effects resulting in modified dispersion
and hence coherent heat conduction.38 We also find that in
short period superlattices most of the heat is conducted by
low-frequency phonons due to the strong interface scattering of
high-frequency phonons. These low-frequency phonons have
long mean free paths and conduct heat coherently. However,
as the period is increased, higher frequency phonons begin to
play a role pointing to a transition from coherent to incoherent
transport.

We now address the computed thermal conductivity behav-
ior. While interplay between phonon tunneling at short periods
and decrease in interfacial scattering at longer periods was
proposed as the mechanism for a minimum in cross-plane
thermal conductivity by Yang et al.,9 here we provide an
accurate quantitative description of the phenomena and show
the relative importance of the two effects at different periods
and in different frequency regimes.

At short periods, increase in period reduces the ability of
phonons to tunnel through the increasingly thicker layers of Si
and Ge manifesting as a decrease in phonon group velocities
[see Fig. 3(a)]. Simultaneously, the interface density decreases
and leads to higher phonon lifetimes (due to reduced interface
scattering) as shown in Fig. 2(a). The two have opposite
effects on thermal conductivity. At short periods, the group
velocity reduction dominates and leads to a decrease in thermal
conductivity with increase in period. This can be seen more
clearly in Figs. 3(a)–3(d) where it is evident that this decrease
in thermal conductivity is driven by a decrease in the heat
carrying ability of the low-frequency phonons [see Fig. 3(d)],
while the higher-frequency phonons remain mostly unaffected.
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FIG. 3. (Color online) Density of states weighted: (a) and (e)
squared cross-plane group velocity (open symbols are the group
velocities in the bulk, which is an average of Si and Ge), (b) and
(f) lifetimes, (c) and (g) product of squared velocity and lifetimes. (d)
and (h) Effective cross-plane thermal conductivity k̃(ω).

This can be explained by noticing that at low frequencies the
phonon lifetimes are determined by anharmonic scattering,
which does not change significantly with period [see Figs. 2(a)
and 3(b)]. Decrease in group velocities [see Fig. 3(a)] then
drives the product 〈c2

zτ 〉 [see Fig. 3(c)] and, consequently, the
thermal conductivity [see Fig. 3(d)] to lower values.

At longer periods [see Figs. 3(e)–3(h)], however, the net
effect is an increase in thermal conductivity with increase
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in-plane group velocity and (b) product of squared velocity and
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in period driven by an increase in the heat carrying ability
of the higher frequency phonons. At these long periods, the
effect of phonon tunneling saturates [see Fig. 3(e)] causing
the group velocities to become relatively constant with respect
to period [see Fig. 3(e)]. However, the decrease in interface
density drives the phonon lifetimes to higher values [see
Fig. 3(f)], which now cause the product 〈c2

zτ 〉 [see Fig. 3(g)]
and, consequently, the thermal conductivity to increase with
period [see Fig. 3(h)]. The opposite trends at short and long
periods lead to a minimum in thermal conductivity at a period
of about 30 Å (see Fig. 1).

Along the in-plane direction, the superlattice behaves more
like a waveguide and the changes in phonon group velocity
are minimal [see Fig. 4(a)]; decrease in interfacial scattering
(increase in lifetimes) then results in a monotonic increase
in the product 〈c2

yτ 〉 [see Fig. 4(b)] and, consequently, the
thermal conductivity increases with period (see Fig. 1) without
exhibiting a minimum.

While in alloys low thermal conductivity is achieved
through disorder induced scattering that mainly reduces
the heat carrying ability of the high frequency phonons,21

here we have shown that in superlattices in addition to the
presence of the above effect due to interfacial disorder [see
Fig. 2(a)], the heat carrying ability of the low frequency
phonons is reduced as well [see Fig. 3(d)] due to a decrease
in their cross-plane group velocity [see Fig. 3(a)] causing
the superlattice thermal conductivity to drop below the alloy
value (see Fig. 1). The accuracy of the above formalism in
predicting thermal conductivity in superlattices allows us to
lay out design rules for low thermal conductivity materials.
For example, while in the case of Si/Ge superlattices (mass
ratio m2/m1 = 2.5), the minimum thermal conductivity is
computed to be 30% below the alloy limit, increasing the
mass ratio to 3.5 and 4.1 (while keeping the average mass
the same as that in the Si/Ge superlattice) further lowers it
to about 44% and 51% below the alloy value, respectively
[see Fig. 2(b)], a result that holds key importance for

high-efficiency thermoelectrics. On the other hand, as this ratio
is decreased to about 1.2, this minimum almost disappears and
the thermal conductivity increases monotonically with period
[see Fig. 2(b)].

In conclusion, we have presented an approach to com-
pute the thermal conductivity of superlattices in which all
ingredients, vibrational modes and scattering rates, due to
both anharmonicity and interfacial disorder are derived from
first principles. By combining the effects of decrease in
group velocity due to flattening of the phonon dispersion
and increase in phonon relaxation times due to reduction in
interfacial scattering as the period is increased we demonstrate
a minimum in cross-plane thermal conductivity at short
periods. At the shortest period studied, interfacial disorder
extends across the entire superlattice and reduces the thermal
conductivity to that of the alloy; increasing the period leads
to a sharp decrease in group velocity along the cross-plane
direction, which drives the cross-plane thermal conductivity to
below the alloy limit; this followed by an increase in thermal
conductivity at longer periods due to a decrease in interfacial
phonon scattering results in a minimum being observed. Along
the in-plane direction, however, the decrease in group velocity
is modest and the increase in phonon lifetimes then results
in a monotonic increase in in-plane thermal conductivity with
period. Increasing the mass mismatch beyond that in the Si/Ge
superlattice, shifts the minimum to longer periods and further
lowers the thermal conductivity below the alloy limit—an
effect that could have useful implications for high-efficiency
thermoelectrics.
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09ER46577. J.G acknowledges and thanks Nicola Marzari and
Nicola Bonini.
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