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We review the magnetic form factor deduced by Delrieu from Gorkov’s equation for a Bardeen-Cooper-
Schrieffer (BCS) type-II superconductor near its Bc2 phase boundary, i.e., when its magnetization is small. A
numerical study of the form factor, field map, and field distribution follows. The characteristics of the transition
from the low-temperature BCS to the high-temperature Ginzburg-Landau vortex lattices is studied. The exotic
shape of the component field distribution and the form factor at low temperature and as a function of the
external field intensity are discussed. Our numerical work should be helpful for the analyzing of small-angle
neutron scattering and muon spin rotation vortex-lattice data recorded for BCS superconductors and may be other
superconductors in the clean limit.
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I. INTRODUCTION

The bulk properties of a vortex lattice (VL) of a type-
II superconductor are studied experimentally, among other
techniques, by magnetization, small-angle neutron scattering
(SANS), muon spin rotation (μSR), and nuclear magnetic res-
onance (NMR) measurements. To extract physical information
on the investigated compound modeling of the VL magnetic
properties is required. This is usually done using either the
London or the Ginzburg-Landau (GL) models.1 While the
London model neglects the vortex cores altogether—which
is acceptable for low fields only—the GL model accounts for
them. Although the GL theory is strictly valid only near the
superconducting critical temperature at low field it turned out
to be a good approximation for a number of classical BCS
superconductors.2 The GL model is usually found to provide
a proper description of the VL throughout the mixed phase for
unconventional superconductors also, assuming the London
penetration depth and the Ginzburg-Landau coherence length
to be effective parameters.3 This is further discussed by Landau
and Keller.2

One of the interesting phenomena predicted already in
1972 by Delrieu is the diffraction of the Cooper pairs on the
periodic potential induced by the VL.4 He showed that for
clean superconductors at low temperatures and fields close to
the upper critical field Bc2 exotic behaviors of the VL may
be observed due to Cooper pair diffraction. The spatial field
distribution around vortex cores obtains a conical shape and the
positions of the minimal and saddle-point fields interchange.
As a consequence the probability field distribution shows a
linear tail around the vortex core field. Nearly at the same time
E. H. Brandt came to the same conclusion based on a nonlocal
theory of superconductivity.5 In the following publications he
presented analytical and numerical results for the nonlocal
VL behavior at fields close to Bc2 with an arbitrary impurity
scattering,6 and later for a broad range of fields.7 Later on,
an exact numerical solution of Eilenberger’s quasiclassical
equations by Klein allowed one to determine the microscopic
structure of the order parameter and magnetic field in the whole
range of the applied fields.8

Writing a simplified Gorkov9 integral equation for the
Green’s function in terms of a set of linear algebraic equations
for the time and space Fourier components, U. Brandt et al.
have been able to compute analytically the density of states
under high fields.10 Later on the magnetization11 as well as
the field distribution4,12 were also obtained by U. Brandt et al.
and Delrieu, respectively, using the previously derived results
for the Green’s function. The clean and dirty limits were
considered by Delrieu in his Ph.D. thesis.12

It is worth noting that the Cooper pair diffraction is a
property of clean superconductors. Therefore, in most high-
temperature superconductors these diffraction effects may be
observable.

A VL field distribution which may exhibit a high-field linear
tail was reported from NMR measurement on vanadium.13

Later on the existence of the tail was confirmed by Herlach
et al. for niobium using μSR measurements.14 They were
performed at low temperature and for an external field Bext

relatively close to Bc2. The linear tail is qualitatively different
from GL model expectation for which a field cutoff should be
present.15

The NMR and the μSR results seem to support Delrieu’s
predictions, in particular the linear tail. SANS data may also
be consistent with them.4 However, after more than 40 years
there is still no definitive experimental observation of the
predicted exotic VL at low temperature. Probably the difficulty
of reading Delrieu’s works has prevented experimentalists
from performing the required combined SANS and μSR
measurements. Here we review this work and present a
numerical analysis of the form factor, field map, and field
distribution.

The organization of this paper is as follows. Section II
recalls the geometry of a VL and introduces useful reduced
quantities. In Sec. III the physical principles behind the
computations of the magnetization and form factor are given.
The following sections, i.e., Secs. IV and V, deal with the
magnetization and form factor, respectively. In Sec. VI the
component field distribution is discussed. The numerical
analysis of the form factor, field map, and field distribution
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is the subject of Sec. VII. We end up with a discussion and the
conclusions in Sec. VIII. Analytical and numerical details can
be found in five Appendices. In particular, the last appendix
shows that the form factor can be expressed in terms of a
reduced number of parameters. This result allows in Sec. VII
easily studying the crossover from BCS to GL in the VL
structures.

II. GEOMETRY

We assume Bext to be applied along the Z axis of an
orthogonal reference frame, with the vortex tubes of a type-II
superconductor in its mixed phase running along that axis. The
VL is taken to be composed of equilateral triangles. Therefore
in the direct space the unit cell is defined by the three vectors
v1 = X1x̂, v2 = X2x̂ + Y2ŷ, and v3 = ẑ, where x̂ and ŷ are two
mutually orthogonal unit vectors perpendicular to the Z axis, ẑ
is the unit vector of the Z axis, and {X1,X2,Y2} are coordinates
with the relations X2 = X1/2 and Y2 = √

3X1/2. Since the
vortex tubes are taken as straight, a VL point is labeled by the
two-dimensional vector

Rp,q = pv1 + qv2 = (pX1 + qX2)x̂ + qY2ŷ. (1)

Following Delrieu’s convention a lattice point in the reciprocal
lattice is specified by the reciprocal vector

Km,h = −hv∗
1 + mv∗

2 = 2π

sc
[−hY2x̂ + (mX1 + hX2)ŷ], (2)

with the VL unit cell area

sc = X1Y2 = �0

BZ
. (3)

The mean value of the induction is denoted BZ(r) or BZ in
short, where r refers to a position in the direct space. We have
introduced the magnetic flux quantum �0 (�0 = 2.067 83 ×
10−15 T m2), and the two vectors v∗

1 and v∗
2 which define the

unit cell in the reciprocal lattice.
As examples, with an obvious notation, we

have R1,0 = X1(1,0), R0,1 = X1(1/2,
√

3/2), and
R−1,1 = X1(−1/2,

√
3/2). For the reciprocal lattice

points, we compute K1,0 = [4π/(
√

3X1)](0,1),
K0,1 = [4π/(

√
3X1)](−√

3/2,1/2), and K−1,1 =
[4π/(

√
3X1)](−√

3/2,−1/2). The complementary three
points in the direct and reciprocal lattices respectively can be
obtained by symmetry.

We introduce for convenience two reduced quantities. We
define the magnetic length

� =
√

sc

2π
=

√
X1Y2

2π
=

√
�0

2πBZ
. (4)

It is related to the lattice parameter of the VL:

X1 =
(

4

3

)1/4
√

�0

BZ
= 2.693 × �. (5)

Unless Bext is close to the lower critical field Bc1, the
magnetization of a superconductor is negligible, and therefore
BZ � Bext. We shall express the form factor with the unit-
less parameter nKm,h

defined through the wave-vector scalar

product

Km,h · Km,h = K2
m,h = 4

�2
n2

Km,h
. (6)

From this definition, we derive the important formula

n2
Km,h

= πX1

2Y2
(m2 + mh + h2) = π√

3
(m2 + mh + h2). (7)

III. PHYSICAL PRINCIPLES FOR THE DESCRIPTION
OF THE MAGNETIZATION AND FORM FACTOR

The computations of the magnetization and form factor are
based on an approximate form of the integral Gorkov equation
for the temperature Green’s function Gω�

(r,r′):16

Gω�
(r,r′) = Gn

ω�
(r − r′) −

∫
Gn

ω�
(r − r1)V (r1,r2)

×Gn
−ω�

(r2 − r1)Gω�
(r2,r′)d3r1d

3r2, (8)

where V (r1,r2) is the correlation function of the order
parameter �(r):

V (r1,r2) = �(r1)�∗(r2) exp

(
−2ie

h

∫ r2

r1

A(l) · dl
)

. (9)

Note that V (r1,r2) describes the correlation function of the
Cooper pairs rather than the correlation of the electrons. A
justification of the correlation function nature of V (r1,r2) is
given after Eq. (13). We have introduced the Matsubara angular
precession frequency ω�:

ω� = (2� + 1)πkBT/h̄. (10)

The path of integration over the potential vector A is
a straight line between r1 and r2. Within the semiclassical
approximation the effect of the field on the material is entirely
described by the phase integral in the correlation function
and Gn

ω�
(r − r′) refers to the temperature Green’s function

of the normal metal in the absence of a magnetic field. The
semiclassical approximation is valid if the spacing between the
Landau levels is small compared to the sum of their thermal
and collision broadenings; i.e.,16

Rφ = μBBext

2πkBT + h̄/τlife
� 1. (11)

Here τlife is the level lifetime which accounts for the finite
electron mean-free path. It is further discussed in Sec. VIII.
Neglecting the h̄/τlife term in the ratio expression, we compute
Rφ = 1 when T = 0.04 K for Bext = 0.4 T. This Bext value
corresponds approximately to Bc2 for a high-quality niobium
sample.14 The theory for the form factor and resulting field
map and field distribution discussed here is therefore expected
to be valid down to 0.04 K for simple superconductors such as
niobium when the VL is composed of equilateral triangles.

The correlation function has the periodicity of the VL with
respect to the center of mass of a Cooper pair, i.e., (r1 +
r2)/2.11 Therefore it can be Fourier expanded. Neglecting the
spatial variation of the induction, a valid approximation in our
case since we are interested in the high-field VL for which the
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magnetization is negligible,4,12

V (r1,r2) =
∑
m,h

VKm,h
(r1 − r2) exp[iKm,h · (r1 + r2)/2],

(12)

with

VKm,h
(r) = (−1)mhV0(r − Rm,h). (13)

Since V (r1,r2) depends on the difference (r1 − r2) and the
center of mass of the Cooper pairs, and not on r1 and r2

individually, it is really a correlation function. The Fourier
components have a remarkable property: VKm,h

(Rm,h) =
(−1)mhV0(0). Therefore at the VL nodes, i.e., at position Rm,h,
within a phase the correlation function of the order parameter
has a common single value. In fact the phase changes from one
position to the next-nearest neighbors in a coherent fashion.
Because of this long-range coherence, we expect Cooper pair
diffraction on the vortex cores. However, the diffraction can
only be partial since the coherent nature of the correlation
is only active for a finite set of Cooper pairs, i.e., the ballistic
ones with trajectory through the vortex cores. It is the extended
correlation which is the origin of the slow power decay of
the form factor at low temperature discussed latter on. This
property does not hold near Bc1 since the spatial variation of
the induction has been neglected in deriving Eq. (13).

As the correlation function, the Green’s function is periodic
with respect to (r1 + r2)/2. In addition to the half sum of the
coordinates, the two functions depend on the difference of
the coordinates. To the difference corresponds the continuous
conjugate Fourier vector p. Performing the Km,h and p
Fourier transforms on the approximate Gorkov equation given
at Eq. (8), an algebraic set of equations is derived. An
approximate simple solution has been proposed in Ref. 10
based on the fact that the terms of the set with Km,h �= 0 are
negligible relative to the ones with Km,h = 0. Latter on, it
has been shown to be satisfactory only for the computation of
thermodynamic quantities. It cannot be used to describe the
dynamics. It is valid even at low temperature.12

The free energy of a superconductor can be written in
terms of Gω�

(r,r′).17 Focusing again on the case for which
Bext is near Bc2, and therefore the spatial variation of the
order parameter can be neglected, and assuming the Abrikosov
vortex solution,4,11

F = �2
0N0 ln

(
T

Tc0

)
− 8πkBT N0

×
∞∑

�=0

[∫ π/2

0
sin θ

(
u�

2a
− h̄ω�

)
dθ − �2

0

4h̄|ω�|
]

. (14)

We have defined the function

a = a(θ ) = �

h̄vF sin θ
(15)

and the variable u� which is the root of the equation

u� = 2h̄ω�a + �2
0a

2iv(iu�). (16)

The Fermi surface has been assumed to be spherical. As we are
using the BCS theory, we are working in the weak-coupling
limit. The function v(z) is defined in Appendix A.

In addition to the temperature, the free energy depends on
four parameters: the critical temperature at low field Tc0, the
mean order parameter squared �2

0 = |�(r)|2 where the bar is
for the spatial averaging, the density of states at the Fermi
energy per spin, volume, and energy in the normal state N0,
and the Fermi velocity vF. The order parameter can be related
to basic parameters of the superconductor. Assuming that the
average value �0 is equal to the value of the order parameter
in zero field, according to BCS

�0(0)

kBTc0
= π

exp(γ )
= 1.7639, (17)

where �0(0) is the value of �0 at T = 0 and γ the Euler-
Mascheroni constant; i.e., γ = 0.577 22. So at low temperature
only three material parameters are left if the spherical Fermi
surface and weak-coupling approximations are valid.

In addition to �0(0), other parameters characterize a
superconductor. The Pippard-BCS coherence length ξ0(0) is
related to �0(0),

ξ0(0) = h̄vF

π�0(0)
, (18)

and in the clean limit (see for example Ref. 1 at page 120),

ξGL = ξ0/0.96. (19)

Here ξGL is the GL coherence length. We stress that Eq. (19)
is derived in the T = 0 limit. We note the GL relation

Bc2(T ) = �0

2πξ 2
GL(T )

. (20)

It is also possible to derive information on the mean order
parameter from the minimization of the free energy written
above. This leads to a formula of the Helfand-Werthamer
type18 which can be used to model Bc2(T ) for an isotropic
Fermi surface in the weak-coupling approximation. However,
that type of formula does not describe Bc2(T ) for niobium,19,20

one of the metals for which the theory discussed here may
apply. This is attributed to the strong anisotropy of the
Fermi surface.21,22 Hence, we shall not pursue any longer our
discussion of �0 in terms of the free energy discussed in this
work.

IV. MAGNETIZATION

While our main purpose in this report is the study of the
form factor, here we discuss the magnetization M . This is
justified since, thanks to Abrikosov, the relation between M

and the induction is known for a temperature in the vicinity of
Tc0. Therefore the study of M gives us the possibility to check
the validity of the formula for the induction, and therefore the
form factor.

We recall that M = −∂F/∂BZ . In terms of the
free-energy expression given by Eq. (14), ∂F/∂BZ =
−[a/(2BZ)](∂F/∂a) and therefore we need to evaluate
a(∂/∂a)(u�/a). This is done in Appendix B. We finally obtain

M = πkBT N0�
2
0

2BZ

∞∑
�=0

∫ π/2

0
sin(θ )iv′′(iu�)

∂u�

∂(h̄ω�)
dθ. (21)

M can be evaluated numerically and compared to experimental
data. We shall use it in our discussion of the form factor.
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Interestingly, it can be drastically simplified in the T = 0 limit.
From Appendix C

M = −N0�
2
0

2BZ
. (22)

This result will be used in Sec. V. As expected, M is negative.

V. FORM FACTOR

Here we consider the field Fourier component BZ
Km,h

which
is usually called the form factor in the SANS literature. It is
related to the space-dependent induction component BZ(r) by
the Fourier relation

BZ(r) =
∑
Km,h

BZ
Km,h

exp(iKm,h · r), (23)

with

BZ
Km,h

= 1

sc

∫
sc

BZ(r) exp(−iKm,h · r)d2r. (24)

According to Refs. 4 and 12 and correcting for misprints,

BZ
Km,h

= −μ0πN0�
2
0

BZ

(−1)mh exp
(−n2

Km,h

)
n2

Km,h

2πkBT

×
∞∑

�=0

∫ π/2

0
sin(θ )g�(θ )dθ, (25)

where we have introduced the auxiliary function

g�(θ ) = iv
(
iu� + inKm,h

) + iv
(
iu� − inKm,h

) − 2iv(iu�)[
1 + �2

0�
2

h̄2v2
F sin2 θ

v′(iu�)
]2

× ∂u�

∂(h̄ω�)
. (26)

It is convenient to rewrite the variable u� without the
intermediate function a(θ ). Referring to Eqs. (15) and (16),

u� = 2ω�

�

vF sin θ
+ �2

0�
2

h̄2v2
F sin2 θ

iv(iu�). (27)

Therefore g�(θ ) is indeed a function of the angle θ and the
angular frequency ω�.

This formula for BZ
Km,h

is extremely complicated.

Remarkably, as M does, BZ
Km,h

depends on three material

parameters, i.e., �2
0, N0, and vF, and T and B

Z
. This suggests

that simple relations may exist between them. They do exist
in two limiting cases. Interestingly, N0 only appears as a
proportionality parameter.

In the proximity of Tc0 the asymptotic limit of the form
factor is (see Appendix D 1)

BZ
Km,h

= μ0M(−1)mh exp
(−n2

Km,h

)
. (28)

Recalling the definition of the Fourier transform of the
induction, see Eq. (23),

BZ(r) = BZ +
∑

(m,h)�=(0,0)

BZ
Km,h

exp(iKm,h · r). (29)

This means that

BZ(r) = BZ − μ0|M|
∑

(m,h)�=(0,0)

(−1)mh exp
(−n2

Km,h

)
× exp(iKm,h · r), (30)

since M < 0; see Sec. IV. This is the Abrikosov result.23

An exotic behavior is found in the T → 0 limit. From
Appendix D 2 for nKm,h


 1,

BZ
Km,h

= −μ0π
√

πN0�
2
0

BZ

(−1)mh

n3
Km,h

. (31)

In terms of the magnetization, see Eq. (22), it gives

BZ
Km,h

= −2π
√

πμ0|M| (−1)mh

n3
Km,h

. (32)

Whereas BZ
Km,h

has a Gaussian wave-vector dependence near
Tc0, it decays much more slowly with a wave-vector power
law at low temperature. This is quantified in Sec. VII. Hence,
whereas only the low-indices Bragg spots might be observed
by small-angle neutron scattering (SANS) near Tc0, more spots
should be detected at low temperature. In fact, in addition to
the usual six K1,0 Bragg reflections, K1,1 and K2,0 spots have
already been observed for niobium at 4.2 K for Bext parallel
to the [111] crystal direction.24 Only for that field direction
is the VL triangular, and hence is of interest here. Because of
possible double Bragg scattering effects and large distortions in
the VL, it is not easy to derive information from the published
form-factor data on niobium to compare with the power-law
prediction.

VI. FIELD DISTRIBUTION

It is difficult to analyze analytically the spatial dependence
of the induction. Here we shall focus on the field distribution
as measured by μSR and NMR techniques. We shall assume
a disorder-free VL and the field width of the distribution to be
small relative to BZ; i.e., only the distribution of the field
component along Bext is measured.25 This latter condition
can be checked to be fulfilled by looking at the computed
distribution. For simplicity we shall write the distribution
Dc(BZ) without specifying that it does depend on Bext.

Mathematically, the distribution can be expressed in terms
of a two-dimensional Dirac function:

Dc(BZ) =
∫

sc

δ[BZ(r) − BZ]
d2r
sc

, (33)

where the integral only extends over the unit cell. An important
characterization of a distribution is its variance:25

�2
Z,v =

∑
K �=0

∣∣BZ
K

∣∣2
. (34)

For the simple asymptotic form factor given in Eq. (31), we
derive for the standard deviation

�Z,v = 33/4μ0N0�
2
0

BZ

√√√√ ∑
(m,h)�=(0,0)

1

(m2 + mh + h2)3

= 5.756
μ0N0�

2
0

BZ
. (35)
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VII. NUMERICAL ANALYSIS OF THE FORM FACTOR,
FIELD MAP, AND FIELD DISTRIBUTION

As shown in Appendix E 1, the form factor BZ
Km,h

depends

in fact only on three parameters noted ã, b̃, and c̃. The
parameter ã = −μ0πN0�

2
02c̃/BZ stands as a proportionality

coefficient while b̃ and c̃ are dimensionless [b̃ = (�/πξB)2

and c̃ = �/ξT with the temperature and field dependent length
scale parameters ξT = h̄vF/(2πkBT ) and ξB = h̄vF/π�0; see
Appendix E 1]. Interestingly, for Bext � Bc2 b̃ � 1 and c̃

changes notably as T varies. As shown below, this enables
us to easily discuss the physics of the form factor, field map,
and field distribution.

Let us consider a classical BCS superconductor with
Tc0 = 10 K. From Eq. (17) we compute �0(0) � 1.52 meV.
Assuming Bc2(0) = 0.4 T, from the GL relation [Eq. (20)]
we find ξGL(0) = 28.7 nm. Using the BCS relation vF =
ξ0π�0(0)/h̄, see Eq. (18), and the approximation of ξ0

in terms of ξGL given at Eq. (19), we estimate vF � 2.00
× 105 m/s. Let us assume for the second critical field the sim-
ple temperature dependence Bc2(T ) = Bc2(0)(1 − t2), with the
reduced temperature t = T/Tc0. The field and temperature de-
pendencies of the gap are taken to be described by the compact
formula �0 = �0(T )

√
1 − b = �0(0)

√
1 − b

√
1 − t2, with

the reduced field b = Bext/Bc2(T ). Here we note that ξ0 �= ξB

since ξ0 only depends on �0(0) while ξB is a function of �0.
Under these assumptions,

b̃ =
(

��0

h̄vF

)2

= �2
0(T )(1 − b)

h̄2v2
F

�0

2πBc2(T )

Bc2(T )

BZ

= 1

π2

ξ 2
GL(T )

ξ 2
0 (T )

1 − b

b
� 0.110

1 − b

b
. (36)

Above we used Eqs. (18)–(20). The parameter c̃ is field and
temperature dependent:

c̃ = 1.1811
t√

b(1 − t2)
. (37)

Interestingly, c̃ is only written in terms of two reduced
variables. Numerically, b̃ = 0.110, 0.073, 0.047, 0.027, 0.012,
and 0.0011 for b = 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99, respec-
tively. c̃ is linear in temperature in the low-temperature limit
and diverges as t → 1. The temperature dependence of c̃ for
b = 0.5, 0.7, 0.9, and 0.99 is given in Fig. 1. In agreement
with our discussion in Appendix E 1, while the c̃ thermal
dependence is quite strong and it gets large as the critical
temperature is approached, b̃ is weakly temperature dependent
and has a negligibly small value in the Bext → Bc2 limit.

The analysis of b̃ and c̃ suggests to start our discussion
of the VL properties focusing on its c̃ dependence near the
b̃ → 0 limit. In Figs. 2 and 3 we show the contour plots of
the spatial field distribution for b̃ = 0.0011 (i.e., b = 0.99)
and c̃ = 0.01, 0.10, 0.30, 0.70, 0.90, 1.30, 3.00, and 20.00.
Comparing the data at the top of Fig. 2 and bottom of Fig. 3, the
field map, profile, field distribution, and form factor intensity
are drastically different at low temperature and near Tc0. At c̃ =
c̃cross � 0.9 a crossover occurs. This value of c̃cross corresponds
to T � 0.6Tc0 in agreement with a report of E. H. Brandt (this
value depends on vF).26

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

b = 0.5

b = 0.99

T/Tc0

c̃

10
−2

10
−1

5

10

15

20

1 − T/Tc0

c̃

FIG. 1. Temperature dependence of the parameter c̃ in reduced
temperature scale for four different values of the reduced field b =
Bext/Bc2, i.e., b = 0.5, 0.7, 0.9, and 0.99. The insert shows the same
but on semilogarithmic scale in the vicinity of Tc0.

For c̃ > c̃cross we do observe behaviors expected in the
GL regime.25,27 A minimum for the spatial field distribution
is found in between three neighboring vortices, while in
between two neighboring vortices, i.e., at midpoint on the
line connecting two neighboring vortices, a field saddle point
is located. The signature of the minimum of the field is obvious
in Dc(BZ). The saddle point corresponds to the maximum in
Dc(BZ). As shown in the inserts of the field distributions, the
intensity of the form factor is expected to be reduced for large
indices.

For c̃ < c̃cross the positions of the minimum and saddle
point are reversed. The shape of the profiles are substantially
different. In the limit c̃ → 0 the conical shape of the vortex
profiles near the positions of the minimum and saddle point
are particularly pronounced. This property is even more clearly
seen at the minimum-field point as shown by the dashed line
in the field profile. This feature reflects directly the weak
power-law decay of the form factor which is a consequence
of the Cooper pair diffraction by the vortex cores. This can
be qualitatively understood if we recall that the weight of
the k harmonic for the infinite Fourier series of a triangle
wave—a wave with a profile similar to the dashed line—is
proportional to (−1)k/(2k + 1)2. Note the alternating sign as
in the BZ

Km,h
expression in the T = 0 limit, as well as the

power-law decay. As reflected by the different exponents of
the power-law decays, this comparison is only qualitative. This
is not surprising given the two-dimensional nature of the field
map. The triangle-wave model has only one dimension. For
c̃ � 0.70 the BCS solution and the GL limit, i.e., T → Tc0,
predict similar high-field Dc(BZ). But the low-field features
are still different. As noticed from Fig. 2, it is not required to
go to extremely low temperature to observe Bragg’s spots of
large indices when Bext → Bc2.

A linear high-field tail is predicted in Fig. 2 for Dc(BZ).
However, it is only expected at really low temperature, i.e., for
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FIG. 2. (Color online) Left panels: Contour plot M(x,y) = [BZ(x,y) − BZ]/[BZ
vc − BZ] for b̃ = 0.0011 and four different c̃ values, i.e.,

c̃ = 0.01, 0.10, 0.30, and 0.70, from top to bottom. Middle panels: Field profile along the solid and the dashed lines shown in the left panels.
Right panels: The corresponding component field distribution Dc(BZ) is shown as a solid black line. For comparison, we present in dashed blue
and dotted red lines Dc(BZ) for c̃ → 0 and c̃ → ∞, respectively. In order to match the vortex core field BZ

vc, the horizontal axis for Dc(BZ)
shown with the dotted red line (c̃ → ∞) has been scaled (BZ is identical for all the curves). The insert shows the values of Rm,h = |BZ

Km,h
/BZ

K1,0
|

for the first five form factors in logarithm scale. To simplify the drawings, and without any loss of information, the dashed blue line for the
Dc(BZ) plots (corresponding to c̃ → 0) is presented only when c̃ � 0.30.
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FIG. 3. (Color online) The same as in Fig. 2, but for c̃ = 0.90, 1.30, 3.00, and 20.00, from top to bottom, respectively.

c̃ � 0.10, in contrast to observation.14 The Dc(BZ) shape near
the minimum field is really different near T = 0 and Tc0. This
difference remains to be seen experimentally. A signature of
the crossover for Dc(BZ) is in its sharp rise at low field without
any shoulder. Although never reported, it could be observed
experimentally.

Up to now we have focused our attention on the physics
very near the Bc2 phase boundary when the parameter b̃ is
negligible. Now we study it as we go out of the boundary.
In Fig. 4 we present the maps near T = 0 (c̃ = 0.01),
for c̃ = 0.90, i.e., at the crossover temperature, as well as
for c̃ = 3.00. They are computed for b̃ = 0.11, 0.44, and
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FIG. 4. (Color online) Contour plots of the field distribution for three values of c̃ (c̃ = 0.01, 0.90, and 3.00), and for b̃ significantly larger
than zero: b̃ = 0.11, 0.44, and 0.99 (corresponding to reduced fields b = 0.5, 0.2, and 0.1, respectively).

0.99, corresponding to the reduced fields 0.5, 0.2, and 0.1,
respectively. Focusing first on the maps at the top of the figure,
i.e., for c̃ = 0.01, we note that the BCS regime, i.e., when
Cooper pair diffraction matters, disappears when leaving the
Bc2 phase boundary. This is clearly seen as the saddle point
moves in between two vortex cores, as expected in the GL
regime. Physically the distance between the cores becomes so
large that the Cooper pair diffraction is no longer operative.
The recovery of the GL features of the VL appears at a lower
field if the temperature is increased, as seen from the maps at
the crossover temperature. As noted from the maps at the
bottom, i.e., at high temperature, their properties are field
independent.

In Fig. 5 we show Dc(BZ), the field profiles along the
dashed and solid lines in Fig. 4, and the form factors. While at
c̃ = c̃cross they are still weakly b̃ dependent, this is no more the
case when c̃ = 3.00. This is obviously consistent with the field

behavior of the maps, as seen in Fig. 4. At low temperature,
i.e., at c̃ = 0.01, the shape of Dc(BZ), the field profiles, as well
as the amplitude of the renormalized form factors, are strongly
field dependent, confirming the results shown in Fig. 4. Only
at high field is the behavior in the BCS regime observed.

VIII. DISCUSSION AND CONCLUSIONS

As pointed out by U. Brandt et al. the approximate Gorkov
equation used above is valid in the region of fields near
Bc2(T ) where the magnetization vs field curve does not deviate
appreciably from the straight line.10 For superconductors with
a GL parameter κ ∼ 1 this corresponds to a rather limited field
range; however for κ 
 1 it covers a substantial part of the
VL phase. The validity of the model is related to two types of
approximations which have been done for the derivations of the
magnetization and form factor. We shall focus our discussion
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FIG. 5. (Color online) Field dependence of the component field distributions, field profiles, and form factors at low temperature—c̃ = 0.01
and b̃ = 0.0011, 0.0275, 0.0733, 0.165, 0.44, and 0.99 (corresponding to b = 0.99, 0.8, 0.6, 0.4, 0.2, and 0.1, respectively)—for the left column,
at the crossover temperature—c̃ = 0.90 and b̃ = 0.0011, 0.44, and 0.99 (b = 0.99, 0.2, and 0.1, respectively)—in the middle column, and at
high temperature—c̃ = 3.00 and b̃ = 0.0011, 0.11, and 0.99 (b = 0.99, 0.5, and 0.1, respectively)—in the right column.

on the latter quantity. The first type is inherent to the method
and the second can be taken out if necessary.

We first recall the two approximations of the first type. The
form factor is computed with an approximate Green’s function.
First, the effect of the field on the function is only described
with a phase integral. This is the widely used semiclassical
approximation. The ratio defined at Eq. (11) has to be smaller
than 1 for this approximation to be valid. Second, the spatial
variation of the induction is neglected. Therefore this cannot
be valid if Bext is too close to Bc1.

We now discuss the second type of approximation. First,
a spherical Fermi surface has been chosen. It should not be
a problem to describe a superconductor with an anisotropic
Fermi surface. However, it is probably possible only numer-
ically. Second, up to now the conduction electron mean-free
path �mfp has been assumed to be infinite. Here we describe a
method to account for the finite �mfp value.

In the case of an isotropic impurity diffusion, the effect
of these impurities can approximately be taken into account
in the following way. First the Matsubara angular precession
frequency ω� in Eq. (10) is substituted by ω� + 1/(2τimp) where
τimp = �mfp/vF. We identify τimp introduced here with τlife used
in Sec. III. Hence in the formula for the form factor ω� has the
meaning28

ω� = (2� + 1)πkBT/h̄ + 1/(2τimp). (38)

Second, �0 has to be renormalized.12 It is substituted by

�0

1 − ε(ω�)
(39)

with

ε(ω�) = 1

2

�

τimpvF

∫ π/2

0
iv

(
iω��

vF sin θ

)
dθ. (40)
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FIG. 6. (Color online) The same as in Fig. 2, but for d̃ = 0.1 and 0.7 and fixed b̃ = 0.0011 and c̃ = 0.001. The different plots show clearly
that when the conditions for observation of a BCS type of VL are achieved (i.e., for b̃ � 0 and c̃ � 0) the transition from the BCS to the
GL vortex lattice occurs at d̃ � 0.7. For d̃ → 0 the VL is in clean limit (see also Fig. 2) while for d̃ → ∞ it is of the GL type as in the
high-temperature range; i.e., c̃ → ∞ (see Fig. 3 and Appendix E 2).

Note, limτimp→0 ε(ω�) = 1. Since ε(ω�) > 0, when the scatter-
ing is not too strong, i.e., when τimp is sufficiently long, the
renormalization increases �0. This means that the Pippard-
BCS coherence length decreases, as expected. Consistent with
the region of validity of the form factor expression given by
Eqs. (25) and (26), the proposed renormalization is only valid
if Bext is not too far from Bc2. In the BZ

Km,h
expression the

renormalization occurs three times: twice explicitly and once
through the variable u�. As has been done in the clean limit, it
is possible to write the BZ

Km,h
expression in terms of a reduced

number of parameters; see Appendix E 2.
Eilenberger has derived approximate equations for the

Green’s functions for which a numerical method has been
developed to solve them; see Refs. 8 and 29 and references
therein. With this formalism the form factor can be computed
with the effect of a finite �mfp accounted for.30 It would be
worthwhile to reproduce the analytical results described here
with the numerical method and extend this study outside
the region of validity of the analytical solution, i.e., far
below Bc2(T ).

The linear Dc(BZ) tail at low and high field and the relative
large amplitude ratio Rm,h = |BZ

Km,h
/BZ

K1,0
| for Bragg’s spots

far from the center of the reciprocal space are consequences
of the diffraction of the Cooper pairs on the vortex cores.
Hence, a priori they should also be observed even for non-
BCS-wave superconductors. For these exotic properties to
be found, measurements have to be performed on very clean
single-crystal superconductors (which is usually the case for

high-temperature superconductors) at low temperature and for
Bext sufficiently close to Bc2.

For the diffraction of carriers on a periodic VL to matter
at low temperature, �mfp should be substantially larger than
the intervortex distance; i.e., d̃ = �/�mfp � 1. For d̃ 
 1 no
diffraction takes place and the VL has the GL profile similar
to that shown in Fig. 3 (see Appendix E 2) while for d̃ = 0
the superconductor is in the clean limit which was discussed
above. In Fig. 6 we show contour plots of the spatial field
distributions, field profiles, component field distributions, and
form factors for intermediate values of d̃ = 0.1 and 0.7 with
fixed c̃ = 0.001 and b̃ = 0.0011 (since b̃ � 0 and c̃ � 0 are
optimal for the observation of the diffraction effects). For d̃ <

0.1 the characteristics of the VL are similar to that of clean
VL. With increasing d̃ the exotic behavior of VL gradually
vanishes and at d̃ � 0.7 the crossover takes place. This result
differs only slightly from that obtained by E. H. Brandt using a
nonlocal theory.6 This crossover depends on the combination
of b̃, c̃, and d̃ . In Fig. 7 plots for the crossover condition
are given as a function of b̃, c̃, and d̃ (b̃ vs c̃ for different d̃

values). This conclusive figure illustrates the following natural
condition for the observation of the exotic VL behavior due to
diffraction: The three length scales ξT , ξB , and �mfp should be
significantly larger than the intervortex distance [here, ξT =
h̄vF/(2πkBT ), ξB = h̄vF/π�0; see Appendix E 1].

In conclusion, we have reviewed the previous works of
Delrieu on the exotic behavior of the vortex lattice (VL) at high
field and low temperature. It is the consequence of the Cooper
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FIG. 7. Plots of b̃ vs c̃ for d̃ = 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, and
0.6 where the condition of equal fields at saddle and minimal points
is satisfied (the crossover condition; see, e.g., top panel of Fig. 3).

pair diffraction on the periodic VL potential. Analytical and
numerical results for the magnetization and form factors are
derived using the Green’s function formalism. In agreement
with previous works of E. H. Brandt where a nonlocal theory
of superconductivity was utilized (see, e.g., Refs. 6 and 26
and references therein), we find a set of conditions for the
observation of this exotic behavior of the VL. Namely, the
intervortex distance should be significantly smaller than each
three length parameters: ξT , ξB , and �mfp (see the text). An
expression for the standard deviation of the component field
distribution has been derived. The results of a numerical study
of the form factors (BZ

Km,h
), field map, and field distribution

[Dc(BZ)] have been presented for a broad range of applied
field Bext and covering the whole range of temperatures from
T = 0 up to Tc0. In addition, the effect of impurities was
studied. This has enabled us to determine features which
distinguish GL from low-temperature BCS vortex lattices.
The behaviors of the experimentally accessible Dc(BZ) and
|BZ

Km,h
/BZ

K1,0
| quantities versus the normalized temperature and

external field have been exposed. These results should at least
apply to niobium for Bext ‖ [111], and maybe other classical
BCS superconductors such as vanadium. This analysis will
help in searching the exotic VL behavior using the SANS,
μSR, and NMR techniques, since the Cooper pair diffraction
is not restricted to the BCS theory and the conditions of the
diffraction presented above can well be satisfied by most of
the high-temperature superconductors.
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APPENDIX A: THE v(z) FUNCTION AND THE RELATED
DAWSON INTEGRAL

The magnetization and the form factor for the field near Bc2

are expressed in terms of the function v(z) which is related to

the so-called complementary error function erfc(z):31

v(z) = 1√
π

∫ ∞

−∞

exp(−t2)

z − t
dt =

√
π

i
exp(−z2)erfc(−iz).

(A1)

We have the relation

v(−z) = −2
√

πi exp(−z2) − v(z). (A2)

Here z and t are complex and real variables, respectively. In
our case z = ix, where x is real, and in the asymptotic large-x
limit

iv(ix) = 1

x

[
1 − 1

2x2
+ O

(
1

x4

)]
. (A3)

In general, we have the relation

v′(z) = −2zv(z) + 2, (A4)

where v′(z) = dv(z)/dz. Combining the two previous equa-
tions, we derive

v′(ix) = 1/x2, x → ∞ (A5)

and

iv′′(ix) = −2/x3, x → ∞. (A6)

The iv(ix) function is bounded as follows:

−(x −
√

x2 + 2) < iv(ix) < −π

2
(x −

√
x2 + 4/π ). (A7)

We note the asymptotic limit of the Dawson integral:

exp(−x2)
∫ x

0
exp(t2)dt = 1

2x
, x → ∞. (A8)

APPENDIX B: EVALUATION OF a(∂/∂a)(u�/a)

Here we evaluate

A = a
∂

∂a

(
u�

a

)
, (B1)

which is required to derive the magnetization from the free
energy. It is easily found that

A = ∂u�

∂a
− u�

a
. (B2)

To compute ∂u�/∂a, we first note that according to Eq. (16)
we can write

−u� + 2h̄ω�a + �2
0a

2iv(iu�) = f (u�,a) = 0. (B3)

This implies that

∂u�

∂a
= − ∂f/∂a

∂f/∂u�

= 2
h̄ω� + �2

0aiv(iu�)

1 + �2
0a

2v′(iu�)
, (B4)

where v′(z) = dv(z)/dz. This means that

A = �2
0a

−u�v
′(iu�) + iv(iu�)

1 + �2
0a

2v′(iu�)
. (B5)

Now we note the relation
∂ [u�iv(iu�)]

∂(h̄ω�)
= ∂u�

∂(h̄ω�)
[iv(iu�) − u�v

′(iu�)]. (B6)
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Since
∂u�

∂(h̄ω�)
= −∂f/∂(h̄ω�)

∂f/∂u�

= 2a

1 + �2
0a

2v′(iu�)
, (B7)

we derive

∂ [u�iv(iu�)]

∂(h̄ω�)
= 2a[iv(iu�) − u�v

′(iu�)]

1 + �2
0a

2v′(iu�)
. (B8)

Combining the previous equation with Eq. (B5), we obtain

A = �2
0

2

∂ [u�iv(iu�)]

∂(h̄ω�)
. (B9)

Recalling the relation given at Eq. (A4), we finally derive

A = −�2
0

4
iv′′(iu�)

∂u�

∂(h̄ω�)
. (B10)

APPENDIX C: LOW-TEMPERATURE ASYMPTOTIC LIMIT
OF THE MAGNETIZATION

We start from Eq. (21). When the temperature is very
small, according to Eq. (10) it is justified to replace the
sum 2πkBT

∑
� by the integral

∫ ∞
u0

d(h̄ω). Since, according
to Eq. (A5), v′(iu�) vanishes when � → ∞,

M = −N0�
2
0

4BZ

∫ π/2

0
sin(θ )v′(iu0)dθ. (C1)

As a Matsubara frequency vanishes with the temperature,

u0 = �2
0�

2

h̄2v2
F sin2 θ

iv(iu0). (C2)

Because we are focusing on the field region near Bc2, except
for a small domain for which θ can be small, we can take
u0 = 0. Using Eq. (A4), we then get v′(0) = 2, and finally
derive the result written in Eq. (22).

APPENDIX D: ASYMPTOTIC LIMITS OF THE
FORM FACTOR

Here we determine analytically two asymptotic limits of the
form factor BZ

Km,h
starting from Eqs. (25) and (26). We shall

first study the high-temperature limit.

1. The behavior near Tc0

When approaching Tc0 from below, BZ vanishes as does
Bc2. Hence � is getting very large. Referring to Eq. (27), this
means that u� is large. This has two consequences. First, it
is justified to consider the u� 
 nKm,h

limit for the numerator
of the fraction in g�(θ ). Recalling the Taylor expansion of a
function,

iv
(
iu� + inKm,h

) + iv
(
iu� − inKm,h

) − 2iv (iu�)

≈ −n2
Km,h

iv′′(iu�). (D1)

Second, let us now focus on the denominator, in particular on
the second term. Because u� is large, for iv(iu�) we can use
the first term of its expansion given by Eq. (A3). From Eq. (27)
we then get

u� = 2ω�

�

vF sin θ
+ �2

0�
2

h̄2v2
F sin2 θ

1

u�

. (D2)

Therefore, to a good approximation near Tc0,

u� = 2ω�

�

vF sin θ
. (D3)

Using Eq. (A5), we deduce

�2
0�

2

h̄2v2
F sin2 θ

v′ (iu�) =
(

�0

2h̄ω�

)2

=
[

�0

(2� + 1)2πkBT

]2

.

(D4)

Hence, since �0 vanishes on approaching Tc0, the second term
of the denominator in Eq. (26) becomes negligible relative
to 1.

Using the two previous results, we derive from Eqs. (25)
and (26) the asymptotic behavior of BZ

Km,h
near Tc0:

BZ
Km,h

= 2π2μ0N0�
2
0kBT

BZ
(−1)mh exp

( − n2
Km,h

)

×
∞∑

�=0

∫ π/2

0
sin(θ )iv′′(iu�)

∂u�

∂(h̄ω�)
dθ. (D5)

Recalling Eq. (21) we find, as expected, that BZ
Km,h

is propor-
tional to the magnetization as written explicitly at Eq. (28).

2. Low-temperature limit

Since we are interested in this work in the limit for which
the field is near Bc2, �0 is small. According to Appendix A,
v′(iu�) is bounded. Therefore, except for small θ values, we
can neglect the second term in the denominator of the g�(θ )
function relative to one. As done for the study of the low-
temperature limit of the magnetization, we can substitute the
sum 2πkBT

∑
� with the integral

∫ ∞
u0

d(h̄ω). This gives

BZ
Km,h

= −πN0μ0�
2
0

BZ

(−1)mh

n2
Km,h

∫ π/2

0
sin(θ )h�(θ )dθ, (D6)

with

h�(θ ) = exp
(−n2

Km,h

)[ ∫ ∞

u0

iv
(
ix + inKm,h

)
dx

+
∫ ∞

u0

iv
(
ix − inKm,h

)
dx − 2

∫ ∞

u0

iv(ix)dx

]
. (D7)

In the first and second terms we use the new variables
t = x + nKm,h

and t = x − nKm,h
, respectively, and split the in-

tegration
∫ ∞
ua

iv(it)dt into
∫ u0

ua
iv(it)dt + ∫ ∞

u0
iv(it)dt , where

ua = u0 + nKm,h
and ua = u0 − nKm,h

for the first and the
second terms, respectively. The two integrals

∫ ∞
u0

iv(it)dt

cancel the third term. As a result we obtain the following
relation:

h�(θ ) = exp
(−n2

Km,h

)[ ∫ u0

u0+nKm,h

iv(it)dt

+
∫ u0

u0−nKm,h

iv(it)dt

]
. (D8)

Let us study the function h�(θ ). Since the field is near Bc2

and we are at low temperature, u0 � 0. Then setting u0 = 0
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and using Eq. (A2), we get

h�(θ ) = exp
(−n2

Km,h

)[
2
√

π

∫ nKm,h

0
exp(t2)dt

− 2
∫ nKm,h

0
iv(it)dt

]
. (D9)

From Eq. (A7),∫ nKm,h

0
iv(it)dt < −π

2

∫ n2
Km,h

0
(t −

√
t2 + 4/π )dt. (D10)

Hence the second term of h�(θ ), i.e.,
2 exp(−n2

Km,h
)
∫ nKm,h

0 iv(it)dt , is negligible if n2
Km,h

is
sufficiently large. Since the first term is proportional to the
Dawson integral, using Eq. (A8) we finally derive the h�(θ )
asymptotic limit:

h�(θ ) = √
π/nKm,h

when nKm,h
→ ∞. (D11)

Combining this result with Eq. (D6), we derive the asymptotic
limit written at Eq. (31).

APPENDIX E: THE FORM FACTOR IN TERMS OF A
REDUCED NUMBER OF PARAMETERS

The original BZ
Km,h

expression given by Eqs. (25)–(27)
depends on three material parameters �0, N0, vF , and two
experimental parameters T and Bext since BZ � Bext. In the
next subsection we show that in fact it is a function of only
three independent parameters. Even more interesting, only one
of these parameters has to be varied to study the region close to
the Bc2(T ) boundary. The second subsection gives a formula
for BZ

Km,h
when the electronic mean-free path is a finite. The

dirty limit is studied.

1. The form factor in the clean limit

It is easily shown that the formula for BZ
Km,h

can be written
as follows:

BZ
Km,h

= ã
(−1)mh exp

(−n2
Km,h

)
n2

Km,h

∞∑
�=0

∫ π/2

0
f�(θ )dθ, (E1)

where

f�(θ ) = iv
(
iu� + inKm,h

) + iv
(
iu� − inKm,h

) − 2iv(iu�)[
1 + b̃ v′(iu�)

sin2 θ

]3 .

(E2)

We have used the analytical expression of ∂u�/∂(h̄ω�) written
in Eq. (B7). The u�’s are found to be the solution of the equation

u� = c̃
(2� + 1)

sin θ
+ b̃

iv(iu�)

sin2 θ
. (E3)

The proportionality coefficient ã is in magnetic induction units.
It is written as follows:

ã = −μ0πN0�
2
02πkBT

2�

BZh̄vF

= −μ0πN0�
2
0

2c̃

BZ
. (E4)

We have also introduced the dimensionless parameters

b̃ = (�/πξB)2 (E5)

and

c̃ = �/ξT , (E6)

where we have defined the temperature and field depen-
dent length scale parameters ξT = h̄vF/(2πkBT ) and ξB =
h̄vF/π�0, respectively. Therefore BZ

Km,h
has been written in

terms of three parameters: ã, b̃, and c̃. Interestingly, b̃ is
vanishingly small when �0 → 0. Then the second term of the
denominator of Eq. (E2) is negligible and ã becomes small.
As a consequence, as expected, the form factor is also small.

There is interest in studying the temperature dependence
of b̃ and c̃ near the phase boundary Bc2(T ), in particular
their asymptotes. We first note that �0 → 0. In addition, by
the definition of the second critical field given by Eq. (20),
� � ξGL since BZ � Bc2. Let us investigate the T → 0 limit.
According to Eq. (19) we derive � � ξ0/0.96. Hence � is
finite, and therefore b̃ → 0. Since ξT diverges, we also derive
c̃ → 0. Concerning the T → Tc0 limit, we note that � diverges
as does ξGL. This first means that b̃ is the ratio of two large
numbers. Numerically we find b̃ � 1. An example is given in
Sec. VII. Second, as ξT is finite, c̃ → ∞.

According to this discussion, in the limit T → Tc0 and near
Bc2, we can set c̃ → ∞ and b̃ → 0. This means that

u� = c̃
(2� + 1)

sin θ
, (E7)

and using Eqs. (D1) and (A6),

f�(θ ) � −n2
Km,h

iv′′(iu�) � 2n2
Km,h

sin3 θ

c̃3(2� + 1)3
. (E8)

Taking these results into account, we derive

BZ
Km,h

= 2
ã

c̃3
(−1)mh exp

(−n2
Km,h

) [ ∞∑
�=0

(2� + 1)−3

]

×
[∫ π/2

0
sin3 θdθ

]

= 1.4024
ã

c̃3
(−1)mh exp

(−n2
Km,h

)
. (E9)

Here, we have used the results
∫ π/2

0 sin3 θdθ = 2/3 and∑∞
0 (2� + 1)−3 = 7ζ (3)/8 = 1.0518, with ζ (s) denoting the

Riemann zeta function. As can be seen from the last equation,
for T → Tc0 the form factor converges to the GL solution.
It is proportional to the factor ã/c̃3. On the other hand, as
can be seen from Eq. (31), in the low-temperature limit near
Bext � Bc2 (i.e., c̃ → 0 and b̃ → 0) BZ

Km,h
is proportional to

ã/c̃:

BZ
Km,h

=
√

π

2

ã

c̃

(−1)mh

n3
Km,h

. (E10)

Thus, the two limits being proportional to ã/c̃, it is convenient
to use this field scale as units of field.

In conclusion, considering the region very close to Bc2(T )
and the limits near Tc0 and T = 0, we find that b̃ is very small.
On the other hand, c̃ is large in the first limit and negligible in
the second. Consequently BZ

Km,h
, and therefore the field map

and distribution, is expected to strongly depend on c̃. This fact
is used in Sec. VII for the study of the crossover from GL to
BCS vortex structures.
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2. The form factor for a finite mean-free path

In the case of a finite electronic mean-free-path, i.e., of a
finite scattering rate 1/τimp, the form factor depends on the
four parameters ã, b̃, c̃, and d̃ as follows:

BZ
Km,h

= ã
(−1)mh exp

(−n2
Km,h

)
n2

Km,h

∞∑
�=0

∫ π/2

0

f�(θ )

(1 − ε�)2
dθ,

(E11)

where

f�(θ ) = iv
(
iu� + inKm,h

) + iv
(
iu� − inKm,h

) − 2iv(iu�)[
1 + b̃ v′(iu�)

(1−ε�)2 sin2 θ

]3 .

(E12)

The u�’s are found to be the solution of the equation:

u� = c̃(2� + 1) + d̃

sin θ
+ b̃

(1 − ε�)2 sin2 θ
iv(iu�), (E13)

with

ε� = 1

2
d̃

∫ π/2

0
iv

(
i
c̃(2� + 1) + d̃

2 sin θ

)
dθ. (E14)

Note, limd̃→∞ ε� = 1. The parameters ã, b̃, and c̃ are the same
as in the clean limit case. We have defined the dimensionless
scattering parameter,

d̃ = �

vFτimp
� 1

b1/2

ξGL

vFτimp
, (E15)

which is approximately the ratio of intervortex distance to the
electronic mean-free path. Hence, relative to the clean limit
case, the effect of impurities and defects is taken into account
with only a single new parameter, i.e., d̃.

In the dirty limit we have d̃ 
 1. This implies

u� � c̃(2� + 1) + d̃

sin θ
. (E16)

Equation (E14) converges to

ε� = 1

2
d̃

∫ π/2

0

2 sin θ

c̃(2� + 1) + d̃
dθ = d̃

c̃(2� + 1) + d̃
. (E17)

Here we used Eq. (A3) and
∫ π/2

0 sin xdx = 1. Therefore,

(1 − ε�)−2 =
(

2� + 1 + d̃/c̃

2� + 1

)2

. (E18)

The denominator of Eq. (E12) converges to[
1 + b̃

v′ (iu�)

(1 − ε�)2 sin2 θ

]3

�
[

1 + b̃

c̃2

1

(2� + 1)2

]3

, (E19)

and using Eqs. (D1) and (A6),

f�(θ ) � 2n2
Km,h

sin3 θ[
(c̃(2� + 1) + d̃)

(
1 + b̃

c̃2
1

(2�+1)2

)]3 . (E20)

This means for the form factor,

BZ
Km,h

� Ã(−1)mh exp
(−n2

Km,h

)
, (E21)

with

Ã = 4

3
ãc̃3

∞∑
�=0

[(2� + 1 + d̃/c̃)−1(2� + 1)−2

× [c̃2 + b̃/(2� + 1)2]−3]. (E22)

Thus, as expected, no matter the temperature, if the scattering
parameter d̃ is large the VL properties are described by the GL
model.
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