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We present a careful study of the resistive superconducting transition in FeSe single crystals down to T = 40 mK
in continuous magnetic fields up to 30 T applied perpendicular and parallel to the ab plane. In the H‖c geometry
the temperature dependence of the resistive upper critical field H ∗

c2, determined as the field at which the in-plane
resistivity in the transition region is 90% of the normal state resistivity is down to temperatures T/Tc < 0.006, is in
close agreement with the Werthamer-Helfand-Hohenberg (WHH) theoretical curve which describes the behavior
of the upper critical field in conventional type-II superconductors. In contrast, for the H‖ab geometry, the data
depart from the WHH model with increasing applied magnetic field according to the paramagnetic limitation of
superconductivity. An anisotropy parameter γ in our FeSe crystals decreases with decreasing temperature and
FeSe becomes nearly isotropic when the temperature T → 0.
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I. INTRODUCTION

In 2008, Hsu et al.1 reported on the observation of
superconductivity with Tc ∼ 8 K in the tetragonal phase of
the layered iron chalcogenide FeSe (β-FeSe). Subsequent
work has revealed resistivity onsets for the superconducting
transition at temperatures as high as 13.5 K at ambient
pressure.2 The highest transition temperatures in this high-
temperature superconductor3 are found when the compound is
closest to stoichiometric, with formula Fe1.01Se.4 The interest
in the binary superconductor FeSe is caused by the relative
structural simplicity among the Fe-based superconductors,
and a number of researchers take FeSe as a model system
to study the mechanism of superconductivity in Fe pnictides
and chalcogenides.4–7 At the same time, despite the fact that
the upper critical field Hc2(0) is one of the fundamental
parameters for superconductivity, and despite intense experi-
mental investigation, some ambiguity remains concerning the
value, and the temperature dependence, of Hc2 in iron-based
superconductors. In addition, a possible Pauli limitation of the
upper critical field is currently debated in the literature.8–10

Due to the low Tc, FeSe is an excellent choice to investigate
the superconducting and normal state transport properties in
the T → 0 limit. In this paper we present a careful study of the
resistive superconducting transition in the iron chalcogenide
FeSe over a wide range of temperature down to 40 mK.
We describe in addition an experimental study of the tempera-
ture dependence of the resistive upper critical field H ∗

c2 in FeSe
crystals. The magnetotransport measurements were performed
in dc magnetic fields up to 9 T in a Quantum Design physical
property measurement system (PPMS-9) from 1.8 to 20 K
and in a 30-T-resistive magnet at the National High Magnetic
Field Laboratory in Grenoble. We note that measurements
of the upper critical fields Hc2(T ) in FeSe single crystals at
temperatures down to 0.35 K in a static magnet up to 35 T were
performed very recently by Lei et al.11 Unlike our experiments,
the Hc2 was determined by measuring the magnetic field
dependence of radio-frequency penetration depth. Moreover,
in Ref. 11 the normal direction of FeSe crystal plane was (101)
rather than (001) for our samples grown at low temperatures,
making the two investigations fundamentally different.

II. EXPERIMENT

The investigated crystals FeSex were grown by a KCl-
solution-melt free growth method.12 The crystals have a
plateletlike shape and mirrorlike surfaces with typical dimen-
sions (2.5–3) mm × (1.5–2) mm × (50–60) μm. The quality
of the crystals was systematically verified by measurements
of the dc resistance, ac susceptibility, x-ray diffraction, and
scanning electron microscopy. The actual cationic composition
of the samples used was measured at 20–60 different points
on the crystal with a step of 100–200 μm, and the scatter in
the data was less than 2%. The average elemental composition
corresponds to the formula FeSe0.89−0.90. The x-ray diffrac-
tion analysis showed the coexistence of the tetragonal and
hexagonal FeSe phases in a variable composition. The phases
have the lattice parameters a = 3.780 Å, c = 5.490 Å and
a = 3.605 Å, c = 5.889 Å for the tetragonal and hexagonal
phases, respectively.

Figure 1 in the upper part shows scanning electron mi-
crographs of as-grown FeSe0.9 crystals with different shapes
where the composition measurement points are denoted by
crosses. X-ray diffraction pattern (a) shows the (001) and
(004) peaks of the tetragonal (T), plus three peaks of the
hexagonal (H) FeSe phase. X-ray diffraction pattern (b) has
only the (00N) peaks of the tetragonal phase suggesting that
the crystallographic c axis is perpendicular to the plane of the
platelike crystals.

A four-probe contact configuration, with symmetrical posi-
tions of the low-resistance contacts (< 1�) on both ab surfaces
of the sample was used for the measurements of Rab and Rc

resistances. The temperature and magnetic field dependence of
the resistances Rab(T ,H ) and Rc(T ,H ) were measured using
a lock-in amplifier driven at ≈10.7 Hz. The ac current applied
was 50 μA for in-plane and 0.5 mA for out-of-plane resistance
measurements. The transport current was in the ab plane of
the crystals and orthogonal to the field. A RuO2 thermometer
was used to measure the local temperature of the sample.
The field sweep rate dH/dt = 0.5 T/min at temperatures
30–150 mK and 1 T/min at higher temperatures was chosen
in order to avoid eddy current heating. The temperature was
continuously recorded during each measurement sweep. The
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FIG. 1. (Color online) Top: scanning electron micrographs of
as-grown FeSe0.9 crystals with different shapes where the composition
measurement points are denoted by crosses. Bottom: (a) x-ray
diffraction pattern showing the peaks of the tetragonal (T), and
hexagonal (H) FeSe phases. X-ray diffraction pattern (b) shows only
the (00N) peaks of the tetragonal phase.

measured resistances were then converted to the respective
resistivities ρab and ρc using the crystal dimensions which
were measured with a high resolution optical microscope.
For the low temperature magnetotransport measurements, the
crystals were placed directly inside the mixing chamber of a
Kelvinox top-loading dilution refrigerator. The crystals were
studied with the magnetic field H applied either parallel or
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FIG. 2. (Color online) Temperature dependence of the in-plane
resistivity (ρab) as a function of temperature for FeSe samples with
different tetragonal phase concentrations. The arrow indicates the
tetragonal-to-orthorhombic structural transition. The inset (a) shows
an enlarged view of the resistivity near Tc. The inset (b) shows the
critical temperature for superconductivity (Tc) determined from ρab as
a function of the percent concentration of the tetragonal FeSe phase.

perpendicular to the c axis. In the latter case a configuration
with the in-plane transport current J perpendicular to H was
used. To summarize the properties of the investigated crystals,
we have regrouped in Table I the data of tetragonal phase
percent Tc, slopes (dH ∗

c2‖c/dT )T ′
c

and (dH ∗
c2‖ab/dT )T ′

c
, upper

critical fields H ∗
c2‖c(0) and H ∗

c2‖ab(0), coherence lengths at zero
temperature ξab and ξc.

III. RESULTS AND DISCUSSION

In Fig. 2 (main panel) we show the temperature dependence
of the in-plane resistivity ρab for five crystals No. 1, 2, 3, 4, and
6 grown in different crucibles. Their zero-field temperature
region of the transition defined by the 10% and 90% points
of the transition equals 9.9–12.7 K, 8.65–12 K, 8.9–12.3 K,
8–11.2 K, and 9.6–11.7 K. The inset (a) shows the enlarged
resistivity near Tc in order to emphasize the low-temperature
behavior, and the inset (b) plots the values of Tc (midpoint)
determined from ρab as a function of the percent concentration
of the tetragonal FeSe phase in the sample. We note that
the upper points of the superconducting transition in the

TABLE I. Summary of the properties of the investigated crystals determined as described in the text: The sample number (No.), tetragonal
phase percent, critical temperature (Tc), slope (dH ∗

c2‖c/dT )T ′
c
, slope (dH ∗

c2‖ab/dT )T ′
c
, upper critical fields H ∗

c2‖c(0) and H ∗
c2‖ab(0), coherence

lengths at zero temperature ξab and ξc obtained from the ρn and 0.9ρn criteria.

tetr. ph. T midpoint
c (dH ∗

c2‖c/dT )T ′
c

(dH ∗
c2‖ab/dT )T ′

c
H ∗

c2‖c(0)0.9ρn H ∗
c2‖ab(0)0.9ρn ξab(0)0.9ρn ξc(0)0.9ρn

No. % (K) (T/K) (T/K) (T) (T) Å Å

1 100 11 −6.1ρn ; −5.40.9ρn �36
2 85 9.9 −3.9ρn ; −3.650.9ρn −5.9ρn ; −50.9ρn 29 �34 33 �28.5
3 92 10.2 30 32.5
4 87 9.5 28 �31 34 �30
6 94 10.4 −4.5ρn ; −3.50.9ρn �31 �32
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magnetization curves were close to the temperatures of the
superconducting transition determined from the cross point of
two extrapolated lines drawn for the resistivity data around
Tc.12

One can see that our crystals have the typical temperature
dependencies of the in-plane ρab resistivity for FeSe crystals,
and the values of the residual resistivity ρab(0) in crystals deter-
mined by linearly extrapolating the curves to zero temperature
are comparable with the lowest value previously reported for
FeSe (see, e.g., Refs. 13–15). The in-plane resistivity of the
crystals shows an almost linear temperature dependence at
temperatures T < 200 K, and the slope �ρab/�T lies between
0.6 and 1.3 μ�cm/K. The curves ρab(T ) have a characteristic
feature at T ∼ 80 K related to the tetragonal-to-orthorhombic
phase transition (marked by arrow) which has been observed
previously in FeSe.1,5,15 As may be seen from Fig. 2 [main
panel and the inset (b)] and Table I, the slope �ρab/�T and
the magnitude of Tc increase with increasing tetragonal phase
concentration.

Figure 3 shows the zero-field ρab and ρc as a function
of the temperature for two samples No. 1 and No. 2. The
ρc data are divided by 3 and 4. As for the case of ρab(T ),
the resistivity ρc curves give an almost linear “metallic” tem-
perature dependence. A parameter often used to characterize
the interlayer coupling is the anisotropy of the resistivity
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FIG. 3. (Color online) The zero-field ρab and ρc as a function of
the temperature for two samples No. 1 and No. 2. The ρc data are
divided by 3 and 4.
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FIG. 4. (Color online) Temperature dependence of the in-plane
ρab resistivity for crystal No. 6 with Tc (midpoint) = 10.3 K for
applied magnetic fields up to 9 T with direction perpendicular to the
ab plane of the crystal.

ρc/ρab. The largest anisotropy ratio found here is ρc/ρab = 4
just above Tc, indicating that the FeSe system is nearly
three dimensional. We find that the anisotropy ratio in the
zero-magnetic field is practically temperature independent for
all samples. Such a behavior of the anisotropy ratio suggests
that in-plane and out-of-plane transport in FeSe share the same
scattering mechanism.

In Fig. 4 we report the temperature dependencies of
the in-plane ρab resistivity for crystal No. 6 with Tc

(midpoint) = 10.4 K for applied magnetic fields up to 9 T
with direction perpendicular to the ab plane of the crystal. As
is clear from Fig. 4, with increasing magnetic fields, the onset
of superconductivity shifts to lower temperatures gradually.
However, the resistive superconducting transitions do not show
any field-induced broadening. Hence, it can be concluded that
in the H‖c geometry the vortex-liquid state region is very
narrow or even absent in FeSe. This is similar to FeTeSe
system.16

The magnetic field dependence of resistivity ρab(H ) of
the sample No. 2 at various temperatures with the field
direction perpendicular (a) and parallel (b) to the ab plane
of the crystal is presented in Fig. 5. At low temperature,
the curves ρab(H ) are almost parallel with respect to each
other in the transition region. When the temperature is close
but below Tc, the superconducting transition broadens. With
increasing magnetic fields, the onset of superconductivity
shifts to lower temperatures gradually for both magnetic field
directions, but the resistive transition becomes considerably
wider in the H‖ab geometry as compared with those in the
H‖c configuration. Such behavior of the resistive transition
in the H‖ab geometry can be explained by the vortex-liquid
state similar to cuprates. It should be noted that at the
determination of the temperature dependence of the resistive
upper critical field in the case of a broadened superconducting
transition different criteria can lead to a different temperature
dependence for H ∗

c2(T ).17 Therefore, we determined the
temperature dependence for the resistive upper critical field
H ∗

c2 by two different means.
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FIG. 5. (Color online) Resistive transitions of crystal No. 2 in
magnetic field H‖c (a) and H‖ab (b) at different temperatures.

Figure 6(a) shows the temperature dependence of H ∗
c2 for

the sample No. 2 extracted from the magnetoresistance (MR)
curves in Fig. 5(a) measured in the H‖c geometry together with
the theoretical Werthamer, Helfand, and Hohenberg (WHH)18

curves which describes the behavior of the upper critical
field in conventional type-II superconductors without spin
paramagnetic and spin-orbit effects. As can be seen from the
inset to Fig. 6(a), the H ∗

c2 values were obtained from the fields
at which the resistivity of the samples has reached 100% (ρn),
90% (0.9ρn), and 50% (0.5ρn) of its normal-state values at a
given temperature.

The “data points” shown by open circles were obtained
from Fig. 5 by a linear extrapolation of ρab(H ) to ρab(T ) = ρn

as it has been done previously in, e.g., Refs. 8 and 16. These
points are displayed in order to show roughly a general trend
for Hc2(T ) (the magnetoresistance in the normal state was
taken into account). The onset ρons

n was determined at zero
resistivity, the field values corresponding approximately to the
onset of flux flow (method 1).

Figure 6(b) also shows the temperature dependence of
H ∗

c2 for the sample No. 2 extracted from the MR curves in
Fig. 5(a) together with the WHH curves but with the 100%
(ρn), 90% (0.9ρn), 50% (0.5ρn), and ρons

n determined from the
intersection of two extrapolated lines; one is drawn through
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FIG. 6. (Color online) Temperature dependence of H ∗
c2 for sample

No. 2 extracted from the MR curves in Fig. 5(a) measured in the
H‖c geometry together with the theoretical WHH curves. The “data
points” shown by open circles were obtained from Fig. 5(a) by a
linear extrapolation of ρab(H ) to ρab(T ) = ρn. The red dashed lines
and the arrows in the insets show the methods used to define H ∗

c2 from
the measured ρab(H ) curves (see the text).

the MR curve in the normal state at the higher field and the
other is drawn through the steepest part of the MR curve in the
superconducting state (method 2). This is shown in the inset
to Fig. 6(b).

Before addressing the H ∗
c2(T ) data, it is of interest to present

the temperature dependence of the in-plane resistivity of the
sample at low temperatures for the magnetic field perpen-
dicular to the ab plane. Figure 7 shows a semilogarithmic
plot of ρab(T ) at different fixed magnetic fields H‖c for the
sample No. 2 extracted from the curves in Fig. 5(a) in order
to emphasize the low-temperature behavior. The transition
temperature of superconductivity is suppressed gradually and
at low temperatures, the transition is broadened with increasing
magnetic field. In spite of the strong broadening of the
magnetic transitions one can see in Fig. 7 that the 30 T data
at T � 1 K are almost temperature independent. Thus, we can
be certain that the determination of the H ∗

c2 values using the
90% criterion at these temperatures is well founded.

Returning to the determination of the temperature de-
pendence of the resistive upper critical field in Fig. 6, one
can see that for both methods the determination of H ∗

c2
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lead to similar conclusions; the experimental data obtained
from the ρn criterion down to T/Tc � 0.3 can be entirely
described by the conventional WHH theory. The temperature
dependencies of H ∗

c2 in Fig. 6 obtained from the 0.9ρn,
0.5ρn, and ρons

n criteria exhibit an upward curvature at T � 2
K. Analogous results were obtained on the sample No. 6.
From the linear part of the H ∗

c2(T ) dependence near Tc as
determined from the ρn criterion, we obtained the slopes
dH ∗

c2/dTc = −1.55 T/K and −2.4 T/K for the samples No.
2 and No. 6, respectively. It should be recognized that the
strong broadening of the superconducting transition when the
temperature is close to Tc leads to a different temperature
dependence of H ∗

c2 versus T . Using a WHH-type extrapolation
to lower temperature with H ∗

c2(0) = 0.693(−dH ∗
c2/dT )T ′

c
T

′
c

we obtained H ∗
c2‖c(0) � 34 T (sample No. 2) and 37 T (sample

No. 6). Taking into account the experimental error, these values
are close to the estimated H ∗

c2‖c(0) in our experiments from the
ρn criterion. Here, the (dH ∗

c2/dT )T ′
c
= −3.9 T/K (sample No.

2) and −4.5 T/K (sample No. 6) are taken to be the tangent
of H ∗

c2(T ) at temperatures close to Tc and T
′
c the intersection

of this tangent with the temperature axis. In case of the 0.9ρn

criterion, we found H ∗
c2‖c(0) = 27.5 T and 30 T for samples

No. 2 and No. 6, respectively. These values are also close to
the H ∗

c2‖c(0) found in our experiments.
In order to compare the temperature dependence of the H ∗

c2
for different samples, in Fig. 8 we display the reduced critical
field hc2 = H ∗

c2/(−dH ∗
c2/dT )Tc

Tc as a function of the reduced
temperature T/Tc for two investigated samples No. 2 and
No. 6 at field orientation H‖c together with the theoretical
WHH curve. The H ∗

c2 values are the fields at which the
resistivity of the samples has reached 100% and 90% of
its normal-state values ρn and obtained by two methods
determination of H ∗

c2 (see the insets to Fig. 6). The results
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FIG. 8. (Color online) Reduced critical field hc2 =
H ∗

c2/(−dH ∗
c2/dT )Tc

Tc as a function of the reduced temperature T/Tc

for two samples No. 2 and No. 6 at field orientation H‖c together
with the theoretical WHH curve (dashed lines). The H ∗

c2 values are
the fields at which the resistivity of the samples has reached 100%
(a) and 90% (b) of its normal-state values ρn and obtained by two
methods determination of H ∗

c2 (see the insets to Fig. 6).

in Fig. 8 clearly shows that the data for the temperature
dependence of the reduced critical field hc2 can also be
described by the conventional WHH theory down to T/Tc �
0.3 for the 100% criterion (in available fields for us) and except
for the small region at lower temperatures T/Tc < 0.1 for the
90% criterion. In other words, down to this temperature in the
H‖c configuration, we did not observe any unusual behavior
of the resistive upper critical field H ∗

c2 in our FeSe single
crystals. By this we mean that the upper critical field H ∗

c2‖c
obtained from the 0.9ρn criterion for our FeSe single crystals
in H‖c configuration approximately equals 29 T and 31 T
for samples No. 2 and No. 6, respectively. In regard to the
upward curvature of the temperature dependencies of H ∗

c2 at
T � 2 K in Fig. 6 obtained from the 0.9ρn, 0.5ρn, and ρons

n

criteria, Hunte et al.9 have interpreted the observed upward
curvature of Hc2(T ) in LaFeAsOF as a signature of multiband
superconductivity in this family of compounds, which could
lead to a significant raise of Hc2(T = 0) with respect to the
WHH extrapolation. We also measured MR for the samples
No. 3 and 4 over a temperature range 0.05–1.15 K and found
that H ∗

c2‖c(0) � 30 T and 28 T, respectively (for 90% criterion).
Figure 9 shows the temperature dependence of H ∗

c2 for
sample No. 2 determined by the two methods applied in
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geometry together with the theoretical WHH curves (dashed lines).
The “data points” shown by open circles were obtained from Fig. 5(b)
by a linear extrapolation of ρab(H ) to ρab(T ) = ρn.

Figs. 6(a) and 6(b) but extracted from the MR curves in
Fig. 5(b) measured in the H‖ab geometry together with the
theoretical WHH curves (dashed lines). As is seen from Fig. 9,
the data for the H‖ab geometry obtained by the method 1,
depart strongly from the WHH curves. One must note that in
this case, the broadening of the superconducting transition and
the rounding of the top of the transition make it impossible to
define the value of the upper critical field exactly. Because
of this, the departure already depends on the method and
criterion chosen for the determination of H ∗

c2. Nevertheless,
there are strong reasons to believe that the H ∗

c2 obtained from
the ρn and 0.9ρn criteria and determined by the method 1
most closely correspond to true values of the resistive upper
critical field.19 Similar results were obtained on the sample
No. 1, however, because of the very large values of the upper
critical fields of sample No. 1 in the H‖ab geometry, we
could determine the H ∗

c2 values down to T/Tc < 0.2 only. In
the H‖ab configuration, the WHH formula predicts the value
H ∗

c2‖ab(0) = 54 T with (dH ∗
c2/dT )T ′

c
= −5.9 T/K and 55.5 T

with (dH ∗
c2/dT )T ′

c
= −6.1 T/K for the samples No. 2 and No.

1, respectively, obtained from the 100% criterion. The upper
critical field in the H‖ab geometry from high-magnetic field
measurement is much smaller than that predicted using the
WHH model.
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FIG. 10. (Color online) Reduced critical field hc2 =
H ∗

c2/(−dH ∗
c2/dT )Tc

Tc as a function of the reduced temperature
T/Tc for samples No. 1 and No. 2 at field orientation H‖ab together
with the theoretical WHH curve. The H ∗

c2 values are the fields
at which the resistivity of the samples has reached 100% (a) and
90% (b) of its normal-state values ρn and obtained by two methods
determination of H ∗

c2 (see the insets to Fig. 6). The inset in (a)
shows the temperature dependence of the anisotropy parameter
γ = H ∗

c2‖ab/H
∗
c2‖c for the sample No. 2, obtained from the 100% and

90% criteria by the method 1.

In Fig. 10 (main panel) we display the reduced critical
field hc2 = H ∗

c2/(−dH ∗
c2/dT )Tc

Tc as a function of the reduced
temperature T/Tc for the samples No. 1 and No. 2 at field
orientation H‖ab together with the theoretical WHH curve.
The H ∗

c2 values are the fields at which the resistivity of the
samples has reached 100% (a) and 90% (b) of its normal-state
values ρn and obtained by two methods determination of H ∗

c2
(see the insets to Fig. 6). By this means the upper critical field
H ∗

c2‖ab obtained from the 0.9ρn criterion for samples No. 1
and No. 2 approximately equals 36 T and 34 T, respectively.
We also measured H ∗

c2‖ab(T ) for the sample No. 4 over a
temperature range 0.05–1.15 K and found that H ∗

c2‖ab(0) �
31 T from the 0.9ρn criterion.

The large deviation from the conventional WHH theory
in case of H ∗

c2‖ab geometry in Figs. 9(a) and 10(a) for
the data obtained by method 1 can most likely be ex-
plained by a spin-paramagnetic limitation.19 Using the energy
gap value �0 = 2.2 meV, determined from specific heat
measurements,20 we can estimate the Clogston paramagnetic
limit21 Hp(0) = �o/μB

√
2 � 15 T (μB is Bohr magneton).

If we take the experimental values of Tc = 12 K for sample
No. 2 obtained from the 90% criterion, we can also obtain an
estimate of the paramagnetic field by using the other Clogston
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formula Hp(0) = 1.84Tc, which gives Hp(0) � 22 T (under
the assumption that 2�0 = 3.5kBTc). Both these values are
smaller than the experimental values of H ∗

c2‖c(0) and H ∗
c2‖ab(0).

A similar suppression of the paramagnetic effect was also ob-
served in the conventional layered superconductors NbSe2 and
TaS2. Owing to the uncertainty of the paramagnetic limit given
by the simple Clogston formulas, we have previously derived
an expression for Hp(0) for the paramagnetic limitation of
superconductivity for the field parallel to the layers based on
a Ginzburg-Landau calculation.22 Using the equation (8) in
Ref. 22 and taking Tc = 12 K for the sample No. 2 in 90% point
of the transition, one can obtain the estimate Hp(0) � 76/g

T. If one takes the free electron g-factor value g = 2, we find
Hp(0) � 38 T which is reasonably close to the measured value
of H ∗

c2‖ab(0) in 90% criterion (see Table I).
We can also estimate the ab-plane and c-axis coher-

ence lengths at zero temperature from the anisotropic
Ginsburg-Landau relations H ∗

c2‖c = �0/2πξ 2
ab and H ∗

c2‖ab =
�0/2πξabξc. Using the data from the ρ = 0.9ρn criterion we
get for four samples (No. 2, 3, 4, and 6) ξab � 32 − 34 Å in the
ab plane and ξc � 28.5 − 30 Å in the c direction. We find that
an anisotropy parameter γ = H ∗

c2‖ab/H
∗
c2‖c = ξab/ξc equals

1.17 and 1.12 for the samples No. 2 and No. 4, respectively. As
in all Fe-based superconductors, this parameter is unusually
low compared to that of high Tc cuprate superconductors (see,
e.g., Ref. 23, and references cited therein). Although in the
case of one-layer cuprate Bi-2201 single crystals γ = 1.9.22

It is significant that the anisotropy parameter γ in our
FeSe crystals decreases with decreasing temperature and FeSe
becomes nearly isotropic when the temperature T → 0. This
is evident from the inset to Fig. 10 where we display the
temperature dependence of the anisotropy parameter γ =
H ∗

c2‖ab/H
∗
c2‖c for the sample No. 2 obtained from the 100%

and 90% criteria by the method 1. It is interesting to note
that the values and the temperature dependence of γ are
very close to those obtained from resistivity measurements
for FeSeTe in Refs. 16 and 24. In all probability, such unusual
temperature dependence of the anisotropy parameter γ is in-
dicative of multiband superconductivity in FeSe as in the case

of PrFeAsO25 and in two-band anisotropic superconductor
MgB2.26 Anomalous behavior of γ was also argued in Ref. 27.

For conventional layered superconductors, the anisotropy
parameter is usually expressed by the ratio γ = √

m∗
c/m∗

ab

between the effective masses of the quasiparticles along the c

axis and the ab plane, which can be related to the transport
anisotropy with γ � √

ρc/ρab and the upper critical field
anisotropy γ = H ∗

c2‖ab/H
∗
c2‖c.28 As can be seen from Fig. 3,

the resistivity anisotropy of the sample No. 2 near Tc equals 4
and then γ � √

ρc/ρab = H ∗
c2‖ab/H

∗
c2‖c = 2. That is close to

the measured value of γ at T = Tc (inset to Fig. 10).

IV. CONCLUSION

We have studied the resistive superconducting transition
in FeSe single crystals down to T = 40 mK in continuous
magnetic fields up to 30 T applied perpendicular and parallel to
the ab plane. In the H‖c geometry the temperature dependence
of the resistive upper critical field H ∗

c2, determined as the field
at which the in-plane resistivity in the transition region is
90% of the normal state resistivity, is down to temperatures
T/Tc < 0.006 is in close agreement with the Werthamer-
Helfand-Hohenberg theoretical curve which describes the
behavior of the upper critical field in conventional type-II
superconductors without spin paramagnetic and spin-orbit
effects. In contrast, for the H‖ab geometry, the data depart
from the WHH model with increasing applied magnetic field
according to the paramagnetic limitation of superconductivity.
The anisotropy parameter γ in our FeSe crystals decreases with
decreasing temperature and FeSe becomes nearly isotropic
when the temperature T → 0.
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