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The paper reassesses the old but still controversial problem of the transverse force on a vortex and the
vortex mass. The transverse force from free bulk quasiparticles on the vortex, both in the Bose and the Fermi
liquids, originates from the Aharonov-Bohm effect. However, in the Fermi liquid, one should take into account
peculiarities of the Aharonov-Bohm effect for BCS quasiparticles described by two-component spinor wave
functions. There is no connection between the transverse force (either from free bulk quasiparticles or from
vortex-core bound quasiparticles) and the spectral flow in the vortex core in superfluid Fermi liquid, in contrast
to widely known claims. In fact, there is no steady spectral flow in the core of the moving vortex, and the
analogy with the Andreev bound states in the superconductor–normal-metal–superconductor junction, where
the spectral flow is really possible, is not valid in this respect. The role of the backflow on the vortex mass
is clarified. The backflow is an inevitable consequence of a mismatch between the currents inside and outside
the vortex core and restores the conservation of the particle number (charge) violated by this mismatch. In
the Fermi liquid, the backflow compensates the current through the core bound states, which is a source of
the vortex mass (the Kopnin mass). This results in renormalization of the Kopnin vortex mass by a numerical
factor.
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I. INTRODUCTION

Discussions and debates on the transverse force on a vortex
in superfluids (neutral and charged) continue during many
decades and have been a topic of reviews and books.1–6 They
focused on quasiparticle contributions to this force, which are
connected with geometrical (Aharonov-Bohm-Berry) phases
in the superfluid around the vortex. Although in most practical
cases the vortex can be considered as a massless object
governed by the gyroscopic dynamics, the concept and the
magnitude of the vortex mass was also vividly discussed in the
Bose and the Fermi superfluids.2,6–15

Despite a huge literature on this subject, there still remain
some issues, which require further clarification, especially for
the Fermi superfluids. This paper addresses these issues. In
particular, the paper rederives and discusses the origin of
the transverse force from core states (the Kopnin-Kravtsov
force) and the part of the transverse force from the free
quasiparticles in the bulk of the Fermi superfluid, which
seemed not to follow from the simple semiclassical approach
based on the Aharonov-Bohm effect. Volovik16 suggested that
these transverse forces originate from the spectral flow in the
vortex core (see also Chap. 25 in his book6). This interpretation
was widely accepted2,3 and was a basis for the claim that
the spectral flow in the vortex core presumably revealed
in mutual-friction measurements experimentally models the
cosmological baryogenesis in the early Universe.17

The spectral flow concept is known both in mathematics18

and physics. According to its mathematical definition, the
spectral flow is a number of eigenstates of an operator with
eigenvalues passing zero value at tuning of some parameter,
on which the operator (and correspondingly its eigenstates)
depends. A physical example of the spectral flow is the flow
of the Andreev bound states in the ballistic superconductor–
normal-metal–superconductor (SNS) junction.19 The energy
of the Andreev state linearly depends on the superfluid phase

difference between the superconductors forming the junction.
When the phase difference monotonously varies in time (the ac
Josephson effect), the discrete energy levels cross the whole
superconducting gap passing the zero value of the energy.
So, in this example the parameter governing the spectral
flow is the phase difference and the operator corresponds
to the Bogoliubov–de Gennes equations, which determine
the Andreev bound states inside the gap. As was discovered
long ago,20,21 the Andreev bound states exist also in cores
of vortices in Fermi superfluids, and Volovik argued that the
process of vortex motion is accompanied by a steady shift of
core bound-state levels from negative-energy continuum to the
positive-energy continuum, i.e., by the spectral flow across the
superconducting gap similar to that in the SNS junction. Any
crossing of the gap by a bound state leads to transfer of the
momentum, which leads to the transverse Kopnin-Kravtsov
force. So momentum transfer from the vortex moving with the
relative velocity vL − vn with respect to the normal component
(or to impurities in superconductors) is realized not simply via
jumps of particles between energy levels caused by collisions,
but via motion of energy levels themselves in the energy
space.

This paper argues that the spectral flow can not be
responsible for any part of the transverse force simply because
it is absent in a core of a moving vortex, as already was noticed
by Stone19 in the past. On the other hand, all kinds of transverse
forces can be understood within common approaches such as
the scattering theory and the partial-wave expansion without
any reference to the spectral flow. In particular, the part of the
transverse force from scattering of free bulk quasiparticles in
the Fermi superfluid, which was presumed to originate from
the spectral flow, directly follows from peculiarities of the
Aharonov-Bohm effect for BCS quasiparticles described by
two-component spinor wave functions. Such conclusions led
to a necessity to reassess Volovik’s arguments in favor of
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the spectral flow and to analyze why the analogy with the
SNS junction, where the spectral flow definitely exists, is not
applicable in this respect.

Addressing the vortex mass, this paper revises different
contributions to it, compares them, and discusses possible
effects of the vortex mass on vortex motion. In particular,
the paper analyzes the so-called backflow vortex mass. The
backflow mass is related with the kinetic energy of a superflow
around the vortex core, which inevitably appears any time
when the current density inside the core differs from that
outside the core, and the intensity of the backflow is determined
from the continuity of the total fluid current.

Let us present the nomenclature of various forces, which
enter the equation of vortex motion:

mnsκ[ẑ × (vL − vs)] = Fn + Fc + d P
dt

. (1)

The left-hand side is the Magnus force, which transfers
momentum between the superfluid and the vortex. Here vL

and vs are the vortex and the superfluid velocities, m is the
particle mass, ns is the superfluid density, and κ = h/m is the
circulation quantum. The force

Fn = −D(vL − vn) − D′[ẑ × (vL − vn)] (2)

transfers momentum between the normal component (the gas
of free quasiparticles) and the vortex. Here vn is the normal
velocity. The coefficients D and D′,

D = 1

3h3

∫
∂f0(ε)

∂ε
p2σ⊥vG d3 p,

(3)

D′ = 1

3h3

∫
∂f0(ε)

∂ε
p2σ⊥vG d3 p

are determined by the longitudinal (transport) and the trans-
verse cross sections σ‖ and σ⊥, which will be determined
further in the paper. Here f0(ε) is the equilibrium Fermi
distribution function of energy ε of free quasiparticles, and vG

is the projection of the quasiparticle group velocity on the plane
normal to the vortex line. The transverse force proportional to
D′ is the Iordanskii force.

The force Fc transfers momentum from the quasiparticles
occupying bound states in the vortex core to impurities in
superconductors or to free bulk quasiparticles constituting
the bulk normal component of the 3He superfluid. The force
has also two components, longitudinal and transverse to
the relative normal velocity vn − vL, the latter called the
Kopnin-Kravtsov force.22

Finally, d P/dt is the inertial force, which is a product
of the vortex mass and the vortex acceleration dvL/dt , the
momentum P being the momentum of the vortex dependent
on vL.

The theory presented in this paper assumes that the
quasiparticle mean-free path is much longer than the core size
and therefore it can not be used for high temperatures. The
whole paper addresses neutral superfluids, although the results
for the Fermi superfluids are relevant also for type-II s-wave
superconductors since the effects of magnetic fields usually
are not essential for vortex dynamics.2 In superconductors the
normal velocity vn usually vanishes in the coordinate frame
related to the crystal lattice.

The paper starts from Sec. II reminding the old results
for semiclassical scattering of quasiparticles by a vortex.
This shows the connection of the transverse force with
the Aharonov-Bohm effect for quasiparticles. Section III
considers the scattering of BCS quasiparticles on the basis
of the Bogoliubov–de Gennes equations. The analysis is done
using the geometric optics and the partial-wave method. It
demonstrates that the whole transverse force from free bulk
quasiparticles is fully explained by the Aharonov-Bohm effect
without referring to the concept of spectral flow. But one must
take into account the peculiarities of the Aharonov-Bohm
effect for BCS quasiparticles described by two-component
spinor wave functions. Section IV reminds properties of bound
states in the vortex core in the Fermi superfluid focusing on
the role of superfluid motion outside the core. Sections V
and VI consider various contributions to the vortex mass
in the Bose and the Fermi liquids, respectively. Section VII
discusses the derivation of the transverse force and the vortex
mass from the Boltzmann equation focusing on the effect of
superfluid transport past the vortex and on the comparison with
the analysis of the previous sections. Section VIII analyzes
possible effects of the vortex mass on vortex dynamics. A
concluding discussion of the results and the shortcomings
of the spectral flow interpretation of the transverse force is
presented in Sec. IX. Two appendixes address more special
issues: the simplified derivation of the spectrum of bound states
for a core with linear growth of the gap as a function of the
distance from the axis (Appendix A) and the derivation of
the vortex mass for a core with linear growth of density in
the Bose superfluid (Appendix B).

II. TRANSVERSE FORCE FROM THE SEMICLASSICAL
SCATTERING THEORY (GEOMETRIC OPTICS)

It is useful to start from the simplest approach to this
problem based on the semiclassical scattering theory, which
was used for rotons by Lifshitz and Pitaevskii23 long ago. The
theory is based on the geometric optics. A quasiparticle moves
along a well-defined trajectory and its motion is described by
variation of the position vector R and the momentum p of
the quasiparticle in time. The classical Hamilton equations for
these are

d R
dt

= ∂ε

∂ p
,

d p
dt

= − ∂ε

∂ R
. (4)

Here

ε( p) = ε0( p) + p · vv (5)

is the energy of the quasiparticle in the moving fluid, ε0 is the
quasiparticle energy in the resting fluid, and vv is the velocity
induced by a rectilinear vortex:

vv = [κ × r]

2πr2
, (6)

where r is a position vector in the plane normal to the vortex
line (the projection of R on that plane). In order to simplify
discussion, we assume that the quasiparticle moves in the
normal plane, so its momentum p lies in this plane.

The vortex velocity field produces a force ∇( p · vv)
on the quasiparticle. The force may be considered as weak
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FIG. 1. (Color online) Semiclassical scattering of rotons.
(a) Rotons at trajectories with impact parameters b = x < 0 or b > b∗

move past the vortex. Rotons at trajectories with 0 < b < b∗ are
fully reflected by the vortex. The shaded area (Andreev shadow) is
classically forbidden for rotons. (b) Action variation δS(b) along the
trajectory as a function of the impact parameter b (dimensionless
variables). (c) Scattering angle ϕ(b) as a function of the impact
parameter b (dimensionless variables).

and the quasiparticle trajectory as nearly rectilinear. Suppose
that the trajectory is parallel to the y axis [Fig. 1(a)] and its
impact parameter (the distance between the vortex line and the
trajectory) is b = x. Then Eq. (4) gives

dy

dt
= vG,

d p
dt

= −∇( p · vv). (7)

Here vG = ∂ε0( p)/∂ p is the quasiparticle group velocity in
the resting fluid, which is in our case approximately parallel
to the axis y. Excluding time from these equations, one has a
differential equation determining the quasiparticle momentum
variation along the trajectory:

d p
dy

= − 1

vG

∇( p · vv). (8)

Integration of this equation assuming that the group velocity
vG does not vary along the trajectory yields

p(y) = p − p

vG

vv(b,y), (9)

where p = p(−∞) is the momentum at y = −∞.
The scattering angle ϕ between the final and the initial

momenta of the quasiparticle determines the momenta p(1 −
cos ϕ) and p sin ϕ, which are longitudinal and transverse
with the respect to the incident momentum p. The momenta
are transferred by the scattered quasiparticle to the vortex.
Correspondingly, the longitudinal and the transverse forces
on the vortex from quasiparticles [see Eqs. (2) and (3)] are
determined by the longitudinal (transport)

σ‖ =
∫ π

−π

σ (ϕ)(1 − cos ϕ)dϕ ≈
∫ ∞

−∞

ϕ(b)2

2
db, (10)

and the transverse

σ⊥ =
∫ π

−π

σ (ϕ) sin ϕ dϕ ≈
∫ ∞

−∞
ϕ(b)db (11)

effective cross sections. Here

σ (ϕ) = db

dϕ
(12)

is the differential cross section. In our analysis we assume that
the scattering angle ϕ ≈ −px/p is small.

In the Hamilton-Jacobi theory, the momentum is connected
with the classical action: p = ∂S/∂ r . Then px = ∂δS(b)/∂b,
where

δS(b) =
∫ ∞

−∞
[p(y) − p]dy = − p

vG

∫ ∞

−∞
∇yvvydy (13)

is the variation of the classical action along the trajectory,
which is a function of the impact parameter b. This yields

σ⊥ = − 1

p

∫ ∞

−∞

∂δS(b)

∂b
db = δS(−∞) − δS(+∞)

p
. (14)

Bearing in mind that the velocity induced by the vortex is
vv = (κ/2π )∇φ(r) where the phase φ = arctan (y/x) is the
azimuthal angle for the two-dimensional position vector r [see
Eq. (6)], one obtains that

δS(b) = − pκ

2πvG

∫ ∞

−∞

b

b2 + y2
dy = −signb

pκ

2vG

. (15)

Eventually, Eq. (14) yields the transverse cross section24

σ⊥ = κ

vG

. (16)

So, we have obtained for the transverse cross section a
universal expression, which looks valid for any quasiparticle
spectrum. The cross section is proportional to the total
variation of the classical action around the vortex line. Because
of correspondence of the classical action to the quantum
mechanical phase, this points out connection of the transverse
force with the geometric phase, or the Aharonov-Bohm
effect.24 Eqnarray (16) yields a correct transverse cross section
for phonons even though the semiclassical theory is not valid
for phonons: there are no well-defined classical trajectories for
phonons except for large impact parameters b at which the
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scattering angle ϕ is negligible. In the case of phonons, the
group velocity vG is the sound velocity cs .

The simple expression (14) for the transverse cross section
does not depend on how the scattering angle varies as a function
of the impact parameter because an integrand in Eq. (14) is a
derivative of the action. But it does assume that the action is
a continuous function of the impact parameter. Now we shall
check it for rotons in superfluid 4He.

The energy spectrum for rotons is ε0( p) = � + (p −
p0)2/2μ, where � is the roton gap and μ is the roton mass.
According to the energy conservation law following from the
Hamilton equations [Eq. (4)], one has

� + [p(y) − p0]2

2μ
+ p(y)vv(y) = � + (p − p0)2

2μ
. (17)

The right-hand side is the energy far from the vortex line,
where p = p(−∞). The variation of the roton group velocity
along the trajectory with the impact parameter b is given by

vG(y) = p(y) − p0

μ
= 1

μ

√
(p − p0)2 − 2μvvy

= vG

√
1 − bb∗

b2 + y2
. (18)

Here the characteristic scattering length

b∗ = κμp

π (p − p0)2
(19)

is introduced and the vG = vG(−∞) = (p − p0)/μ is the
roton group velocity far from the vortex line. The asymptotic
expression (9) obtained at constant vG is valid for large impact
parameters |b| 	 b∗.

In the classical scattering theory the point y = 0 on the
trajectory is a turning point: At y < 0 the quasiparticle
approaches to the scattering center (vortex line in our case),
while at y > 0 the quasiparticles move away from the vortex
line. Equation (18) shows that for impact parameters 0 < b <

b∗, the quasiparticle can not reach the usual turning point y = 0
since at y = −y∗, where y∗ = √

b∗b − b2, the group velocity
vanishes, and the quasiparticle starts to move back to y = −∞
without an essential change of its momentum. This is Andreev
reflection well known in the theory of superconductivity. At
the point y = −y∗, p = p0 and the transition between two
branches of the roton spectrum with p > p0 (positive branch,
parallel momentum, and group velocity) and p < p0 (negative
branch, antiparallel momentum, and group velocity) occurs.
Due to the Andreev reflection the shadow region is formed
near the vortex line which is not available for the roton classical
trajectories. That shadow (Andreev shadow) region is shown
in Fig. 1(a).

Let us find the classic action variation first for trajectories
with impact parameters b > b∗ or b < 0, when there is no
Andreev reflection and the incident roton stays at the same
branch after the collision. Taking into account variation of
the roton group velocity along the trajectory [Eq. (18)], the
variation of the action along the trajectory for the incident

momentum p > p0 is

δS(b) =
∫ ∞

−∞
[p(y) − p] dy

= (p − p0)
∫ ∞

−∞

(√
1 − b∗b

b2 + y2
− 1

)
dy

= 2sign(b)(p − p0)

[
(b − b∗)F

(
b∗

b

)
− bE

(
b∗

b

)]
,

(20)

where

F (m) =
∫ π/2

0

dθ√
1 − m sin2 θ

,

(21)

E(m) =
∫ π/2

0

√
1 − m sin2 θ dθ

are complete elliptic integrals of the first and the second
order, respectively. In the limits b → ±∞, Eq. (20) reduces to
Eq. (15).

In the interval 0 < b < b∗ trajectory ends at the Andreev
reflection point with the coordinate y = −y∗. The incident
roton with momentum p = p0 + (p − p0) > p0 returns after
the Andreev reflection to y = −∞ at the other branch with the
same energy but a slightly different momentum p− = p0 −
(p − p0) < p0. The variation of the action along the whole
path is

δS(b) =
∫ −y∗

−∞
p(y) dy +

∫ −∞

−y∗
p−(y) dy

−
∫ a

−∞
p dy −

∫ −∞

a

p− dy

= 2(p − p0)

[ ∫ −y∗

−∞

(√
1 − b∗b

b2 + y2
− 1

)
dy − y∗ − a

]
.

(22)

Here a is an undefined constant, which does not depend on b

and therefore has no effect on the scattering angle ϕ. Choosing
a = 0 one eliminates any discontinuity of S(b) at b = 0 and
b = b∗.25 Introducing the angle variable again one obtains the
expression

δS(b) = 2(p − p0)

[
(b − b∗)F

(
φ,

b∗

b

)
− bE

(
φ,

b∗

b

)]
(23)

in terms of incomplete elliptic integrals

F (φ,m) =
∫ φ

0

dθ√
1 − m sin2 θ

,

(24)

E(φ,m) =
∫ φ

0

√
1 − m sin2 θ dθ,

where φ = arcsin
√

b/b∗.
In Figs. 1(b) and 1(c), the action δS(b) and the scattering

angle ϕ(b) = −∂δS(b)/∂b are plotted as functions of the
impact parameter b (in dimensionless variables). The angle
ϕ has weak singularities at b = 0 and b∗, which are integrable
in the integral for the transverse cross section σ⊥ [Eq. (11)].
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Substituting the transverse cross section (16) into the
expression for the parameter D′, which determines the
Iordanskii force [see Eq. (3)], one obtains D′ = −κmnn,
where nn is the normal particle density. This rather simple and
universal expression tempts to claim its universal topological
origin since κ in this expression is a topological charge.
However, in Sec. III we shall see that the expression is not
universal. For quasiparticles in a BCS superconductor with
energy much exceeding the gap, an additional small factor
appears in this expression.

III. SCATTERING OF BULK FREE BCS QUASIPARTICLES
BY A VORTEX IN FERMI SUPERFLUIDS

A. The Bogoliubov–de Gennes equations

The wave function of quasiparticles in the BCS theory is a
spinor with two components,

ψ(R) =
(

u(R)
v(R)

)
, (25)

which are determined from the Bogoliubov–de Gennes
equations21

− h̄2

2m

(∇2 + k2
F

)
u(R) + �(R)eiθ(R)v(R) = εu(R), (26)

h̄2

2m

(∇2 + k2
F

)
v(R) + �(R)e−iθ(R)u(R) = εv(R). (27)

Here kF is the Fermi wave number, and the gap �(R) can vary
in space. The equations correspond to the Hamiltonian with
the density

H = h̄2

2m

(|∇u|2 − k2
F |u|2) − h̄2

2m

(|∇v|2 − k2
F |v|2)

+�(R)eiθ(R)u∗v + �(r)e−iθ(R)v∗u. (28)

If a superfluid is at rest, the order parameter phase θ is
a constant and the solution of the Bogoliubov–de Gennes
equations is a plane wave(

u0

v0e
iθ

)
eik·R, (29)

where

(
u0

v0

)
=

⎛
⎝

√
1
2

(
1 + ξ

ε0

)
√

1
2

(
1 − ξ

ε0

)
⎞
⎠ . (30)

The energy is given by the well-known BCS quasiparticle
spectrum ε0 = ±

√
ξ 2 + �2. Here ξ = (h̄2/2m)(k2 − k2

F ) ≈
h̄vF (k − kF ) is the quasiparticle energy in the normal Fermi
liquid and vF = kF /m is the Fermi velocity. The two wave
numbers

k± =
√

k2
F ± 2

√
ε2

0 − �2 (31)

correspond to the particlelike (+) and the holelike (−)
branches of the spectrum.

The Bogoliubov–de Gennes equations are written for
the wave function of quasiparticles, and, as in the case of the
Schrödinger equation, there is the continuity equation for the

probability |u|2 + |v|2 to find the quasiparticle in some point
in space:

∂(|u|2 + |v|2)

dt
= −∇ · g, (32)

where

g = − ih̄

2m
(u∗∇u − u∇u∗) + ih̄

2m
(v∗∇v − v∇v∗) (33)

is the probability flux. Equation (32) is a manifestation of the
conservation law for the number of quasiparticles. But, the
number of quasiparticles and the probability flux g are not
the same as the number of particles (charge) and the particle
current j . The Hamiltonian of Eq. (28) is not gauge invariant
and there is no conservation law for the particle number.
The Bogoliubov–de Gennes equations lead to the following
equation for time variation of the particle density |u|2 − |v|2:

∂(|u|2 − |v|2)

dt
= −∇ · j + 2i�(e−iθ v∗u − eiθ vu∗), (34)

where

j = − ih̄

2m
(u∗∇u − u∇u∗) − ih̄

2m
(v∗∇v − v∇v∗) (35)

is the particle current. Eqnarray (34) contains a source (the last
term in the right-hand side) related with possible changing of
the total particle number. Globally, the number of particles is
of course a conserved quantity. The source in the continuity
equation for the particle density corresponds to conversion of
the superfluid part of the liquid to the normal one and vice
versa in inhomogeneous states. In order to restore the global
conservation law one should solve the Bogoliubov–de Gennes
equations together with the self-consistency equation for the
order parameter proportional to the gap. This property of the
Bogoliubov–de Gennes equations is well known in the theory
of superconductivity.26

B. Superfluid motion in the Bogoliubov–de Gennes equations

Superfluid velocity is determined by the order-parameter
phase gradient

vs = κc

2π
∇θ, (36)

where κc = h/2m is the circulation quantum for the Cooper-
pair condensate and m is the particle mass. Assuming constant
absolute value of the gap � and gradient of phase, the solution
of the Bogoliubov–de Gennes equations is(

u

v

)
=

(
u0e

i(k+∇θ1)·R

v0e
i(k−∇θ2)·R

)
. (37)

Here we introduced separate phases θ1 and θ2 for two
spinor components. Their sum determines the order-parameter
phase θ = θ1 + θ2. The spinor (37) corresponds to the energy
(neglecting terms of the second order in phase gradients)

ε = ε0(k) + h̄κc

2π
k · ∇θ + ∂ε0

∂k
· ∇θ1 − ∇θ2

2

= ε0(k) + h̄k ·
[
vs + ξ

ε0

κc

2π
(∇θ1 − ∇θ2)

]
. (38)
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It looks as if the phase difference θ1 − θ2 were of no importance
since it can be removed by redefinition of the wave vector
k. Choosing θ1 = θ2 one obtains the expression for the
quasiparticle energy following from the Galilean invariance
and well known from textbooks on superconductivity21: ε =
ε0 + h̄k · vs . But, another choice is required in the theory
of quasiparticle scattering by a vortex: either θ1 = 0 or
θ2 = 0. This is dictated by cyclic boundary conditions for
spinor components on the closed path around the vortex (see
Secs. III C and III D).

For the choice θ1 = θ2, Eq. (35) yields the following
expression for the current in the plane-wave state:

j = h̄k
m

+ N (k)vs . (39)

So, the superfluid velocity contribution to the current is
proportional to the charge N (k) = |u0|2 − |v0|2 in the state.

C. Scattering of free BCS quasiparticles by a vortex:
Simple approach

The mutual-friction force has been calculated for pure
type-II superconductors long ago.27,28 Since the BSC theory
describes also the superfluid 3He and the effect of the magnetic
field is insignificant for mutual friction in type-II super-
conductors, these calculations are relevant also for singular
vortices in the superfluid 3He. In this section, we use simple
approaches: geometric optics for low energies ε0 − � � �

and perturbation theory for high energies ε0 	 �. A more
accurate theory based on the partial-wave expansion will be
considered in the next section.

When the energy of the quasiparticles is close to the energy
gap of the superconductor (ξ � �), the BCS quasiparticle
spectrum ε0 ≈ � + v2

Fh̄2(k − kF )2/2� is identical to the roton
spectrum with the roton minimum momentum replaced by
the Fermi momentum h̄kF and the roton mass μ replaced
by �/v2

F , where vF = h̄kF /m is the Fermi velocity. So, the
semiclassical theory for rotons can be directly applied to
such BCS quasiparticles, and the transverse cross section
for them is given by Eq. (16), in which the circulation
quantum κ is replaced by the circulation quantum κc = h/2m

for the Cooper-pair condensate and the group velocity for
the BCS quasiparticles is vG = vF ξ/ε0. Figure 1 illustrating
scattering of rotons by the vortex is relevant also for low-energy
quasiparticles scattered by the vortex. The phenomenon of
the nearly 180% reflection of quasiparticles from the area
of the Andreev shadow shown in the figure is important for
description of zero-temperature superfluid turbulence.29,30

If the quasiparticle energy is much larger than the super-
conducting gap, the group velocity vG approaches to the
Fermi velocity vF and the method of classical trajectories
yields the transverse cross section κc/vF . This result does not
look reasonable because the cross section being small still
does not vanish in the limit � → 0. Indeed, the partial-wave
calculations27,28 yielded that in the limit of small �/ξ the
transverse cross section differed from the semiclassical result
of Eq. (16) by the factor �2/2ξ 2. This also followed from the
solution of the Bogoliubov–de Gennes equations in the Born
approximation31 as shown below.

Let us consider the perturbation theory with respect to
the gap � and the superfluid velocity vs = (κc/2π )∇θ .
For the sake of simplicity the wave vector k lies in the
plane normal to the vortex axis. In our case the superfluid
velocity is the velocity vv induced by the vortex. In the
zero-order approximation u ∼ exp(ik · r) and v = 0. In the
first-order approximation the second Bogoliubov–de Gennes
equation (27) yields

v =
{

� exp(−iθ )

ξ (k) + E(k)
+ � exp(−iθ )

[ξ (k) + E(k)]2

h̄2

m
(k · ∇θ )

}
eik·r . (40)

The first term in curly brackets yields a correction to the
quasiparticle energy ∝�2, but does not contribute to scattering
which is determined by the order-parameter phase gradients.
So we keep only the second term proportional to ∇θ . Inserting
it to the first Bogoliubov–de Gennes equation (26), one obtains
the following equation for the correction u′ to the quasiparticle
amplitude u ∼ 1:

(∇2 + k2)u′ = (k · ∇θ )
�2

2ξ 2
eik·r . (41)

This equation is similar to the wave equation for the sound
wave propagating past the vortex4,31 and using this analogy one
easily obtains the expression for the transverse cross section:

σ⊥ = �2

2ξ 2

π

kF

= �2

2ξ 2

κc

vF

. (42)

The cross section vanishes at � → 0 as expected. But, the
question where the geometric optics went wrong still remains.
The answer is that the cyclic boundary conditions were
violated with the choice θ1 = θ2 = θ/2. Let us move the spinor
given by Eq. (37) along a closed path around the vortex line.
After closing the path, the phase θ obtains the shift 2π but the
shifts of the phases θ1 and θ2 are equal to π . So the periodic
boundary conditions for the spinor components u and v are
violated. They are satisfied only if either θ1 or θ2 vanishes.
According to Eq. (38), this modifies the expression for the
quasiparticle energy in the vortex velocity field

ε = ε0(k) + (h̄k ± mvG) · vv. (43)

Then the value of p in Eq. (15) must be replaced by h̄k ± mvG.
Choosing − for quasiparticles and + for quasiholes (this is
dictated by a physically reasonable condition that the cross
section vanishes far from the Fermi surface) one obtains the
transverse cross section27,28

σ⊥ = κc

vG

− κc

vF

= κc

vF

(
ε0√

ε2
0 − �2

− 1

)
. (44)

In the limit ε0 	 �, this agrees with the expression (42)
obtained from the perturbation theory with respect to �.
A more rigorous partial-wave analysis of the next section
confirms this result for any ratio �/ε0. This provides an
explanation for shortcoming of the naive geometric-optics
analysis: It ignored peculiarities of the Aharonov-Bohm effect
for BCS quasiparticles and used an improper definition for the
quasiparticle phase shift along the trajectory. We shall continue
the discussion of this issue in the end of the next section.
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D. Partial-wave analysis of scattering of free BCS
quasiparticles by a vortex

The partial-wave analysis in the cylindric coordinates r,φ,z

uses expansion of the spinor components in eigenfunctions eilφ

of the orbital moment. In the presence of a vortex, the phase of
the order parameter �eiθ around the vortex is θ = φ and the
partial-wave expansion for the wave function is

u =
∑

l

ule
ilφ, v =

∑
l

vle
i(l−1)φ, (45)

where ul and vl must satisfy the Bogoliubov–de Gennes
equations for partial waves:

− h̄2

2m

(
d2ul

dr2
+ 1

r

dul

dr
− l2ul

r2

)
+ �ul =

(
ε + h̄2k2

F

2m

)
vl,

h̄2

2m

(
d2vl

dr2
+ 1

r

dvl

dr
− (l − 1)2vl

r2

)
+ �ul =

(
ε − h̄2k2

F

2m

)
vl.

(46)

In our case, the orbital number l is not an ideal quantum
number since the two components of the spinor correspond to
two different orbital numbers l and l − 1.

In order to find the scattering phases, we shall look for the
semiclassical solution of the Bogoliubov–de Gennes equations
for the scaled amplitudes Ul = ul

√
r and Vl = vl

√
r:

− h̄2

2m

(
d2Ul

dr2
− l2 − 1/4

r2
Ul

)
+ �Vl =

(
ε + h̄2k2

F

2m

)
Ul,

h̄2

2m

(
d2Vl

dr2
− (l − 1)2 − 1/4

r2
Vl

)
+ �Ul =

(
ε − h̄2k2

F

2m

)
Vl.

(47)

The semiclassical solution of the Bogoliubov–de Gennes
equations (47) for partial waves is

ψ ∼ 1√
k±

⎛
⎜⎜⎝

√
1
2

(
1 +

√
ε2

0−�2

ε0

)
√

1
2

(
1 −

√
ε2

0−�2

ε0

)
⎞
⎟⎟⎠ ei

∫ r
k±(r)dr , (48)

where ε0 = ε − (l − 1/2)/2r2 and

k±(r)2 = k2
F − (l − 1/2)2

r2
± 2

√(
ε − l − 1/2

2r2

)2

− �2.

(49)

If a quasiparticle with the wave number k+ is incident on the
vortex line, it will be reflected either as a quasiparticle with
the same number k+ (usual reflection) or as a quasiparticle
belonging to the holelike branch with k− < kF (Andreev
reflection). The usual reflection occurs at the turning point
determined by the condition k+(rr ) = 0. In the Andreev
reflection point r = ra , the radical in Eq. (49) vanishes, i.e.,
ε − l−1/2

2r2
a

± � = 0. The type of the reflection depends on
which turning point is reached earlier: usual or Andreev
reflections take place if rr > ra or rr < ra , respectively.

In the following we shall look for partial waves with
large orbital numbers l, which correspond to large impact
parameters. Then only usual reflection is possible, and one

can expand the radical in Eq. (49) with respect to (l − 1/2)/r2.
Then

k2 ≈ k2
± − (l − 1/2)2 ± (l − 1/2)ε/

√
ε2 − �2

r2

≈ k2
± − (l − 1/2 ± ε/2

√
ε2 − �2)2

r2
, (50)

where k± are values of k±(r) at r → ∞. The total phase
accumulated after quasiparticle motion from very large r to
the turning point and back to large r is

�l = 2
∫ r

rt

√
k2± − (l − 1/2 ± ε/2

√
ε2 − �2)2

r2
dr

(51)

−π

2
= 2k±r − π

∣∣∣∣l − 1

2
± ε

2
√

ε2 − �2

∣∣∣∣ − π

2
.

Here the phase shift −π/2 originates from the close vicinity of
the reflection point where the semiclassical approach becomes
invalid.32 In order to find the phase shift from scattering of the
quasiparticle (particle branch, the upper sign in the expressions
above) by the vortex one should subtract the phase shift
�l0 = 2k+r − π (|l| + 1/2) of the l partial-wave function in
the uniform state. This follows from the expansion of a plane
wave in partial waves. Then the scattering phase shift is

δl = �l − �l0

2
= −π

2

∣∣∣∣l − 1

2
+ ε

2
√

ε2 − �2

∣∣∣∣ + |l|π
2

= π

4

(
1 − ε√

ε2 − �2

)
signl. (52)

The variation of the classical action along the quasiparticle
trajectory is connected with the quantum-mechanical scatter-
ing phase shift by the relation δS(b) = 2h̄δl , where b ≈ l/kF .
Thus, one obtains that

δS(±∞) = ∓h̄kF κc

2

(
1

vG

− 1

vF

)
. (53)

Inserting it into Eq. (14) yields the transverse cross section
Eq. (44) obtained after correction of the geometric-optics
expression. In the case of the hole branch (the lower sign in the
expressions above) one should subtract from the phase shift
�l in the vortex state the phase shift �(l−1)0 = 2k−r − π (|l −
1| + 1/2) of the (l − 1) partial-wave function in the uniform
state.

The second term ∝ 1/vF in the transverse cross section
(44) was considered as anomalous and interpreted in the
terms of spectral flow6,16 although its original derivation from
the partial-wave analysis27 did not used this concept (see
further discussion in Sec. IX). The analysis presented here
demonstrates that it can be explained within the framework of
the scattering theory taking into account peculiarities of the
Aharonov-Bohm effect for BCS quasiparticles.

IV. BOUND VORTEX-CORE STATES AND
THE CURRENT IN THE CORE

A. Bound Andreev states in a planar SNS junction

For the analysis of the role of the core states in vortex
dynamics it is useful to consider a simplified approach to them
based on geometric optics. Such an approach was suggested
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by Stone.19 He also used the model of a normal vortex core
exploiting its analogy with the one-dimensional (1D) problem
of Andreev bound states in the ballistic SNS junction. We also
shall investigate this analogy. In the past, a number of authors
addressed the question as to whether and what Josephson
current is possible through such a junction in full absence of
the order parameter in the normal layer.33–35 They concluded
that the Josephson current is possible due to phase coherence of
the Andreev states, which are sensitive to the phase difference
on the junction.

We consider a normal layer of the width L, which is
perpendicular to the axis y. A superfluid in superconducting
regions y < 0 and y > L moves with the velocity vs . Let us
look for a state with the energy

ε = ε0 + h̄k · vs ≈ ε0 + h̄k0 · vs , (54)

where |ε0| < � and the wave vector k0(kx,kf ,kz) has a
modulus equal to the Fermi wave number kF , so that the
component ky is equal to kf =

√
k2
F − k2

x − k2
z . The wave

function, which satisfies the Bogoliubov–de Gennes equations,
is given by(

u

v

)
=

(
Aeim(vs ·R)/h̄+imε0y/h̄2kf

Be−im(vs ·R)/h̄−imε0y/h̄2kf

)
eik0·R (55)

inside the normal layer 0 < y < L,

(
u

v

)
=

(
u−eiθ−/2+im(vs ·R)/h̄

v−e−iθ−/2−im(vs ·R)/h̄

)
e
ik0·R+ m

√
�2−ε2

0
h̄2kf

y
(56)

inside the superconductor at y < 0, and

(
u

v

)
= C

(
u+eiθ+/2+im(vs ·R)/h̄

v+e−iθ+/2−im(vs ·R)/h̄

)
e
ik0·R− m

√
�2−ε2

0
h̄2kf

y
(57)

inside the superconductor at y > L. Here

u± = v∓ =

√√√√√1

2

(
1 ± i

√
�2 − ε2

0

ε0

)
, (58)

and the constants A and B are determined from the boundary
conditions at the interface y = 0:

A = u−eiθ−/2, A = v−e−iθ−/2. (59)

One can find the constant C from the boundary conditions at
the interface y = L only for discrete values of the energy ε0

satisfying the following Bohr-Sommerfeld condition:19

2mε0L

h̄2kf

= 2π

(
s + 1

2

)
+ (θ+ − θ−) − 2 arcsin

ε0

�
, (60)

with integer s. At small energy ε0 � � this yields the spectrum
of the Andreev bound states:

ε0 =
(

2mL

h̄2kf

+ 1

�

)−1 [
2π

(
s + 1

2

)
+ (θ+ − θ−)

]
. (61)

The wave function given by Eqs. (55)–(57) assumes that
only the Andreev reflection occurs at the core boundaries,
so the wave vector is always close to the Fermi surface and
its normal component ky ≈ kf does not change a sign at the
reflection. This is a valid assumption in the weak-coupling

limit when the superconducting gap � is small compared to
the Fermi energy εF = h̄2k2

F /2m. In this approximation the
boundary conditions at the interfaces y = 0 and L require
continuity only of two spinor components, ignoring the
continuity conditions for spinor gradients. It is worthwhile to
note that this approximation does not provide exact continuity
of the quasiparticle current at the interfaces as required by the
conservation law for quasiparticles. This can be achieved only
in the next approximation taking into account the possibility
of usual reflection changing the direction of the momentum
normal to the layers. However, for our goals we need not the
quasiparticle current but the genuine particle current, and the
used approximation is sufficient.

Now let us find the contribution of bound states to the
momentum of the liquid. Since in the bound states particle and
hole components are equal in amplitude, the charge N (k) =
|u|2 − |v|2 in these states vanishes, and according to Eq. (39)
the current normal to the layers in any bound state is about
h̄kf /m. Let us consider the case of a wide normal layer L 	
h̄kF /m� when there is a large number of bound states and
the sum over them can be replaced by an integral. Then the
total contribution of the bound states to the current is simply
a product of h̄kf /m and a difference of the number of states
with the wave vectors in opposite directions. At T = 0 all
states with ε = ε0 + h̄k0 · vs < 0 are filled. This yields that
the total momentum in the bound states (per unit area of the
SNS junction) normal to the layers is

Pbs = −
∫

k<kF

h̄2k2
f vs

δε

dk‖
4π2

= −Lnmvs, (62)

where k‖(kx,kz) is the component of the wave vector in the
layer plane, n is the particle density, and

δε = π
h̄2kf

mL
(63)

is the distance between discrete levels. The momentum
corresponds to the current density jbs = Pbs/Lm = −nvs

inside the normal layer. This shows that quasiparticles in core
bound states play a role of the effective normal component,
which exists even at zero temperature.6

Note that the phase difference θ+ − θ− between the super-
conducting banks of the SNS junction has no effect on the
current in the continuum limit. This is because the main effect
of the phase difference is a shift of the levels in the forbidden
gap without any essential change of their number. The shift of
the levels leads to an entry of a new level on one side of the gap
and an exit of an old level on another side (Fig. 2). Normally
these two events are not fully synchronized and the number
of level can fluctuate with the ±1 level. This fluctuation is not
essential in the limit of a large number of levels. On the other
hand, exactly this small variation of the level number leads
to the Josephson effect in the SNS junction,33–35 which is
beyond the scope of this work. The shift of levels constitutes
the phenomenon of spectral flow, which arises if the phase
difference θ+ − θ− monotonously increases or decreases and
the levels cross the forbidden gap.

One should also consider the contribution of the continuum
delocalized states with negative energy, which are fully
occupied in the ground state. For a delocalized state (|ε0| > �)

134515-8



TRANSVERSE FORCE ON A VORTEX AND VORTEX MASS: . . . PHYSICAL REVIEW B 87, 134515 (2013)

over the whole bulk
moves outside the normal layer motion  outside the normal layer

FIG. 2. Bound states inside the superconducting gap in the SNS junction. Occupied levels below the Fermi level ε = 0 are shown by black
circles, while empty levels above the Fermi level are shown by white ones. Center: No phase difference across the normal layer, no superfluid
velocity inside superconducting areas. Right: There is phase difference θ+ − θ− across the normal layer but still no superfluid velocity inside
superconducting areas. Arrowed dashed lines show shift of level relatively to the gap and the Fermi level. Some levels exit from the gap at the
top of the gap while some new levels enter the gap at the gap bottom. Left: No phase difference across the normal layer, but there is the superfluid
velocity vs at the bulk of superconductors. This shifts the gap with respect to the Fermi level and changes the number of occupied levels.

of a quasiparticle propagating from y = −∞ to ∞, the spinor
in the normal layer 0 < y < L is given by the same expression
as Eq. (55) for the bound state, whereas in superconducting
layers the states are described by spinors

t

(
u0e

iθ+/2+im(vs ·R)/h̄

v0e
−iθ+/2−im(vs ·R)/h̄

)
e
ik0·R+i

m

√
ε2
0 −�2

h̄2kf
y

(64)

for y > L and

eik0·R
[(

u0e
iθ−/2+im(vs ·R)/h̄

v0e
−iθ−/2−im(vs ·R)/h̄

)
e
i

m

√
ε2
0 −�2

h̄2kf
y

+ r

(
v0e

iθ−/2+im(vs ·R)/h̄

u0e
−iθ−/2−im(vs ·R)/h̄

)
e
−i

m

√
ε2
0 −�2

h̄2kf
y

]
(65)

for y < 0. Here t and r are amplitudes of transmission and
reflection (|t |2 + |r|2 = 1) which are determined from the
continuity of spinor components (but not their derivatives!)35

at y = 0 and L. As well as for bound states, the analysis
considers only the Andreev reflection neglecting probability
of usual reflection, which changes the direction of the wave
vector. The amplitudes of the spinor components in the normal
layer [see Eq. (55)] are

A = tu0e
iθ+/2+im(

√
ε2

0−�2−ε0)L/h̄2kf ,
(66)

B = tv0e
−iθ+/2+im(

√
ε2

0−�2+ε0)L/h̄2kf .

The transmission probability is

|t |2 = ε2
0 − �2

ε2
0 − �2 cos2[ε0mL/h̄2kf − (θ+ − θ−)/2]

. (67)

The transmission probability differs from unity in the small
energy interval of the order � � εF , and the effect of reflection
is not essential for the contribution of delocalized states to the

supercurrent. The latter can be found by summation of Eq. (39)
over the whole continuum of free bulk states. The whole
particle density is accumulated in delocalized but not bound
states. Neglecting reflection for the continuum states, the
density and the current in the normal and the superconducting
areas do not differ essentially. So, the whole ensemble of
delocalized quasiparticles is a liquid of nearly constant density
n moving with the spatially uniform velocity vs . This points
out nearly ideal transparency of the ballistic normal layers
for the supercurrent of delocalized quasiparticles. Note that
scattering of continuum states by impurities is impossible since
all continuum states are fully occupied.

Summing the momenta in localized and delocalized states
inside the normal layer, one obtains that the total momentum
and the current eventually vanish there (with accuracy of the
small parameter of weak coupling �/εF ). Keeping in mind
the presence of the current nvs in superconducting layers, this
violates the conservation law for the particle number since
backflow in our 1D geometry is impossible and the current
must be constant along the direction normal to the layers. A
proper conclusion from this is that the superfluid transport (but
not diffusive transport with dissipation!) with high superfluid
velocity in this one-dimensional geometry is impossible. But,
this does not rule out the superfluid transport with very
low superfluid velocities vs � h̄/mL when discreteness of
the Andreev bound states and the phase difference across the
normal layer can not be ignored. This returns us again to the
problem of the Josephson effect in the SNS junction.33–35

B. Bound vortex-core states: Ballistic normal core

Now let us consider bound states in a normal core of a
vortex. A reliable assumption is that a quasiparticle inside the
core, where the superconducting order parameter vanishes,
moves along an approximately straight trajectory back and
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FIG. 3. (Color online) Bound state in the normal core. The
vertical solid arrowed line shows the trajectory of the quasiparticle and
the vertical dashed arrowed line shows the trajectory of the quasihole
after Andreev reflection of the quasiparticle at the core boundary.
Note that the picture is purely schematic, and in fact the analysis was
done for the case when the impact parameter b is much less than
the core radius rc but still much larger than the interatomic distance
1/kF .

forth, reversing its direction of motion via Andreev reflection at
the boundary of the core. The trajectory is chosen to be parallel
to the y axis. For trajectories with impact parameters much
less than the core radius, the bound states are similar to those
in the SNS junction with the normal-layer width L equal to
the core diameter 2rc. On the other hand, the phase difference
θ+ − θ− = θv + θs consists from the phase difference induced
by the vortex, θv = π − 2 arcsin(b/rc) ≈ π − 2b/rc, and the
phase difference θs produced by the superflow past the vortex.
Here b = l/kf is the impact parameter and l is the quantum
number of the discrete angular momentum. Geometry of the
process is shown in Fig. 3.

Eventually the energy of the bound state in the normal core
for the chiral zero-crossing branch s = −1 depends on the
orbital quantum number l and is ε(l) = ε0(l) + h̄kf vsl cos α,
where

ε0(l) =
(

1 + h̄2kf

2mrc�

)−1
h̄2kf

2mrc

(
− b

rc

+ θs

2

)
, (68)

and α is the angle between the trajectory (the axis y) and the
local superfluid velocity vsl (see Fig. 3), which is different from
the superfluid velocity vs far from the vortex in the presence of
the backflow (see below). Introducing the angular momentum
Lz = h̄l of the bound state, there is a frequency

ω0 = ∂ε0

∂Lz

= h̄

2mr2
c

(
1 + h̄2kf

2m�rc

)−1

, (69)

with which the trajectory slowly rotates around the vortex
axis. The phase difference from the superflow outside the
core can be presented in the form of a dipole field θs =
(1 + h̄2kf /2mrc�)(4m/h̄)rc · vθ , where rc is the vector of
the modulus rc directed normally to the cylindric border of
the core and the superfluid velocity vθ is one more superfluid
velocity different in general from the asymptotic velocity vs

and the local velocity vsl . Introducing the isotropic part of the
spectrum

ε00 = −ω0Lz, (70)

the whole spectrum becomes

ε = ε00 + h̄k · (ṽs − vL), (71)

where the presence of the vortex velocity vL points out that
the calculation is done for the coordinate frame connected with
vortex and

ṽs = vθ + vsl (72)

is the effective superfluid velocity taking into account the
superfluid velocity vsl outside the core and the contribution
of the phase difference θs . All three velocities in Eq. (72) are
parallel to each other.

For the analysis of the vortex mass one needs to know the
contribution of bound states to the total momentum of the
liquid if the fluid flows past the vortex with the superfluid
velocity vs . As well as in the case of the SNS junction,
every bound state has a momentum of the magnitude about
h̄kf directed along the bound-state trajectory. Taking into
account that the energy interval between levels is δε = h̄ω0 and
integrating over all directions and the wave number component
kz along the vortex axis, one obtains that the total momentum is

Pbs = −1

2

∫ kF

−kF

dkz

2π

∫
dα cos2 α

h̄k2
f

ω0
(vsl − vL)

= −πh̄n

ω0
(vsl − vL). (73)

The expression was derived for large rc neglecting corrections
of the order h̄2kf /2m�rc in Eq. (69). The coefficient before the
velocity vL is the Kopnin vortex mass μK = πh̄n/ω0. Using
Eq. (69) for ω0 in the limit of large core rc 	 h̄2kF /m�

and assuming that the momentum is uniformly distributed
over the area πr2

c of the core, this momentum corresponds
to the current jbs = Pbs/πr2

c m = −2n(vsl − vL) inside the
core.

The momentum in the core depends only on the local
superfluid velocity vsl outside the core and not on the phase
difference θs . The reason is the same as in the case of the SNS
junction: the phase difference shifts energy levels but does not
change their number since any crossing of the zero energy by
a level is compensated by an entry or an exit of an level at the
bottom of the forbidden gap. Meanwhile, it is variation of the
phase difference that governs the spectral flow. In contrast to
the SNS case, where the phase difference across the normal
layer can vary monotonously, the phase difference across the
normal core of the moving vortex can only oscillate without
monotonously crossing the forbidden gap. This rules out the
steady spectral flow. The oscillation is related with rotation of
the bound state with angular velocity ω0 and dependence of
the level position with respect to the gap on the α-dependent
phase difference θs in Eq. (68).19

In the model of the normal core, the Andreev reflection for
all bound states occurs at the core boundary, and the energies
of bound states are easily determined analytically from the
semiclassical Bohr-Sommerfeld condition. Meanwhile, the
more realistic model of the core with linear growth of the
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order parameter in the core considered in Appendix A shows
that although the concept of well-defined trajectory (geometric
optics) works well, one can not use the semiclassical approach
for description of motion along the trajectory and the Bohr-
Sommerfeld condition is invalid. Despite this, the model of
the normal core gives a qualitatively correct energy spectrum,
different from that from more accurate theories only by a
numerical factor. On the other hand, this model allows a simple
analytical analysis of the backflow effect on the vortex mass,
which would require less transparent numerical calculations
in more realistic models.

V. VORTEX MASS IN THE BOSE LIQUID: BACKFLOW
AND COMPRESSIBILITY CONTRIBUTIONS

In an ideal liquid a singular vortex line has no own inertia
and can not move with respect to the liquid, in which the vortex
line is immersed (Helmholtz’s theorem). But, this statement
is exact only in the limit of an infinitely thin line. Taking
into account the finite size of the vortex core, the vortex line
can move with its own velocity vL different from that of the
surrounding liquid and there is an inertial force proportional
to the vortex line acceleration dvL/dt .

A naive estimation for the vortex mass is to deduce it
from the picture of a cylinder without its own mass moving
through a perfect fluid assuming that the cylinder has a radius
equal to the core radius.10 Then classic hydrodynamics tells
that the cylinder induces a dipole velocity field around it
(backflow):

V bf (r) = κ

2π
∇θbf = −r2

c ∇
[
vbf · r

r2

]
. (74)

The condition of the absence of the radial current through the
core (cylinder) boundary in the coordinate frame moving the
vortex velocity vL requires that the constant velocity vbf ,
which determines the backflow, is vbf = vL − vs . Here vs is
the superfluid velocity far from the vortex core. We consider
the case of T = 0 when ns = n. The kinetic energy of the
backflow is given by

μv

(vL − vs)2

2
= mnr4

c

2

∫
r>rc

d r2

∣∣∣∣∇
[

(vL − vs) · r
r2

]∣∣∣∣
2

= πr2
c mn

(vL − vs)2

2
. (75)

So this yields the vortex mass μv equal to μcore = πr2
c mn,

which is a mass per unit length of the liquid inside a cylinder
of the radius equal to the core radius rc.10 Later we shall call
μcore a core mass (in contrast to a more general term vortex
mass taking into account all possible contributions to the mass
of the vortex).

The vortex mass can be determined from calculation of the
vortex-velocity-dependent contribution to the energy or the
momentum. Naturally, both calculations should yield the same
mass. Sometimes it is simpler to calculate the momentum.2

But, calculation of the momentum of the backflow has a
subtlety well known in classical hydrodynamics. The direct
way to estimate the momentum of the potential velocity field
in an incompressible liquid is to integrate the expression for

the momentum by parts. For the backflow this yields

P = mn
κ

2π

∫
∇θbf (r) d r

= mn
κ

2π

(∫
r=rc

θbf n dS −
∫

r→∞
θbf n dS

)
, (76)

where integration is reduced to integrals over the cylindric
surfaces of radius rc and of infinite radius and n is a normal
to these surfaces. Strictly mathematically speaking, this yields
zero since surface integrals do not depend on surface radii for
the backflow field. However, one should take into account
that any finite momentum P in an incompressible liquid
means that the whole liquid moves with the velocity P/mnV

inversely proportional to the volume V . One should take into
account this tiny velocity simply by deleting the contribution
from the distant surface. This yields the momentum called in
hydrodynamics Kelvin impulse (see Sec. 119 in the textbook
by Lamb36):

PK = mn
κ

2π

∫
r=rc

θbf n dS = μcorevbf . (77)

In classical hydrodynamics they justify using the Kelvin
impulse for an object moving through an incompressible
liquids by considering the momentum transferred to the
object when making it to move from rest.36 But, in quan-
tum hydrodynamics the justification looks simpler. Local
perturbations of the velocity field can not change the phase
at infinity. So, the boundary condition at infinity is not
vanishing velocity, but vanishing phase, i.e., the potential of
the velocity field. On the basis of it, the integral over the
distant surface in the expression for the momentum should be
ignored.

The calculation of the vortex mass assumed that a moving
core is impenetrable for the fluid as a real rigid cylinder though
the cylinder itself has no mass. In reality the vortex core
is not empty and the superfluid will flow through the core,
thus producing a reduced backflow field.14 So, our simple
calculation provides only an upper bound on the vortex mass
related to the core. For illustration of this effect let us consider
the model of a partially filled core with constant particle
density n(1 − λ) inside characterized by the parameter λ < 1.
Inside the core, the liquid moves with the constant velocity
vin, which corresponds to the phase θin = 2π (vin · r)/κ . The
continuity of the phases θin inside the core and the phase
θout = 2π [(vs − vL) · r]/κ + θbf outside the core together
with continuity of the radial flow at the core boundary
yield

vin = vs − vL − vbf , vbf = − λ

2 − λ
(vs − vL). (78)

In the coordinate frame moving with the vortex velocity this
gives the momentum

PL = πr2
c mn(1 − λ)vin + (S − πr2

c )nm(vs − vL) + PK

= nm(vs − vL)

(
S − πr2

c

2λ

2 − λ

)
, (79)

where S is the whole area occupied by the liquid. In order
to see the value of the vortex mass, one needs to know the
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momentum in the arbitrary coordinate frame:

P = PL + mn
[
S − πr2

c + (1 − λ)πr2
c

]
vL

= mn

(
S − πr2

c

2λ

2 − λ

)
vs + mnπr2

c

λ2

2 − λ
vL. (80)

The vortex mass μv = μcoreλ
2/(2 − λ) is a factor before the

vortex velocity vL. If the density suppression �n = nλ in the
core is small, the vortex mass is quadratic in �n.

Strictly speaking the model of constant density in the core is
not relevant for singular vortices in Bose superfluids where the
density must vanish on a vortex axis. Therefore, in Appendix B
we derive the vortex mass for the Bose superfluid using a more
realistic model with linear in r growth of the density in the core.
On the other hand, the model of constant density in the core is
relevant for continuous vortices in the Fermi liquids, namely,
for estimation of the effect of superfluid density suppression on
the vortex mass. However, this contribution is small compared
to the effect of bound states in the core (see Sec. VI).

But in the Bose liquid the most important contribution to
the vortex mass is connected with finite compressibility of the
liquid. The cross term in the kinetic energy of the velocity field
vs(r) − vL = vv(r) + vs − vL in the coordinate frame moving
with vortex produces the density variation in accordance with
the Bernoulli law

δn = −mn
∂n

∂P
vv(r) · (vs − vL) = − n

c2
s

vv(r) · (vs − vL),

(81)

where ∂n/∂P = 1/mc2
s is the fluid compressibility, P is the

pressure, and cs is the sound velocity. The density variation
leads to the energy contribution12,13

μcom
(vL − vs)2

2
=

∫
r>rc

d r2 ∂2E

∂n2

δn2

2

=
∫

r>rc

d r2 ∂μ

∂n

δn2

2
= ε

c2
s

(vL − vs)2

2
,

(82)

where μ = ∂E/∂n is the chemical potential, ∂μ/∂n = mc2
s /n,

and

ε = mnκ2

4π
ln

R

rc

is the static vortex energy per unit vortex-line length. Like
the vortex energy, the vortex mass is determined by a
logarithmically divergent integral, which has to be cut off at
some hydrodynamic scale R, e.g., the intervortex distance.
In the Bose superfluid, according to the Gross-Pitaevskii
theory, the core radius rc ∼ κ/cs is also determined by the
sound velocity cs and, as a consequence, the compressibility
mass is by the logarithmic factor larger than the core mass
μcore = πr2

c mn.

VI. VORTEX MASS IN THE FERMI SUPERFLUID

The two contributions to the vortex mass (from the backflow
and the liquid compressibility) in the Bose superfluid in
principle are relevant also in the Fermi superfluid. However,
the compressibility becomes inessential in the weak-coupling

limit despite a large logarithmic factor. The difference with
the Bose superfluid is that while in the Bose superfluid the
sound velocity goes down (compressibility goes up) in the
weak-interaction limit, in the Fermi superfluid the sound
velocity remains high being always of the order of the Fermi
velocity. But, the most important difference between the Bose
and the Fermi superfluids comes from bound core states, which
contribute not only to the mutual-friction force but also to the
vortex mass.2

Earlier we derived the momentum Pbs in the ground state
in the presence of the superflow past the vortex [Eq. (73)].
The factor before the vortex velocity vL in this expression
is the Kopnin mass μK = πh̄n/ω0. However, the full vortex
mass is not reduced to the Kopnin mass. The current jbs =
Pbs/πmr2

c in the bound states exists only inside the core and
must transform to the superfluid current outside the core. The
latter current forms the backflow velocity field, which must be
determined from the continuity equation for the total fluid. As
a result, the Kopnin mass will be renormalized by the backflow
effect.

In analogy with the analysis of the backflow for the Bose
liquid, the local superfluid velocity vsl = vs + vbf at the core
boundary differs from the superfluid velocity far from the
vortex and the continuity of the current at the core boundary is

jbs = h̄

ω0mr2
c

n(vL − vs − vbf ) = nvbf . (83)

Note that the current in the continuum of delocalized states
does not affect this condition because it has no discontinuity
at the core boundary and contributes the same term mnvsl to
the two sides of this equation. The latter yields

vbf = μK

μcore + μK

(vL − vs), (84)

and the total momentum including the backflow momentum
(Kelvin impulse) PK given by Eq. (77) is

Pbs + μcorevbf = 2μcoreμK

μcore + μK

(vL − vs). (85)

According to this expression, the Kopnin mass μK is renor-
malized by the factor 2μcore/(μK + μcore) equal to 4

3 for the
value of ω0 given by Eq. (69) in the limit of large-core radius
rc 	 h̄2kf /2m�. The most important outcome of this analysis
is not this numerical factor, which depends on the model of the
core anyway, but a more adequate insight into the origin of the
vortex mass. If the Kopnin mass μK is much smaller than
the core mass μcore, the Kopnin mass is renormalized by the
factor 2, i.e., the backflow gives the same contribution as
the bare Kopnin mass. The case of small normal density of
bound states is realized for a vortex with a continuous core in
superfluid 3He when the core radius rc essentially exceeds the
coherence length ξc = h̄vF /� and μK ∼ μcoreξc/rc. Address-
ing this case, Volovik6,37 arrived to an incorrect conclusion that
the contribution of the backflow to the vortex mass is negligible
compared to the bare Kopnin mass. The reason for it was
that Volovik used the condition of continuity of the superfluid
component [see Eq. (24.16) in his book6], whereas only the
total particle number of the liquid but not its superfluid part is
conserved in the presence of the Andreev reflection. In fact,
Volovik estimated the backflow effect from weak suppression
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of the superfluid density inside the continuous core considered
for the Bose liquid in the previous section. He ignored the
backflow induced by the current in bound states.

VII. BOLTZMANN EQUATION FOR THE CORE-STATES
QUASIPARTICLES: THE KOPNIN-KRAVTSOV

FORCE AND THE VORTEX MASS

If there are impurities in superconductors or collisions of
bound quasiparticles with free bulk quasiparticles in superfluid
3He, the bound states produce not only the vortex mass, but also
the mutual-friction force (Kopnin-Kravtsov force). In this case
one should use the Boltzmann equation.2,19 Let us write the
Boltzmann equation in the continuum of semiclassical states
bound in the core and characterized by the two Hamiltonian-
conjugate quantities “angle α-moment Lz”:

∂f

∂t
− ∂ε

∂α

∂f

∂Lz

+ ∂ε

∂Lz

∂f

∂α
= ∂f

∂t

∣∣∣∣
col

. (86)

The collision term in the right-hand side in the relaxation-time
approximation is

∂f

∂t

∣∣∣∣
col

= −f − fn(ε,vn)

τ
. (87)

It takes into account elastic collisions with impurities in
superconductors (then vn is the velocity of the crystal lattice)
or with bulk free quasiparticles in superfluids. Here

fn(ε,vn) = 1

e
ε−h̄k·(vn−vL)

T + 1
= 1

e
ε00−h̄k·(vn−ṽs )

T + 1
(88)

is the distribution function for bound states, which are in the
equilibrium with the normal component.

The equilibrium distribution function in the collision term
has a small anisotropic part if the superfluid part moves with
respect to the normal part of the liquid. This is a well-known
property of the Boltzmann equation in superconductors.6,19,38

Note that Kopnin2 used the different Boltzmann equation,
which follows from that used in the paper if the superfluid
velocity ṽs is replaced by the normal velocity vn = 0. This
difference does not lead to the difference in the Kopnin-
Kravtsov force and the Kopnin mass since they do not depend
on the relative velocity ṽs − vn. But, in general it could
be important, e.g., for nonstationary phenomena when the
distribution function varies in time.

We expand the distribution functions around the isotropic
equilibrium distribution function f0(ε00):

f ( p) = f0(ε00) + f1(ε,vn). (89)

The zero-approximation function f0(ε00) is the equilibrium
Fermi distribution function equal to fn at vn = vs = vL. The
equation for the first-order correction linear in the relative
velocities is

h̄ω0k · [(ṽs − vL) × ẑ]
∂f0

∂ε
− ω0

∂f1

∂α

= − 1

τ

[
f1 − h̄k · (vn − ṽs)

∂f0

∂ε

]
. (90)

Its solution is

f1 = ∂f0

∂ε
h̄

[
k · (ṽs − vL)

− ω0τ k · [(vn − vL) × ẑ] + k · (vn − vL)

1 + ω2
0τ

2

]
. (91)

The total momentum in the vortex-core bound states2,9 is
given by

Pbs = 1

2

∫ kF

−kF

dkz

2π

∫
dα

∫ Lmax
z

Lmin
z

dLz

2π
kf (α,Lz). (92)

Here Lmax
z = L0 + h̄kf rcθs/2 and Lmin

z = −L0 + h̄kf rcθs/2
are maximal and minimal values of the angular momentum
in the bound state, which differ from ±L0 = ±�/ω0 because
of the phase shift θs . This may look as if the momentum
depends on the phase shift θs , contrary to what was calculated
for the ground state in Sec. IV B. Indeed, the anisotropic part
of the distribution function f1 obtained from the Boltzmann
equation depends on the θs dependent ṽs given by Eq. (72).
This is a natural result since the Boltzmann equation takes
into account only events near the Fermi surface, while entries
and exits of the bound states to and from the forbidden gap
at the top and at the bottom of the gap are also important, as
was demonstrated above. In fact, these events are accounted for
with direction-dependent limits Lmax

z and Lmin
z of the integral in

Eq. (92). One may change variable in this integral, introducing
the modified angular momentum L′

z = Lz − h̄kf rcθs/2 so that

Pbs =
∫ kF

−kF

dkz

4π

∫
dα

∫ L0

−L0

dL′
z

2π
k

×
[
f1 − ∂f0

∂ε
h̄k · (vθ − vL)

]
. (93)

The second term in brackets cancels the θs-dependent term in
f1, and eventually after using the distribution function given
by Eq. (91) only the local superfluid velocity vsl appears in the
expression for the total momentum of core bound states. One
can use the modified angular momentum L′

z as a new variable
instead of Lz from the very beginning in the Boltzmann
equation (86) itself with the same result: the phase difference
θs drops out from all expressions and the effective superfluid
velocity ṽs reduces to the local superfluid velocity vsl outside
the core.

In the limit of zero temperature ∂f0/∂ε = −δ(ε) and the
momentum in the bound states is

Pbs = πh̄n

ω0

{
vL − vsl + ω0τ [(vn − vL) × ẑ] + vn − vL

1 + ω2
0τ

2

}
.

(94)

The expression reduces to Eq. (73) in the limit τ → ∞. The
part of the momentum linear in vL determines the Kopnin mass
taking into account the effect of collisions. The mass becomes
a tensor:

μ̂K = πh̄nτ

1 + ω2
0τ

2

(
ω0τ −1

1 ω0τ

)
. (95)

Kopnin and Vinokur15 called the term in the momentum
transverse to the relative velocity vn − vL transverse vortex
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mass. This term, however, does not lead to a conservative
inertial force, which follows from some Hamiltonian. It
determines a high-frequency correction to the dissipative
(longitudinal) mutual-friction force, which has its counterpart
in the dissipative function (see the next section).

Repeating the process of renormalization of the Kopnin
mass by the backflow effect, one obtains the same renormal-
ization factor 2μcore/(μK + μcore) as obtained in the previous
section without collisions. In this factor, the Kopnin mass
μK = πh̄n/ω0 is the scalar mass in the limit τ → ∞.

In the case of frequent collisions (τ � 1/ω0) the velocity vL

drops out from the expression (94) for the momentum, and the
Kopnin mass vanishes. This is because in this limit, the effect
of reflections from the walls of the core is fully suppressed
by frequent collisions with impurities or quasiparticles. This
does not mean the total absence of the vortex mass but
its absence in our approximation, which neglected effects
of the order �/εF . It is worthwhile to note that the small
ω0τ does not necessarily invalidate the assumption that the
mean-free path lf of quasiparticles is much longer than
the core radius mentioned in the Introduction. Indeed, since
τ = lf /vF and ω0 ∼ h̄/mr2

c , the condition ω0τ � 1 reduces
to the condition lf /rc � εF /�. In the weak-coupling limit
εF /� is very large so even large lf /rc can satisfy this
condition.

The contribution of the bound states to the mutual-friction
force [see Eq. (1)] is determined by the momentum transferred
from bound states confined in the vortex core to normal
quasiparticles or impurities via collisions:

Fc = 1

2

∫ kF

−kF

dkz

2π

∫
dα

∫ Lmax
z

Lmin
z

dLz

2π
k
∂f

∂t

∣∣∣∣
col

. (96)

Substituting f1 from Eq. (91), the core contribution to the
mutual-friction force is

Fc = πh̄n
ω0τ (vn − vL) − [(vn − vL) × ẑ]

1 + ω2
0τ

2
. (97)

The force component transverse to vn − vL is the Kopnin-
Kravtsov force. Uniting this force with the Magnus force in
the left-hand side of Eq. (1) at T = 0 (ns = n), one obtains the
total transverse force

F⊥ = mnκc[ẑ × (vL − vs)] − mnκc

[ẑ × (vL − vn)]

1 + ω2
0τ

2

= mnMκc[ẑ × vL] − mnκc

{
[ẑ × vs] − [vn × ẑ]

1 + ω2
0τ

2

}
, (98)

where

nM = ω2
0τ

2

1 + ω2
0τ

2
(99)

is the density determining the effective Magnus force on
the vortex. In the limit ω0τ → 0, the Kopnin-Kravtsov force
compensates the Magnus force, and the total transverse force
vanishes.

For a better understanding of the Kopnin-Kravtsov force,
let us derive it by replacing in the integral of Eq. (96) the
collision term by the left-hand side of the Boltzmann equation
(86), which is the divergence of the flow of quasiparticles in the
phase space {α,Lz} and corresponds to the Liouville equation.

After integration by parts, the Kopnin-Kravtsov force is

Fc = 1

2

∫ kF

−kF

dkz

2π

∫
dα

∫ Lmax
z

Lmin
z

dLz

2π
k
(
− ∂ε

∂α

∂f

∂Lz

+ ∂ε

∂Lz

∂f

∂α

)

= −1

2

∫ kF

−kF

dkz

2π

∫
dα

{
k

∂ε

∂α
f (Lz)

∣∣∣∣
Lmax

z

Lmin
z

+
∫ Lmax

z

Lmin
z

dLz

2π
[ẑ × k]ω0f (Lz)

}
. (100)

Here we took into account that ∂ε/∂Lz does not depend on
α and ∂ε/∂α does not depend on Lz. The first term in the
final expression is the momentum flux in the Lz space through
the upper and the lower boundaries of the gap and the second
term is the momentum transfer from the external force driving
the vortex at the process of the bound-state rotation with the
angular velocity ω0 = ∂ε/∂Lz. While the isotropic part of
the distribution function contributes to the first term, only
the anisotropic part provides the second term. Restricting
ourselves with the case of ω0τ → 0 when the solution of
the Boltzmann equation f = fn is given by Eq. (88), one
obtains the Kopnin-Kravtsov force for this case. So the origin
of the Kopnin-Kravtsov force looks clear and does not require
a reference to the artificial concept of spectral flow.

VIII. EFFECT OF VORTEX MASS ON
VORTEX DYNAMICS

Taking into account all forces discussed above, the general
equation describing free motion of the vortex in the resting
liquid (vs = vn = 0) is

μv

dvL

dt
− mnMκ [ẑ × vL] = −γ vL − μ⊥

[
ẑ × dvL

dt

]
, (101)

where nM is given by Eq. (99) and κ must be replaced by κc

in the Fermi superfluid. At zero temperature, nM varies from
nM = n for superclean superconductors down to nM = 0 for
moderately dirty superconductors. The right-hand side of the
equation contains two dissipative forces. The second of them
is connected with the transverse vortex mass originated from
core bound states.15 It determines a high-frequency correction
to the dissipative (longitudinal) mutual-friction force, which
does not appear in the Hamiltonian but has its counterpart in
the dissipative function. In order to see it, let us derive the time
variation of the kinetic energy of the vortex:

dE

dt
= d

dt

(
μv

v2
L

2

)
= −2FD. (102)

Here the dissipative function is

FD = γ v2
L

2
+ μ⊥

2

[
vL × dvL

dt

]
· ẑ. (103)

The contribution of the transverse mass to the dissipative
function is not positively defined. Therefore, the equation
of motion as given by Eq. (101) makes sense only if the
transverse-mass contribution is small compared to that of the
usual friction force ∝ γ .

Without dissipation, Eq. (101) is analogous to the equation
of motion of a charged particle in a magnetic field. The
vortex rotates around a circular orbit with the angular
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velocity ωc = mnMκ/μv , which is an analog of the cyclotron
frequency. The frequency ωc also characterizes the frequency
of an ac process at which the vortex-mass effect can compete
with the transverse Magnus force. In the Bose liquid with
nM = n and the vortex mass μv ∼ mnr2

c , the frequency ωc

is on the order of c2
s /κ ∼ κ/r2

c . A phonon with such a high
frequency has a wavelength comparable with the core radius
rc. If the vortex moves around a circumference of the radius r0,
which exceeds the core radius, the linear velocity ωcr0 exceeds
the value of the critical velocity cs ∼ κ/rc. Hardly this rotation
is of practical importance. In the Fermi liquid, the frequency ωc

is of the same order as the frequency ω0, which determines the
distance h̄ω0 between core energy levels. Although the latter
is small in comparison with the gap � in the weak-coupling
limit, the frequency itself is rather high. This is true both in the
pure limit when nM = n and μv ∼ mnr2

c and in the dirty limit
when nM = ω2

0τ
2n and μv ∼ ω2

0τ
2mnr2

c . In all, it is not simple
to reveal the vortex mass in superfluids and superconductors,
although some experimental evidence of the vortex mass in
superconducting thin films has been recently reported.39

IX. DISCUSSION AND CONCLUSIONS

Since our analysis does not reveal the spectral flow in the
core of the moving vortex, let us discuss the arguments by
Volovik6,16 in favor of its existence. Deriving the spectral
flow Volovik considered the bound state angular momentum
L′

z = ẑ · [(r − (vL − vn)t) × p] around the axis, which moves
together with the thermal bath (normal component). Here r is
the position vector with the origin on the symmetry axis of the
moving vortex. Volovik’s angular momentum varies in time:

dL′
z

dt
= −ẑ · [(vL − vn) × p]. (104)

Since the energy of the bound state is proportional to the angu-
lar momentum, Volovik concluded that the energy levels move
in the energy space and cross the zero energy level with the
rate proportional to vL − vn. The problem with this argument
is that the position of the bound-state energy with respect to the
gap depends on the angular momentum about the symmetry
axis of the vortex in the coordinate frame moving together
with the vortex. Then the angular momentum is conserved and
provides a good quantum number, which determines the energy
of the bound state. In any other coordinate frame with the
reference axis, which does not coincide with the vortex axis,
the angular momentum is not conserved and is not a quantum
number. Moreover, deriving Eq. (104), Volovik assumed that
the momentum p of the bound state does not vary in time.
Meanwhile, in a genuine bound state the momentum p rotates
with the angular velocity ω0 and vanishes in average. As a
result, average dL′

z/dt vanishes also, and the angular momen-
tum determined with reference to any axis does not differ from
the angular momentum around the vortex symmetry axis. This
is a direct consequence of the theorem of mechanics, which
tells that for a system with vanishing velocity of the center of
mass, the angular momentum does not depend on the choice
of the reference axis. So the vortex motion with respect to the
thermal bath does not lead to the spectral flow.

Volovik stressed that his derivation was only for continuum
limit ω0τ → 0 when levels are strongly broadened and in fact

(a)

(b)

(c)

- 0

- 0

- 0

FIG. 4. Effect of shift of energy levels on the density of states
n0(ε) at various ω0τ . The density of states is shown by solid lines
before the shift and by dashed lines after the shift. (a) ω0τ → ∞:
The density of states is a chain of sharped peaks. (b) ω0τ � 1: Very
broad peaks strongly overlap and cause only weak oscillations of the
density of states, which are still noticeable in principle. (c) ω0τ = 0:
The plot of the density of states is totally flat and its shift does not
lead to any physical consequence.

cease to be discrete levels. Originally, the spectral flow concept
was considered only for discrete levels. In the continuum limit,
the very concept of the spectral flow becomes ambiguous. This
is illustrated in Fig. 4, which shows the effect of the level
shift on the density of states n0(ε) for various ω0τ . Without
collisions (ω0τ → ∞), the density of states is a chain of very
narrow peaks and a shift of the levels with respect to the
forbidden gap is a clear effect [Fig. 4(a)]. For very small but
still finite ω0τ , the effect of level shift on the density of states
is much weaker but still noticeable [Fig. 4(b)]. In the extreme
case ω0τ = 0 when oscillations of the density of states are
totally undetectable the level shift does not lead to any effect
and can not influence any physical process. Without taking
into account whatever tiny oscillations of the density of states,
it is impossible even to define it.

Altogether this puts in question not the Kopnin-Kravtsov
force itself but the connection of the force with the spectral
flow. So, the claim that the experiment on mutual-friction force
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confirms the spectral flow6,17 is not justified. It is the Kopnin-
Kravtsov force, which was revealed in the experiment, but not
the spectral flow.

Arguing for the spectral flow in vortex dynamics they
frequently draw an analogy with the Andreev reflection bound
states in the superconductor-normal-metal–superconductor
(SNS) junctions. Although this analogy is useful indeed for
the bound states in the model of normal core,19 it fails with
respect to the role of spectral flow. In the SNS system the
spectral flow really exists if the phase difference between two
superconducting banks monotonously varies in time, as, e.g.,
in the ac Josephson effect. But, the superfluid phase difference
across the core of the moving vortex does not vary in time in
average. Therefore, the spectral flow exists in the former case,
but is totally absent in the latter.

The absence of spectral flow in the core automatically rules
out the spectral flow in the continuum of delocalized states
also suggested by Volovik.6 Indeed, in stationary processes
these spectral flows should be equal. Otherwise, there were
accumulation or depletion of states at the borders between
localized and delocalized states. It is shown in this paper that
the whole transverse force on the vortex from delocalized
states in Fermi superfluids can be explained by peculiarities
of the Aharonov-Bohm effect for BCS quasiparticles without
referring to the spectral flow.

The paper clarifies also the role of the backflow on the
vortex mass. The backflow is a ubiquitous phenomenon, which
arises from mismatching of currents inside and outside the
vortex core, either due to suppression of the fluid density in
the Bose liquid, or due to to currents through core bound states
in the Fermi liquid. Its existence follows from the conservation
law for the particle number (charge). In the Fermi liquid the
backflow leads to renormalization of the Kopnin vortex mass
by a numerical factor both for singular and continuous vortices.
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APPENDIX A: BOUND STATES IN A CORE WITH LINEAR
GROWTH OF SUPERFLUID DENSITY

We consider a quasiparticle inside the core, which moves
back and forth along an approximately straight trajectory par-
allel to the y changing its direction of motion via Andreev re-
flection. One can refer to the Bogoliubov–de Gennes equations
in the 1D case eliminating fast oscillations of the wave function
by the transformation u = ũeikF y , v = ṽeikF y . For the sake of
simplicity, we assume that there are no components of the wave
vector parallel to the z axis. Neglecting second derivatives of
ũ and ṽ, the Bogoliubov–de Gennes equations are

−ih̄vF

dũ(b,y)

dy
+ �r

rc

eiθ ṽ(b,y) = εũ(b,y),

(A1)

ih̄vF

dṽ(b,y)

dy
+ �r

rc

e−iθ ũ(b,y) = εṽ(b,y).

Here r =
√

b2 + y2, and the linear dependence of the gap
�(r) = �r/rc on the distance r is assumed. In the absence of
superfluid motion through the core the phase θ coincides with
the azimuthal angle φ = arctan(y/b), and the Bogoliubov–de
Gennes equations become

−ih̄vF

dũ(b,y)

dy
+ �(b + iy)

rc

ṽ(b,y) = εũ(b,y),

(A2)

ih̄vF

dṽ(b,y)

dy
+ �(b − iy)

rc

ũ(b,y) = εṽ(b,y).

The normalized solution of the Bogoliubov–de Gennes
equations is

ũ = −ṽ = e−y2/2r̃2

2
√

πr̃
(A3)

with the energy equal to

ε0 = −b�

rc

= −ω0Lz. (A4)

Here the length r̃ = √
rcξc is the geometric average of the core

radius rc and the coherence length ξc = h̄vF /� with all three
lengths being of the same order of magnitude, Lz = h̄kF b is
the angular momentum of the bound state, and the frequency

ω0 = �

h̄kF rc

(A5)

gives the angular velocity of slow trajectory rotation around
the vortex axis, in accordance with the canonical relation
equating the rotation velocity to ∂H/∂Lz.

The energy spectrum given by Eq. (A4) insignificantly
differs from the spectrum obtained in the original paper20

and in the book by de Gennes21 more accurately using
the partial-wave analysis and a more realistic variation of
the gap � in the space. This agreement confirms a simple
picture of the bound states assuming well-defined trajectories
of quasiparticle motion. However, it is necessary to stress
that although the trajectory is well defined in the sense that
the impact parameter is well defined, the motion along the
trajectory can not be described semiclassically. In particular,
our solution shows that there are no well-defined Andreev
reflection points. Using the semiclassical approach and the
Bohr-Sommerfeld condition for calculation of energy levels,
one obtains a totally wrong spectrum, which is not linear in
the angular momentum. So, the semiclassical theory of motion
along the trajectory of the bound state is valid only for the
model of the totally normal core but not for more realistic
models with nonzero order parameter in the core.

APPENDIX B: VORTEX MASS OF A CORE WITH LINEAR
GROWTH OF SUPERFLUID DENSITY IN THE

BOSE SUPERFLUID

According to the Gross-Pitaevskii theory in the vortex core,
the density grows linearly with the distance r from the vortex
axis. Extrapolating this dependence up to the core radius rc

and approximating the density outside the core by the constant
value n, the continuous density distribution is

n(r) =
{

n r
rc

at r < rc,

n at r > rc.
(B1)
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The liquid mass inside the core,

m̃core = 2π
mn

rc

∫ rc

0
r2 dr = 2

3
μcore, (B2)

is by the factor 2
3 less than the core mass μcore estimated under

the assumption that the liquid density is not suppressed inside
the core. If the superfluid moves past the vortex, the continuity
equation in the coordinate frame related to the vortex is

∇[n(r)∇θ ] = n(r)∇2θ + ∇n(r) · ∇θ = 0, (B3)

where the phase θ determines the velocity field:
vs(r) − vL = (κ/2π )∇θ (r). From symmetry, all fields
are dipole fields, and the phase in the cylindric coordinate
system is θ (r) = θ (r) cos φ, where φ is the azimuthal angle
with respect to the velocity vs − vL. The one-dimensional
function θ (r) is determined from the equation

dθ2

dr2
+

[
1

r
+ 1

n(r)

dn(r)

dr

]
dθ

dr
− θ

r2
= 0. (B4)

Inside the core, Eq. (B4) yields that θ ∝ rα with the exponent
α = (

√
5 − 1)/2 < 1. This means that the velocity (but not

the current!) has a weak integrable singularity at r = 0. The
continuity of the azimuthal component of the superfluid
velocity at the core boundary r = rc is satisfied by the
following phase distribution outside and inside the core (the
azimuthal angle dependence is omitted):

θout = 2π

κ

(
vsr − vbf r2

c

r

)
, θin = 2π

κ
(vs − vbf )

rα

rα−1
c

.

(B5)

Here vs is the superfluid velocity far from the vortex in
the coordinate frame moving with the vortex and vbf is the
amplitude of the backflow velocity field given by Eq. (74).

Continuity of the radial velocity gives the condition

dθin

dr
= 2π

κ
α(vs − vbf ) = dθout

dr
= 2π

κ
(vbf + vs). (B6)

This yields the relation

vbf = −vs

1 − α

1 + α
. (B7)

The total momentum includes the momentum P in inside
the core, the momentum of transport superfluid velocity vs

outside the core, and the Kelvin impulse of the backflow
velocity field outside the core [Eq. (77)]:

PL = mκ

2π

∫
r<rc

n(r)∇θin d r

+mn
(
S − πr2

c

)
(vs − vL) + PK

= mn

[
S − πr2

c

(
α

2 + α
+ 1 − α

1 + α

)]
(vs − vL), (B8)

where the superfluid velocity vs was replaced by the relative
velocity vs − vL. The last step is to transform the momentum
PL in the coordinate frame moving with the vortex to the
momentum in the arbitrary coordinate frame:

P = PL + [
mn

(
S − πr2

c

) + m̃core
]
vL

= mn

[
S − πr2

c

(
α

2 + α
+ 1 − α

1 + α

)]
vs + μvvL. (B9)

Here μv is the vortex mass. Taking into account the value
α = (

√
5 − 1)/2 the vortex mass is

μv = πr2
c mn

[
α

2 + α
+ 1 − α

1 + α
− 1

3

]

= πr2
c mn

[
2
√

5 − 4
1

3

]
= 0.139μcore. (B10)
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