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Magnetic neutron diffraction study of Ba(Fe1−xCox)2As2 critical exponents
through the tricritical doping
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We present temperature dependent magnetic neutron diffraction measurements on Ba(Fe1−xCox)2As2 for
x = 0.039, 0.022, and 0.021 as-grown single crystals. Our investigations probe the behavior near the magnetic
tricritical point in the (x,T ) plane, xtr ≈ 0.022, as well as systematically exploring the character of the magnetic
phase transition across a range of doping values. All samples show long-range antiferromagnetic order that may be
described near the transition by simple power laws, with β = 0.306 ± 0.060 for x = 0.039, β = 0.208 ± 0.005
for x = 0.022, and β = 0.198 ± 0.009 for x = 0.021. For the x = 0.039 sample, the data are reasonably well
described by the order parameter exponent β = 0.326 expected for a three-dimensional Ising model while the x =
0.022 and x = 0.021 samples are near the β = 0.25 value for a tricritical system in the mean-field approximation.
These results are discussed in the context of existing experimental work and theoretical predictions.
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I. INTRODUCTION

Superconductivity has been a major research interest of the
scientific community ever since the first set of experiments
in 1911 suggested electron conductance without resistance,
and the classes of materials that show a superconducting state
have grown extensively over the years.1 From a technolog-
ical standpoint, high-temperature (high-TC) superconductors
are particularly attractive, such that, when record breaking
superconductivity was reported in 1986 for copper oxide
based materials,2 the field experienced an enormous surge in
activity.3 Recently, in 2008,4 a new paradigm was discovered
when iron pnictides were shown to display superconductivity
at temperatures in the 50 K range.5 Both the copper oxide
and the iron pnictide systems are characterized by competition
between antiferromagnetism and superconductivity.

With an eye to understanding better the underlying physics
in high-TC materials, the iron pnictides quickly became the
subject of intense scrutiny. As a result, a wide variety of iron
pnictides, oxypnictides, and chalcogenides have been found to
exhibit superconductivity, and it has become common parlance
to refer to different structural classes by listing the subscripts of
their undoped chemical formulas as in “1111” for compounds
isostructural to LaFeAsO, “122” for compounds isostructural
to BaFe2As2, or even more complicated formulas.5 It is starting
to become clear which classes of iron based compounds
show technological promise; it is worth mentioning that while
cuprates presently retain superiority in terms of high transition
temperatures and critical fields, the mechanical properties of
some iron based materials which are metallic may better lend
themselves to wire production than the more brittle, layered
ceramic cuprates.

The interplay of superconductivity and magnetism seen
in cuprates is also seen in the iron pnictides, which has
motivated concentrated study of the role of the magnetism
in this new class of high-temperature superconductors. Inter-
estingly, there is compelling evidence that superconductivity
can coexist with long-range iron antiferromagnetic order
in the iron superconductors, while it remains uncertain if

copper magnetic order (other than short range) coexists with
superconductivity in the cuprates.6 This coexistence has been
shown in some “122” and “1111” iron compounds, where
long-range magnetic order and superconductivity arise from
bands derived from iron 3d electrons, but is not generic to the
system as some formulations do not show coexistence.5 For the
examples without a sharp boundary between superconducting
and magnetic phases, the interaction and competition between
the phases is seen as a reduction in the ordered moment at the
onset of superconductivity.7 Other non-high-TC magnetic su-
perconductors have shown coexistence, such as borocarbides
(RNi2B2C),8 the Chevrel phases (RMo6S8),9 and ruthenates
(RuSr2GdCu2O8),10 but the most striking analogy is drawn
when the same electronic bands participate in both phases such
as in UPt3 (Ref. 11) and UNi2Al3.12,13 Additionally, providing
even more evidence for the importance of magnetism in
the high-TC iron based superconductors is the observation
of a magnetic resonance in the inelastic neutron scattering
spectrum, just as previously seen in cuprates and heavy
fermion materials.14

In the present study, we investigate the cobalt-doped “122”
system, Ba(Fe1−xCox)2As2, at low doping.15,16 The phase
diagram, reproduced using measurements from Ref. 17 in
Fig. 1, shows a typical response to doping. The parent
BaFe2As2 phase shows two phase transitions when cooling
below room temperature, a structural transformation from
tetragonal to orthorhombic symmetry (whose temperature is
denoted TS), and a magnetic transformation from paramagnetic
to antiferromagnetic (whose temperature is denoted TN ).18

While nearly concurrent in the parent, doping causes a progres-
sive separation of TS and TN with increasing x. Furthermore,
upon initial doping, the structural transition is second order and
the magnetic transition is first order, and, at a doping denoted
xtr, near the region of onset of superconductivity, the structural
transition remains second order while the magnetic transition
crosses over from first to second order.19 This crossover point
in the (x,T ) plane, which is near T = 100 K and x = 0.022,
is almost certainly a tricritical point.17
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FIG. 1. (Color online) Ba(Fe1−xCox)2As2 phase diagram in the
vicinity of the tricritical point. The three phases in this region
are delineated: the paramagnetic (PM) to antiferromagnetic (AFM)
transition at the Néel temperature (TN ), the tetragonal (I4/mmm)
to orthorhombic (Fmmm) transition at the structural transition
temperature (TS), and the metallic (M) to superconducting (SC)
transition at the critical temperature (TC). For the magnetic transition,
open squares correspond to a first-order transition, solid squares
connected by a solid line correspond to a second-order transition,
and the intersection of the two lines is the tricritical point xtr. The
vertical dashed lines show the doping levels studied in this work.
The data points for the phase lines are from magnetic susceptibility
studies reported in Ref. 17.

In the iron pnictides, this confluence of a first-order line of
transitions with a second-order line of transitions, the tricritical
point, is of importance because of its potential role in the
onset of superconductivity. However, there is also a general
interest in tricritical points from a fundamental viewpoint,
dating back to the inceptive, phenomenological description of
such a transition by Landau in 1935.20 Notably, the behavior
at a tricritical point is intrinsically different than for ordinary
critical points. For example, a three-dimensional system in the
tricritical regime has a marginal dimensionality of 3 instead
of 4 for a normal critical point,21,22 which strongly suggests
applicability of mean-field theory for tricritical behavior.23

Experimental tests of these predictions were first realized in
the study of 3He-4He mixtures24 and quickly branched out to
include a wide array of systems including metamagnets such as
FeCl2,25 ferroelectrics like KH2PO4,26 the solid NH4Cl,27 and
others. As the availability of experimental systems progressed,
discrepancies between experimental findings and Landau
theory came to light that have promoted the development of
system specific microscopic models.28,29 Therefore, our study
of Ba(Fe1−xCox)2As2 simultaneously investigates the validity
of previous theoretical models as well as providing observables
to parametrize the free energy governing the phase transition,
which may yield insight into its nature.

To explore the nature of the magnetic phase transitions,
we have performed temperature dependent neutron diffraction
measurements for samples whose Co concentrations x are
in the vicinity of the tricritical value x = 0.022. Due to

the antiferromagnetic nature of iron based superconductors,
neutron scattering has proven ideal for studies of the magnetic
structures and excitations.30 In Sec. II, we outline our experi-
mental procedures for sample preparation and spectrometer
configuration. Section III shows our diffraction data with
model fits, while Sec. IV discusses the results of the fits in
detail. Finally, in Sec. V we give our final conclusions and
summarize the results.

II. EXPERIMENTAL PROCEDURE

A. Synthesis

Single crystals of Ba(Fe1−xCox)2As2 with cobalt doping
values x of 0.039, 0.022, and 0.021 were grown using a
self-flux method, with details available in a previous report.17

Samples x = 0.021 of mass 117.2 mg (TN ≈ 105 K) and
x = 0.039 of mass 81.7 mg (TN ≈ 66 K; TC ≈ 11 K) are
the samples previously used in mapping the phase diagram
for cobalt doping,17 and x = 0.022 of mass 114.6 mg (TN ≈
100 K) is from the same batch of the x = 0.022 material in the
same study.

B. Instrumentation

Neutron diffraction experiments were performed on the
BT-7 thermal triple-axis spectrometer at the NIST Center for
Neutron Research,31 with a collimation of open-50′-sample-
50′-120′. The x = 0.022 sample was also measured on the
high-resolution Spin Polarized Inelastic Neutron Spectrometer
(SPINS) cold-source triple-axis spectrometer with a colli-
mation of open-80′-sample-80′-open. Both machines use the
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FIG. 2. (Color online) θ -2θ scans in the (H0L)O scattering plane
for Ba(Fe1−xCox)2As2. The (103)O magnetic reflection present at
the lowest angle is shown amplified by 50 times for clarity. The
slightly higher background for the x = 0.039 sample is due to a larger
detector arm distance used for that measurement. Uncertainty bars
(representing statistical error of one standard deviation) are smaller
than the data points, and the lines are results of model fits that are
used to extract overall scale factors.
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(002) reflection of pyrolytic graphite (PG) as a monochromator
and analyzer. PG filters to reduce higher order neutrons were
employed on the BT-7 spectrometer using a fixed neutron
energy of 14.7 meV (λ = 2.36 Å), and SPINS used a fixed
neutron energy of 5.0 meV (λ = 4.05 Å) with a cold Be
filter. Samples were mounted in the (H0L)O scattering plane,
where the subscript denotes orthorhombic notation, and placed
inside a helium flow cryostat, and temperature control was
performed in a calibrated geometry capable of at least 50 mK
stability. The energy resolution on BT-7 in this configuration
is approximately 1 meV and the energy resolution on SPINS
in this configuration is approximately 0.2 meV. Resolution
corrections to the intensity were performed using the Cooper-
Nathans approximation.32 Tabulated values for scattering
lengths33 and magnetic form factors were used.34

III. NEUTRON DIFFRACTION

To begin, we cooled each sample to less than 10 K and
performed θ -2θ scans of the (004)O , (200)O , (202)O , and
(204)O nuclear reflections as well as the (103)O magnetic
reflection (typical lattice parameters of a ≈ 5.62 Å, b ≈
5.57 Å, c ≈ 12.94 Å). Typical data are shown in Fig. 2.
The scale factor was determined from the nuclear peaks
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FIG. 3. (Color online) Intensity of the magnetic (103)O peak upon
warming. Experimental data are represented by triangles for x =
0.021, circles for x = 0.022 with both thermal (thick black circles)
and cold (thin red circles) neutron diffraction shown, and squares for
x = 0.039. The results of model fits are the lines overlaying the data
points, details of which are described in the text and in Table I. The
uncertainty bars are derived from counting statistics and represent
one standard deviation.

using the BaFe2As2 Fmmm (space group No. 69) structure,35

with the appropriate substitutions of cobalt for iron in the
structure factor calculation. In these doping ranges, it has
been shown that the magnetic structure remains commensurate
as in the parent phase.36 In this way, we were able to
extract the size of the low-temperature ordered moment per
iron to be 0.49μB ± 0.01μB (x = 0.021), 0.25μB ± 0.01μB

(x = 0.022), and 0.31μB ± 0.02μB (x = 0.039).
In order to understand the critical behavior of the sublattice

magnetization as a function of cobalt doping, the temperature
dependence of the magnetic (103)O peak was measured
on warming through the magnetic transition for all three
samples using θ -2θ scans and integrating the intensity. Near
the transition temperature, the intensity I of the magnetic
diffraction peak may be fit to a simple power law,

I = A

(
TN − T

TN

)2β

, (1)

where TN is the Néel temperature, A is a proportionality
constant, and β is the order parameter critical exponent.
For doped samples such as those that we are studying,
inhomogeneities in the growth process may give rise to a
distribution of Néel temperatures, which, if assumed to be
Gaussian, adds an additional term to Eq. (1) for the standard
deviation σ such that, for T < TN ,

I = A

∫
dtN

1

σ
√

2π
e− 1

2 ( tN −TN
σ

)2

(
tN − T

tN

)2β

. (2)

Finally, renormalization group techniques show that log-
arithmic corrections lower the effective exponents that one
measures when approaching a tricritical point,37 such that the
intensity might be modeled as

I = A

(
TN − T

TN

)2β

log

∣∣∣∣TN − T

TN

∣∣∣∣
2β

, (3)
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FIG. 4. (Color online) Intensity of the magnetic (103)O peak upon
warming on a log-log scale. The three samples, x = 0.021 (green
triangles), x = 0.022 (red circles), and x = 0.039 (black squares),
are shown here normalized to their fit functions to illustrate the
differences in β. The results of model fits to Eq. (1) are lines
overlaying the data points, with fit parameters listed in Table I.
Uncertainty bars are derived from counting statistics and represent
one standard deviation.
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TABLE I. Results of fitting to Eqs. (1)–(4).

x = 0.021 x = 0.022 x = 0.039
Equation β TN (K) σ (K) β TN (K) σ (K) β TN (K) σ (K)

(1) 0.198 ± 0.009 108.15 ± 0.09 0.208 ± 0.005 99.73 ± 0.05 0.306 ± 0.060 68.77 ± 0.72
(2) 0.204 ± 0.006 108.32 ± 0.03 0.51 ± 0.05 0.208 ± 0.006 99.73 ± 0.10 0.00 ± 1.00 0.304 ± 0.087 69.03 ± 1.00 1.70 ± 0.06
(3) 0.296 ± 0.018 108.34 ± 0.13 0.331 ± 0.011 99.99 ± 0.07 0.612 ± 0.178 69.64 ± 1.12
(4) 0.356 ± 0.008 108.44 ± 0.05 0.44 ± 0.08 0.481 ± 0.087 98.98 ± 1.05 0.76 ± 0.42 0.624 ± 0.128 68.00 ± 0.97 1.29 ± 0.31

or for the case of distribution of Néel temperatures, for T <

TN ,

I = A

∫
dtN

1

σ
√

2π
e− 1

2 ( tN −TN
σ

)2 · · ·

×
(

tN − T

tN

)2β

log

∣∣∣∣TN − T

TN

∣∣∣∣
2β

. (4)

Results of the measured temperature dependence along with
the results of the fits to the data to Eq. (2) are shown in Fig. 3
and on a log-log scale in Fig. 4; the best fit parameters for
Eqs. (1)– (4) are shown in Table I. In fact, subtle differences
between model fits are impossible to discern on the scale of
Fig. 3 and are obfuscated due to different TN values on plots
such as Fig. 4, but in the following we elucidate the nuances of

FIG. 5. (Color online) χ 2 surfaces from fitting to I = A( TN −T

TN
)2β .

Using the color map shown at the bottom of this figure, χ2 surfaces
on a log scale illustrate the uniqueness of the extracted parameters as
well as give an idea of parameter correlation. In each subplot, a solid
(blue) horizontal line illustrates the best fit β value while a dashed
(green) horizontal line shows the value for a relevant universality
class (β = 0.326 of a 3D Ising model for x = 0.039, and β = 0.25
of a mean-field tricritical model for x = 0.022 and x = 0.021.)

each fit. Fits were performed for reduced temperature within
0.1 of TN to 0.01 of TN . No change in the width of the
scattering as a function of temperature was observed. For
the x = 0.022 sample, a small additional hump of scattering
was seen above the preponderant transition temperature; this
scattering was shown to be elastic by measuring with different
energy resolutions of 1 and 0.2 meV, which showed identical
behavior. This additional scattering was a consequence of the
high sensitivity of the transition to cobalt doping, where this
sample likely has a minute fraction of cobalt poor material;
similar behavior was seen in a neutron diffraction study of
potassium-doped BaFe2As2.38

Before delving into the physical relevance of the extracted
parameters, it is edifying to briefly examine the fits themselves.
The quoted uncertainties are square roots of variances from
the least squares algorithm. To understand how the parameters
interact during the fit procedure, the correlation coefficients are
a useful, but not necessarily definitive metric,39 that suggest a
strong connection between the proportionality constant A and
the critical exponent β and less so between other parameters.
A clear illustration of possible correlations as well as the
goodness of fit are the χ2 surfaces near the solution, which
we plot for β vs TN and β vs A for fits to Eq. (1) in Fig. 5.
These plots further visualize the uniqueness of the reported β

values, and their difference from possible model values. For a
given data set, the four equations have similar χ2 maps, with
log corrections (not shown) in Eqs. (3) and (4) systematically
causing a shift to higher β values while retaining the basic
shape of the minimum.

IV. DISCUSSION

In the present study, we have measured and analyzed
the critical behaviors of the order parameter of cobalt-doped
barium “122” crystals with a precision approaching the experi-
mental limit dictated by the inherent chemical inhomogeneities
characteristic of such doped materials. We find that the shape of
the onset of the magnetic transition is a function of the amount
of doping, in a slightly more complicated way than previously
hypothesized for these systems that suggested two distinct
critical exponents for “1111” and “122” materials depending
upon whether TN and TS were coincident or separated.40 This
general trend of softening the transition with doping is also
qualitatively present in a study performed over a large range
of doping values.41 Quantitatively, for the parent BaFe2As2,
previous neutron diffraction experiments found β = 0.103 ±
0.018, which is less than but near the two-dimensional
(2D) Ising value of β = 0.125.42 One possibility for such a
reduction in the effective exponent is the weakly first-order
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nature of the magnetic transitions for doping values smaller
than at the tricritical doping. Doped Ba(Fe0.953Co0.047)2As2

(x = 0.047) samples that are within the superconducting range
were accurately modeled with β = 0.3,6 which is near the
expected value for a three-dimensional (3D) Ising model,43 and
we observe a virtually identical value for x = 0.039 (Table I).
It is also worth noting that a similar β value was seen in
nickel-doped superconducting samples.44

In cobalt-doped BaFe2As2, we have studied the tricritical
point in the (x,T ) plane, which is expected to behave in a clas-
sical manner such that β = 0.25.20,45 As we previously noted,
logarithmic corrections to mean-field tricritical exponents have
been predicted by theory,37 and such corrections have been
applied to similar systems.46 Nearly identical behavior is seen
in the x = 0.021 and x = 0.022 samples that are in the vicinity
of the tricritical point. The best fit exponent for simple power
law fits including the evident spread in TN due to chemical
inhomogeneity [Eq. (2)] is 0.21 ± 0.01; this is somewhat less
than the mean-field tricritical value of 0.25, presumably due to
the fact that our data do not probe the true asymptotic critical
region. It is puzzling that the inclusion of a possible logarithmic
correction causes the values of β extracted from the fits to
increase dramatically, taking on physically unrealistic values.
For the x = 0.039 sample, where we expect a simple power
law to describe the behavior of the order parameter well, we
find β = 0.30 ± 0.01, close to, but somewhat less than, the
3D Ising value of 0.326. This is consistent with the results
of Wilson and co-workers,40 who analyzed similar data in a
large number of materials. The apparent universal reduction
in expected critical exponent suggests a common overarching
behavior for all samples studied, which may be due to the
presence of magnetoelastic coupling in the system which is
concurrently undergoing a structural distortion.

Finally, the moment values that we extract are in the
expected range for the doping values measured,41 although

the anomalously low value of the x = 0.022 moment is
unexpected. Previous systematic work has shown appreciable
scatter in the moment values, and it is likely that strains in
the sample contribute to this distribution. It is circumstantially
evident from the additional features above TN that the x =
0.022 sample may have a larger internal strain.

V. CONCLUSIONS

In summary, we have measured the critical exponents of
Ba(Fe1−xCox)2As2 around and above the tricritical point in
the (x,T ) plane, showing behavior consistent with mean-field
predictions at the tricritical point. When above the tricritical
point but below optimal doping, we find values of β ≈ 0.30,
consistent with previous results in a variety of materials but
slightly below the expected asymptotic 3D Ising value of
0.326. As the presence of a tricritical point seems to be
a common feature in many iron superconductor systems, it
will be interesting to see if other systems show the same
behavior. Finally, there should also be dramatic signatures of
the tricritical point in both the heat capacity and the staggered
susceptibility. These properties will be explored in future
experiments.
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