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The present qubit technology, in particular, in Josephson qubits, allows an unprecedented control of discrete
energy levels. This motivates a new study of the old pump-probe problem, where a discrete quantum system is
driven by a strong drive and simultaneously probed by a weaker one. The strong drive is included by the Floquet
method and the resulting quasienergy states are then studied with the probe. We study a qubit where the harmonic
drive has a significant longitudinal component relative to the static equilibrium state of the qubit. Both analytical
and numerical methods are used to solve the problem. We present calculations with realistic parameters and
compare the results with recent experimental results. A short introduction to the Floquet method and the probe
absorption is given.
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I. INTRODUCTION

The discrete energy levels of a quantum system can be
mapped by studying the absorption from a weak harmonic
perturbation. A coupling with a monochromatic drive changes
the characteristics of the spectrum, an effect known as the
dynamic Stark shift.1 In atomic physics, this has a prototype
in the form of an atom, driven with one laser, the pump, and
probed with another of low intensity2,3 (see Fig. 1). Instead of
the bare atomic levels, the probe induces transitions between
the dressed states of the coalesced atom and pump.

The standard case in atomic physics is a dipole transition,
where the strong drive is transverse to the static Hamiltonian.
Similarly, in nuclear magnetic resonance, the drive field is
transverse to the static field. This limitation has been removed
by the introduction of new systems where longitudinal drive
can be included. Examples are Rydberg states of an atom,4

Josephson qubits,5–9 nitrogen vacancy centers in diamond,10

and semiconductor quantum dots.11–13 This motivates a re-
newed study of the pump-probe physics.

The purpose of this paper is to present calculations on
pumped and probed qubits, where the pump has an essential
longitudinal component with respect to the equilibrium level
splitting. We start by a brief presentation of the Floquet
formalism that is used to calculate the dynamic Stark effect of
the pump field (see Sec. II). The formalism is enjoying a revival
due to the generation of novel systems allowing strong driving
fields and long enough coherence times, e.g., superconducting
qubits and circuits6,14–21 and topological insulators.22 The
Floquet formalism23–25 is a semiclassical method that can be
understood as a limiting case of a full quantum-mechanical
picture when the number of quanta in the driving field is
large.23 The resulting dressed states are called quasienergy
states. We sketch the theory of weak probe absorption and
dispersion on the quasienergy states (see Sec. III). This method
has been used in the literature21,26,27 but, to our knowledge, has
not been properly justified. There have been many experiments
in the field of superconducting Josephson qubits,5,8,9,28 which
could have been interpreted in terms of the probe absorption
spectroscopy of the quasienergy levels. Nevertheless, only one
measurement has invoked the method.6 The general theory
is applied to two-level systems (see Sec. IV). We compare
numerical calculations with analytical approximations. We

present calculations with parameter values that are relevant
for recent experiments,8,9 and compare the calculated spectra
with the measured ones.

The Floquet approach used here should be compared with
an alternative method of solving the pump-probe problem.
The conventional approach2,3 is to first find the steady-state
solution of the density matrix corresponding to the driven,
but not probed, system. Then the probe absorption rate is
obtained by calculating a correlator of the probe Hamiltonian
at the probe frequency.3 The two methods are identical with
the exception that the approximations concerning relaxation
can be different. The Floquet approach has the benefit that
the quasienergy structure gives additional insight and allows a
simple analysis of the probe absorption by Fermi’s golden rule.

II. QUASIENERGY STATES

We study a driven system described by the Hamiltonian

Ĥ (t) = Ĥ0 + ĤS(t). (1)

The time-independent Ĥ0 represents the atomic system ex-
pressed in an atomic basis BA = {|σ 〉}, spanning the atomic
Hilbert space HA. The time-dependent term is τ -periodic,
ĤS(t + τ ) = ĤS(t), and represents the strong driving of the
atomic system. The effect of the strong driving can be seen as
a change in the energy level structure of the atom. By studying
the absorption profile of the driven atom (see Sec. III), one
observes that the locations of the spectral lines move as a
function of the drive intensity. This dynamic Stark effect1 is
depicted in Fig. 1.

The time-dependent Schrödinger equation is[
−ih̄

d

dt
+ Ĥ (t)

]
|�(t)〉 = 0. (2)

Due to the periodicity of Ĥ (t), this is now analogous to the one-
dimensional Bloch’s problem of solid state physics.29 Within
the analogy, the solution of Eq. (2) can be expressed in the
form

|�(t)〉 = e−iεt/h̄ |u(t)〉, (3)

where the state |u(t)〉 is τ -periodic and ε is called the
quasienergy.23
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FIG. 1. (Color online) Illustration of the absorption spectrum of a
strongly driven atom. The atom with an energy separation ε0 is driven
with an angular frequency ω = 2π/τ . The drive changes the atomic
energy (quasienergy 	q) leading to a shift of the resonance peak in
the absorption spectrum (dynamic Stark shift).

In order to solve Eq. (2) by using Eq. (3), the Floquet
method takes advantage of the periodicity of Ĥ (t) and |u(t)〉.
The atomic Hilbert space HA is expanded with τ -periodic
functions, Hτ , spanned by the basis Bτ = {|n〉 ,n ∈ Z; 〈t |n〉 =
exp(inωt)}, where ω = 2π/τ . This composite Hilbert space
HA ⊗ Hτ is referred to as the Sambe space.30 This expansion
allows the representation of the periodic quantities in terms of
time-independent coefficients:

H
(n,m)
σσ ′ ≡ 〈σ,n|Ĥ (t)|σ ′,m〉

= 1

τ

∫ τ

0
dt〈σ |Ĥ (t)|σ ′〉e−i(n−m)ωt , (4)

c(n)
σ ≡ 〈σ,n|u(t)〉 = 1

τ

∫ τ

0
dt〈σ |u(t)〉e−inωt . (5)

Equations (4) and (5) can also be seen as the Fourier series
representation of Hσσ ′(t) and |uσ (t)〉.

In the Sambe space, the Schrödinger equation (2) reduces
to ∑

σ ′

∞∑
m=−∞

(
mh̄ωδσσ ′δnm + H

(m−n)
σσ ′

)︸ ︷︷ ︸
(HF)(n,m)

σσ ′

c
(m)
σ ′ = εc(n)

σ , (6)

which can be understood as a time-independent (Floquet
matrix) eigenvalue problem:

HF |u〉 = ε |u〉, (7)

with an infinite rank. The quasienergy ε can now be understood
as the combined energy of the atom and the driving field, and
it is analogous to the quasimomentum in solid state physics.29

Quasienergy states |u〉 = ∑
σn c(n)

σ |σ,n〉 are obtained as the
eigenvectors of the Hermitian matrix HF, and thus they
form a complete and orthonormal basis of the Sambe space.
Generally, the eigenvalue equation (7) has to be solved
numerically by using an appropriate truncation. In some limits,
approximate analytic solutions can be found (see Secs. IV A
and IV B). It is worthwhile to notice the beauty of the Floquet
approach, it reduces time-dependent problems to static ones,
that is, to time-independent eigenvalue problems.

The quasienergies obtained from the eigenvalue equa-
tion (7) have a periodic structure. Corresponding to a
quasienergy εr , there is an infinite set of solutions with

quasienergies εr,n = εr + nh̄ω, where n is an integer. The
corresponding eigenstates |ur,n〉 are trivially obtained from
each other as they produce the same |�(t)〉 in Eq. (3). Therefore
it is sufficient to solve numerically the states in a single
quasienergy interval of width h̄ω, which is referred to as
a single Brillouin zone. The number of such states equals
the number of basis states of the atomic Hamiltonian Ĥ0.
Physically, the quasienergy states can be interpreted as the
atomic states being entangled with the driving field containing
different number of quanta.

III. PROBE SPECTROSCOPY OF QUASIENERGY LEVELS

The quasienergy spectrum can be studied in terms of
absorption from a weak perturbation, similar to the time-
independent quantum systems. As a demonstration of the
power of the Floquet method, we derive the transition rate
between two quasienergy states in a similar fashion to Fermi’s
golden rule. However, we generalize the time-independent
results, typically derived by using harmonic perturbation, by
allowing the probe Hamiltonian to be quasiperiodic:

ĤP(t) = FP(t)F̂ (t) + [FP(t)F̂ (t)]†. (8)

Here, FP is τP-periodic and F̂ is τ -periodic. When the periods
are incommensurate, the probe Hamiltonian ĤP(t) is not peri-
odic, in spite of consisting of products of periodic quantities.
The quasiperiodic form (8) allows various realizations of the
probe.6,8,9 We take the τP-periodic part of the probe (8) to
have the harmonic form FP(t) = APe−iωPt , with the amplitude
AP and the angular frequency ωP = 2π/τP. More general
functions can be decomposed into Fourier series, where each
term can be treated independently of the others. The τ -periodic
part of the probe becomes time-independent in the Sambe
space and can be represented in the quasienergy basis as

F̂ =
∑
p,q

Fpq |up〉 〈uq |, (9)

where the summations go over all quasienergy states (all
Brillouin zones). The matrix elements

Fpq ≡ 〈up(t)|F̂ (t)|uq(t)〉 = 〈up|F̂ |uq〉 (10)

do not depend on time and they are easy to implement after
the numerical solution of the Floquet eigenvalue problem (7).

A. Golden rule for transitions between quasienergy states

We include the probe Hamiltonian (8) into the Schrödinger
equation (2) and look for a solution in the form

|�(t)〉 =
∑

q

aq(t)e−iεq t/h̄ |uq〉, (11)

where the summation goes over all quasienergy states. This
leads into a differential equation for the probability amplitude
af (t) to be in the state f :

daf (t)

dt
= − iAP

h̄

∑
i

ai(t)e
i(ωf i−ωP)t 〈uf |F̂ |ui〉

− iA∗
P

h̄

∑
i

ai(t)e
i(ωf i+ωP)t 〈uf |F̂ †|ui〉, (12)
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where ωf i = (εf − εi)/h̄ denotes the transition frequency
between the quasienergies.

We now assume that the probe amplitude AP is small.
When the matrix elements Ff i are small in comparison to
the characteristic energy quantum h̄ωP, it is sufficient to make
a perturbative expansion in Eq. (12) up to first order in AP.31

The integration over the broadened final state leads to a finite
steady-state ratePi→f for the transition from the initial |�i(t)〉
to the final quasienergy state |�f (t)〉. We assume that the
transition rate is small in comparison to the broadening of the
final state. The summation over all final quasienergy states
gives the absorptive (ωf i > 0) transition rate

P = |AP|2
h̄2

∑
i,f

pi

γf i |〈uf |F̂ |ui〉|2
(ωf i − ωP)2 + 1

4γ 2
f i

, (13)

where γf i = γi + γf is the sum of the widths of the initial
and finals states, which both are assumed to have Lorentzian
form. We have also summed over all initial quasienergy states
weighted by their steady-state occupation probabilities pi . We
have neglected all but the resonant term in Eq. (12). This is
analogous to the rotating wave approximation (RWA) where
the rapidly oscillating terms are assumed to average out in the
steady-state dynamics.

The result (13) can be named as Fermi’s golden rule for
transitions between quasienergy states, as it is analogous to the
result obtained between energy eigenstates.31 The transitions
between the quasienergy states occur when the corresponding
quasienergy difference equals the energy quantum of the
probe: εf − εi = h̄ωP. The magnitude of the transition is
proportional to the squared matrix element |Ff i |2. It is
worthwhile to note that the transition does not occur between
the atomic states |σ 〉, but between the quasienergy states |u〉.
As seen by the atomic system, multiple strong driving quanta
can participate in the process since the quasienergy states
can be in any Brillouin zone: εf 0 − εi0 + (m − n)h̄ω = h̄ωP.
Yet, within the first order approximation and with harmonic
perturbation, only one probe quantum can be exchanged in the
transition process.

B. Relation to the spectrum of the probe field

The transition rate P can be expressed alternatively using
correlation functions. By applying the completeness of the
quasienergy states |ur〉 one finds that P in Eq. (13) is equal to
the absorption spectrum32

S(�) = |AP|2
h̄2

∫ ∞

−∞
〈F̂ †

H(t)F̂H(0)〉ei�tdt, (14)

at the probe frequency. Here, the index H denotes the
Heisenberg picture with the time dependence coming from
Hamiltonian (1) in addition to the explicit time dependence in
Eq. (8). The same expression (14) is also obtained by formulat-
ing the probe absorption spectroscopy using the input-output
formalism.33,34 In the corresponding emission spectrum, the
order of the operators in the correlator is interchanged. The
correlator approach (14), usually calculated using numerical
integration of the master equation, gives the same information

about the locations and widths of the spectrum peaks as the
Floquet approach (13). Nevertheless, the possible resonance
shifts (i.e., Stark1 and Bloch-Siegert35 shifts) or the magnitudes
of the resonances are cleanly explained in the Floquet method
with the quasienergy structure6 giving physical insight on the
composition of the driving field and the system.

In the linear response theory, the absorption spectrum
is given by the imaginary part of the generalized probe
susceptibility α(ωP) = α′(ωP) + iα′′(ωP),32 a function which
determines the dynamics of the system under perturbation.
This is generally referred to as the fluctuation-dissipation
theorem. Thus the imaginary part α′′(ωP) becomes directly
proportional to the absorption P(ωP) of the system [see
Eq. (13)]. Moreover, the real part α′(ωP) (dispersion), which
makes the phase shift of the response, can be obtained
analytically from α′′(ωP) [in practice from Eq. (13)] by using
the Kramers-Kronig relations. This way one can solve both the
absorption and the dispersion by exploiting the quasienergy
structure.

C. Extensions

The golden rule (13) is a perturbative result in the per-
turbation parameter λ = Ff iAP/h̄ωP. The second-order con-
tributions become significant when λ is comparable to unity.
With such large transition strengths, the original quasienergy
structure becomes altered by the probe field. Instead of
calculating the higher order expansions in λ, we propose
the use of the generalized Floquet method.25,36 It allows the
calculation of the quasienergies of a Hamiltonian having two,
or more, driving fields with arbitrary driving amplitudes Aj and
(incommensurate) frequencies ωj . The resulting quasienergy
structure is “quasiperiodic,” which in the case of two driving
fields means that εr,n,m = εr + nh̄ω1 + mh̄ω2.

The detailed analysis of the two-mode quasienergy struc-
ture provides a quantitative method to study, among others,
the validity limit of the first-order expansion leading to the
golden rule (13). A comparison can be made by studying
the differences between the quasienergy levels calculated
with and without the probe field. One can say that the
golden rule consideration is not valid if the results differ
outside the expected locations of the weak probe resonances
(anticrossings), or if these locations are shifted. Details of
the generalized Floquet method applied to the strongly driven
and weakly probed quantum two-level system are given in
Appendix.

IV. APPLICATION TO A TWO-LEVEL SYSTEM

We give an example on the probe spectroscopy of
quasienergy states by studying a two-level system under
a strong longitudinal drive5,8,9,28 (see Fig. 2). In similar
systems,19,20,37,38 one has previously considered the rotat-
ing wave approximation (RWA) and the Landau-Zener-
Stückelberg (LZS) approach,39 whose point of view is in
the discretized, “stroboscopic,” evolution of the periodically
driven qubit in the temporal space. In the LZS-approach,
the inclusion of an additional probe field is complicated. In
contrast, we concentrate on the possibility to directly map the
quasienergies by studying absorption from the probe.
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FIG. 2. (Color online) Schematics of the longitudinally driven
and weakly probed two-level system both in the temporal space and
the quasienergy space. The temporal space: a two-level system, whose
energy splitting ε(t) oscillates sinusoidally around the mean ε0 with
the period τ . The quasienergy space: transformation to the Floquet
formalism results in the temporally static quasienergy levels that
repeat in energy with the period h̄ω. The weak probe field (blue
arrows) acts between the atomic states or between the quasienergy
states. In the case of ωP < ω, the probe resonance is met when
	q = h̄ωP or h̄ω − 	q = h̄ωP.

We assume the Hamiltonian

Ĥ (t) = ε0

2
σ̂z + 	

2
σ̂x + A

2
cos(ωt)σ̂z + AP

2
cos(ωPt)σ̂z,

(15)

where the operators σ̂x,y,z denote the Pauli spin matrices. Here,
the first two terms form the atomic part Ĥ0, which consists of
a static energy splitting ε0 and a tunneling amplitude 	. The
third term is the strong drive ĤS(t). Together with the first
term, this implies that the level spacing ε(t) = ε0 + A cos(ωt)
(neglecting 	) oscillates with amplitude A and frequency
ω = 2π/τ . After transforming to the Floquet formalism, this
is reflected in the periodicity in the quasienergy, see Fig. 2.
In a two-level system, we define the quasienergy splitting
	q = ε+ − ε− as the energy difference between the two
quasienergy levels within a Brillouin zone. This, together with
the h̄ω periodicity, includes all relevant information about the
energy level structure of the driven two-level system. The
fourth term in Eq. (15) is the probe Hamiltonian ĤP(t). It
is assumed to act in the same direction as the drive, but
with a small amplitude AP and a different frequency ωP. The
same direction can be arranged, e.g., by coupling the probe
to the system through the same channel as the strong drive.
For simplicity, we consider here a purely τP-periodic probe
Hamiltonian (8) by setting F̂ (t) = σ̂z. Reference 6 gives an
example of the probe absorption spectroscopy in the case of a
nontrivial quasiperiodic probe.

A. Choice of basis

As was discussed in Sec. II, the infinite (in rank) Floquet
Hamiltonian has to be truncated before its eigenproblem can
be solved. The accuracy of the truncation is dependent on the
choice of the atomic basis BA. In the case of a strongly driven
two-level system, there are two natural choices for the basis,
the adiabatic and the diabatic bases (see also Ref. 40). Here,

the eigenbasis of σ̂z in Eq. (15) is called the diabatic basis.
It holds the implicit assumption that the tunneling amplitude
	 is a small perturbation, 	/h̄ω � 1. Another choice for the
basis is the eigenstates of the static Hamiltonian Ĥ0. This is
referred to as the adiabatic basis, which works the best when
the tunneling amplitude 	 is not just a small perturbation, but
of the same order as h̄ω and ε0.

In the presence of substantial driving, one way to
decide the basis preferable for the calculations is to
study the LZS dynamics37,39 of the driven qubit Ĥ (t) =
Ĥ0 + ĤS(t). The probability of Landau-Zener (LZ) tunnel-
ing between the adiabatic eigenstates is given by PLZ =
exp(−2π	2/4h̄ω

√
A2 − ε2

0) for A > ε0, otherwise PLZ is
small. If PLZ is small, the adiabatic basis is the natural choice
for the basis in quasienergy calculations. In the opposite case
where PLZ ∼ 1, the diabatic basis states are closer to the
eigenstates of the Floquet Hamiltonian, and thus appropriate
for quasienergy calculations.

In the following analytic calculation of the quasienergy
structures, we use the adiabatic basis when A < ε0 and the
diabatic basis otherwise. After solving the quasienergies, we
consider the probe induced transitions between quasienergy
states in the diabatic basis using the RWA. It is important to
note that whereas the approximate results are basis dependent,
all exact results (such as the numerical quasienergies) are not.
Nevertheless, the size of the truncated Floquet Hamiltonian
required for accurate results can have strong dependence on
the chosen atomic basis.

B. Quasienergy states

We neglect the probe and dissipation, and consider only
the strongly driven qubit Ĥ (t) = Ĥ0 + ĤS(t). We do a
transformation into a nonuniformly rotating frame with Ĥ ′ =
Û †ĤU + ih̄(∂t Û

†)Û , where Û (t) is a unitary time-dependent
rotation,7

Û (t) = exp

[
−i

A

2h̄ω
sin(ωt)σ̂z

]
. (16)

The operation removes the strong drive in the z direction at
the expense of generating in the x direction all harmonics nω

with relative weights 	Jn(A/h̄ω)/2. According to Sec. II, all
τ -periodic entities are time independent in the Sambe space
and can be expressed in the matrix notation.19,20

A resonance between the strong drive and the qubit is seen
in the Sambe space as a pair of states that are nearly degenerate.
Here, we assume that the contribution of the nonresonant states
to the resonant coupling is small. Thus one can rely on the RWA
and ignore all but the resonant states and the direct coupling
between them. We choose one pair of the resonant states,
resulting in

ĤRWA =
(

ε0
2

	
2 Jn

(
A
h̄ω

)
	
2 Jn

(
A
h̄ω

) − ε0
2 + nh̄ω

)
. (17)

There is an infinite amount of other similar pairs that are just
copies of Eq. (17) shifted in energy due to the periodicity of
the Floquet matrix HF.
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FIG. 3. (Color online) Landscapes of the quasienergy 	q in the ε0-A plane with different values for the tunnel amplitude: (a) 	/h̄ω = 0.10,
(b) 	/h̄ω = 0.37 corresponding to an experimental realization,8 (c) 	/h̄ω = 0.84 corresponding to another experimental realization,9 and
(d) 	/h̄ω = 1.50. The energy scale is the same in all panels. For the contour lines, we use the following color coding: numerical (solid gray),
analytic in the diabatic basis Eq. (20) (dashed red), and analytic in adiabatic basis, that is, the adiabatic version of Eq. (20) (dashed black).
The numerical contour lines are spaced by 0.10 h̄ω, except for two contours in the panel (b), where the comparison between the numerical and
analytical contour lines is done with 	q/h̄ω = 0.092 and 	q/h̄ω = 0.918 since they correspond to the values of the experimentally measured
weak probe resonances.8

The diagonalization of ĤRWA produces the quasienergy
difference 	RWA

q :

ĤRWA = σ̂z

2
	RWA

q = σ̂z

2

√
(ε0 − nh̄ω)2 + 	2J 2

n

(
A

h̄ω

)
.

(18)

The diabatic basis RWA is accurate if 	/h̄ω � 1. By
following the generalized van Vleck perturbation theory,19,20,41

the RWA result (18) can be corrected with higher-order
terms in the perturbation parameter 	/h̄ω. The second-order
correction1,6,19 affects the locations of the strong driving
resonances: ε0 = nh̄ω − δ. We call it the δ shift. In the diabatic
basis, the explicit expression for δ shift is

δd = 2
∞∑

k=−∞
k �=n

[
	
2 Jk(A/h̄ω)

]2

ε0 + kh̄ω
. (19)

The corrected quasienergy splitting is then

	RWA+δ
q =

√
(ε0 + δd − nh̄ω)2 + 	2J 2

n

(
A

h̄ω

)
. (20)

In the diabatic basis, the δd shift is the most important at small
amplitude A and at small n. This implies that the δd shift
vanishes with moderate driving amplitudes,19 that is, when the
diabatic basis is the most natural choice for the basis.

In the adiabatic basis, one first diagonalizes Ĥ0 and then
transforms Ĥ (t) to the nonuniformly rotating frame with a
time-dependent transformation analogous to Eq. (16). The
resulting Floquet matrix has exactly the same structure as
in the diabatic basis, but the diabatic diagonal energy ε0 is
replaced by h̄ω0 =

√
ε2

0 + 	2 and diabatic coupling strength

	Jn(A/h̄ω)/2 → nh̄ω	

2ε0
Jn

(
A

h̄ω

ε0

h̄ω0

)
. (21)

The adiabatic resonance condition can then be written as
h̄ω0 = nh̄ω − δa, where the adiabatic δa shift is calculated
with the formula (19), but using the adiabatic coupling
strengths (21) and the diagonal energies h̄ω0.

In Fig. 3, we have shown the comparison of the numerically
and analytically calculated quasienergy landscapes in the
ε0-A plane. The adiabatic basis (black dashed) is applied
when A < ε0 and the diabatic basis (red dashed) otherwise.
The analytic quasienergies agree well with the corresponding
numerical ones when the effects of tunnel amplitude can

134505-5



SILVERI, TUORILA, KEMPPAINEN, AND THUNEBERG PHYSICAL REVIEW B 87, 134505 (2013)

be handled with the perturbation theory, cf. Figs. 3(a) and
3(b). However, the generalized van Vleck perturbation theory
becomes insufficient20 if the fraction A/	 becomes large
enough, and simultaneously 	/h̄ω > 1. In this limit, the
calculation of the quasienergies is necessarily numerical. The
breakdown of the analytical approach is demonstrated in
Figs. 3(c) and 3(d).

C. Weak probe transitions

We now discuss the probe resonance condition and the
probe transition elements Ff i (10) in terms of the diabatic
basis and the RWA. This kind of treatment is adequate for
the essential physical insight. We follow the same procedure
as in calculating quasienergies. The transformation Û (t) (16)
does not change the probe part of Hamiltonian (15). In the
subsequent transformation to the Sambe space, the τ -periodic
part of the weak probe obtains the form F̂ = σ̂z ⊗ I, where I
denotes the infinite-dimensional identity operator.

As the strongly driven part of the total Hamiltonian is
truncated into a two-level system (17), it is reasonable to make
the same reduction for the weak probe part. The τ -periodic part
of the weak probe becomes simply F̂ = σ̂z, operating between
the resonant basis states of the RWA Hamiltonian (17). In the
diagonalization of the strongly driven part of the Hamiltonian,
the perturbation matrix gets a nondiagonal form,

F̂ = nh̄ω − ε0

	RWA
q

σ̂z + 	Jn

(
A
h̄ω

)
	RWA

q

σ̂x, (22)

expressed directly in the basis of quasienergy states |u+〉
and |u−〉 with the energy splitting 	RWA

q in Eq. (18). The
longitudinal weak probe itself would not induce transitions
between the nondriven diabatic eigenstates, but the rotation
to qubit eigenbasis (∝	) and the dressing of the strong drive
[∝Jn(A/h̄ω)] have such an effect that probe transitions become
possible. This is formally seen as the nonzero transverse σ̂x

term in Eq. (22).
In the general case, the resonance condition for the probe

transition is

	q =
{
h̄ωP − kh̄ω,

(k + 1)h̄ω − h̄ωP,
(23)

where k = 0,1,2, . . . is chosen so that kω < ωP < (k + 1)ω.
The quasienergy difference 	q is defined as the difference
between two consecutive quasienergy levels. We consider now
the case k = 0 (cf. Fig. 2). Thus the weak probe transitions
are possible when the quasienergy difference 	q = h̄ωP or
	q = h̄ω − h̄ωP, and the corresponding transition matrix
element is nonzero. In Fig. 3, the resonance condition is shown
as highlighted contour lines (dashed lines). If the tunneling
amplitude 	 is so large that the minimum quasienergy
difference |	Jn (A/h̄ω) | is larger than the probe energy h̄ωP,
there are no resonances. In Fig. 3(a), the tunneling amplitude
	 is small and the resonances are continuous lines in vertical
direction, but as the value of 	 is increased, the resonances
curve and close, cf. Figs. 3(b)–3(d).

The matrix element (10) for the weak probe transition
between the quasienergy states |u+〉 and |u−〉 is directly the

1 2 3 4 5 6

1

0.8

0.4

0.6

0.2

0
¯A hω

F+-
2

n = 1

n = 2

n = 3 n = 0

n = 1

n =2

n =3

n= 0

FIG. 4. (Color online) Comparison between the numerical (solid
line) and RWA analytical (dotted line) transition amplitudes
|F+−|2 (24), calculated with the parameters of Fig. 3(b). The transition
amplitudes are picked by following the corresponding resonance
conditions (23), i.e., from the parametrized line ε0(A) where 	q =
0.092h̄ω or 	q = 0.918h̄ω. The curves are labeled by the index
n in Eq. (17).

nondiagonal element in Eq. (22):

|F+−|2 = |〈u+|F̂ |u−〉|2 = 	2J 2
n

(
A
h̄ω

)
(
	RWA

q

)2 . (24)

We are interested in the transition element |F+−|2 when the
weak probe is (nearly) resonant, that is, 	RWA

q ≈ h̄ωP. Thus
the transition amplitude depends only on the coupling strength
	Jn(A/h̄ω) of the two uncoupled energy levels in Eq. (17).
The comparison between the numerical (solid) and analytical
(dotted) transition amplitudes is shown in Fig. 4. It is calculated
by following the weak probe resonances (23). The agreement
between the numerical and analytical results is good by taking
into account that the chosen parameters are close to the validity
boundary of the RWA.

To calculate the transition rate (13), in addition to
the quasienergies and the quasienergy states, one needs
the dephasing rate γij = γ and the populations pi of the
quasienergy states. We estimate them by closely following
Refs. 20 and 42, which apply the Floquet-Born-Markov
formalism,20,24,42–46 which successfully merges the Floquet
method and detailed coupling to the environment. First,
one constructs the master equation for the strongly driven
qubit coupled to the environment through the σ̂z operator,
i.e., via the matrix elements Xαβn = 〈uα,0|σ̂z ⊗ I|uβ,n〉. The
quasienergy states |uβ,n〉 are employed to calculate the above
matrix elements Xαβn. Here, this is done numerically, but
it can also be done analytically with the RWA or with the
second-order van Vleck correction, within their validity
ranges.20 The environment is modeled with a continuum of
harmonic oscillators, i.e., a thermal bath characterized with
Nαβn = 1

2Gαβn{coth[h̄(εα − εβ + nω)h̄ω/2kT ] − 1} and the
Ohmic spectral density Gαβn = G(εα − εβ + nω) = κ(εα −
εβ + nω). Finally, the coefficients in the master equation are
averaged over the period of the strong drive, in order to bring
them into time-independent form45,46 (secular approximation,
moderate rotating wave approximation). The result is
analytically solvable in the steady-state limit,20 from which
the dephasing rate γ and the population p− (p+ = 1 − p−) are
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FIG. 5. (Color online) The transition rate (13) of the strongly driven and weakly probed qubit presented as a gray-scale plot in the ε0-A
plane. The parameters are the same as in the corresponding panels in Fig. 3. In addition to those, the parameter κ describing the Ohmic spectral
density is chosen so that γ /ω = 0.016 in the absence of driving and detuning in Eq. (25) and β = h̄ω/kT = 2.24. The discontinuities of the
lines are a consequence of the roots of Jn(A/h̄ω) related to the coherent destruction of the tunneling. The P vs A plot along the vertical dashed
line in (b) is shown in Fig. 6.

derived:

γ = π

∞∑
n=−∞

(2N−+n + G−+n)X2
−+n + 4N−−nX

2
−−n, (25)

p− =
∑∞

n=−∞ N−+nX
2
−+n∑∞

n=−∞(2N−+n + G−+n)X2−+n

. (26)

The numerically calculated transition rates P of Eq. (13) are
shown in Fig. 5 in the ε0-A plane.

The total line shape (13) encodes the information on the
quasienergy structure at the locations of the resonances and on
the transition amplitudes in the magnitudes of the resonances.
By comparing the line shapes in Fig. 5 with the quasienergy
structure of Fig. 3, one observes the faithful mapping of
the energy landscape. The maximum value of the transition
element |F+−|2 in Eq. (24) depends on the tunneling amplitude
	. If 	 is large enough, the maximum is reached when
	Jn(A/h̄ω) = h̄ωP. The transition element cannot obtain
larger values since then the resonance condition is not anymore
valid, see Eq. (18) and Fig. 5(b). With smaller tunneling
amplitude 	, the maximum of the |F+−|2 is directly set by
the maximum of Jn(A/h̄ω), see Fig. 5(a). The weak probe
signal vanishes at the zeros of the Jn(A/h̄ω), which are related
to the coherent destruction of tunneling.47 This is seen in Fig. 5
as discontinuous resonance lines, although the underlying

quasienergy resonance conditions are the continuous lines in
Fig. 5(a) or closed curves in Figs. 5(b)–5(d).

D. Relation to the spectrum of the probe field

In the case of the two-level system (15), the spectrum as a
function of the correlator (14) takes the form

S(ωP) = A2
P

16h̄2

∫ ∞

−∞

〈
σ̂ H

z (t)σ̂ H
z (0)

〉
eiωPtdt. (27)

Noteworthily, this spectrum is not the one commonly calcu-
lated from the transverse correlator 〈σ̂ H

− (τ )σ̂ H
+ (0)〉, natural to

the atomic systems coupling to the environment through the
(transverse) dipole moment. In Fig. 6, we have compared the
line shape P calculated by using numerically implemented
Floquet method (solid line) and weak probe response (circles)
S(ωP), see Eq. (27), obtained by solving the steady-state
master equation. The correlation function approach (circles)
agrees very well with the transition rate calculated with the
numerical Floquet method (solid), which further validates the
method of the probe spectroscopy of quasienergies. The slight
differences between the two methods can be traced back to the
different approximations concerning relaxation and dephasing.
In contrast to the detailed Floquet-Born-Markov formalism,
the master equation of the qubit corresponding to Eq. (27)
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FIG. 6. (Color online) The transition rate P of the strongly driven
and weakly probed qubit and the corresponding spectrum S(ωP), both
scaled with their maximum value. The parameters are ε0/h̄ω = 1.05,
	/h̄ω = 0.37, and ωP/ω = 0.092. The parameter κ describing the
Ohmic spectral density is chosen so that γ /ω = 0.016 in the absence
of driving and detuning in Eq. (25) and β = h̄ω/kT = 2.24. The
transition rate P is calculated with the numerical Floquet method
[solid line, vertical projection from Fig. 5(b)], which is contrasted
with the spectrum S(ωP), see Eq. (27), (circles) of the driven qubit
(1/T2 = γ and 1/T1 = γ /2) at the weak probe frequency.

includes simply the standard relaxation and dephasing, with
rates 1/T1 and 1/T2, respectively.

E. Comparison with experiments

We have also interpreted two recent experiments in terms
of probe absorption of quasienergy states. The experiment by
Wilson et al.8 uses a Cooper-pair box and the experiment by
Izmalkov et al.9 uses a flux qubit, but both can be described
by the Hamiltonian in Eq. (15).

FIG. 7. (Color online) The probe absorption P calculated as
a function of level spacing ε0 and driving amplitude A. The
parameters are ω/2π = 7.0 GHz, 	/h̄ω = 0.37, ωP/ω = 0.092, and
T = 150 mK. The parameter κ describing the Ohmic spectral density
is chosen so that γ /ω = 0.045 in the absence of driving and detuning
in Eq. (25), corresponding to the experimental estimate for qubit
dephasing. This plot should be compared with the experimental plot
in Ref. 8. For the comparison we have given the axis scales also using
the units of this reference.

FIG. 8. (Color online) The probe absorption P calculated as
a function of level spacing ε0 and driving amplitude A. The pa-
rameters are ω/2π = 4.15 GHz, 	/h̄ω = 0.84, ωP/ω = 0.005, and
T = 70 mK. The parameter κ describing the Ohmic spectral density
is chosen so that γ /ω = 0.17 in the absence of driving and detuning
in Eq. (25), corresponding to the experimental estimate for qubit
dephasing. This plot should be compared with the experimental plot
in Ref. 9. For the comparison, we have given the axis scales also
using the units of this reference.

Figure 7 shows the calculated probe absorption correspond-
ing to the experiment of Wilson et al.8 The parameters are the
same as given in Ref. 8 except that we have not included
the extra broadening caused by low-frequency fluctuations in
the gate charge ng. We have used the same parameters also
in Figs. 3(b) and 5(b), except that the linewidth γ is almost
three times larger than in Fig. 5(b). The resonances in Fig. 7
still have the same characteristic features as in Fig. 5(b), but
they are not as clear because of the larger linewidth. Figure 7
should be compared with the experimental plot in Ref. 8 which,
however, has the extra broadening that wipes out some of the
features. In the same reference, the experimental data were
successfully compared with theory by using RWA, which
is still sufficient at the parameter values of the experiment
(see Fig. 3).

Figure 8 shows the probe absorption calculated with the
parameters corresponding to the experiment of Izmalkov et al.9

The same parameters are also used in Figs. 3(c) and 5(c), except
that the probe frequency ωP/ω = 0.005 is much smaller than
in Fig. 5(c). Now, the elliptical shape of the resonances is not
resolved because of line broadening, but the discontinuities of
the resonances remain. The δd shift (19), which is a signature
of the RWA breakdown, is clearly visible as the bending of
the resonances as a function of driving amplitude A. The δd

shift is enhanced near ε0 = 0 and at small n.19 The plot should
be compared with the experimental plot in Fig. 3 by Izmalkov
et al.,9 taking into account that it is a phase plot instead of
an absorption plot. Both plots reveal the same quasienergy
landscape, as the resonances are visible as bluish lines and
the discontinuities as yellow crosses in the phase plot. In the
same reference, the experimental results are interpreted as
LZS-interferometry,37 which produces oscillations of the qubit
population.

The discussed experiments reveal information about
quasienergy landscape, but suffer from noise that prevents
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the observation of individual contour lines. We point out
Ref. 6 as an example of an experiment where individual
contour lines are clearly seen. Another difference in this
experiment is that the modulation of the energy is nonsinu-
soidal, leading into a genuinely quasiperiodic probe, in contrast
to Eq. (15). The Floquet analysis at the parameters of this
experiment was reported in conjunction with the measurement
(see Supplemental Material of Ref. 6).

V. CONCLUSIONS

We have presented a method to map the quasienergies of
a driven quantum system by using a weak probe. We made
the derivation with a general form of the probe Hamiltonian,
but applied it to simple cases in order to gain physical insight.
Provided that the quasienergy excitation has a long enough
life time, the spectroscopy enables an accurate mapping of
the quasienergy structures.6 The results rely on first-order
perturbation expansion in the probe amplitude. We also
suggested the generalized Floquet method as a possible way
to go beyond the perturbative-probe approximation.

The detailed discussion about the strongly driven and
weakly probed qubit shows that, with certain parameter
values, analytical results may be obtained for the weak probe
resonances and the transition amplitudes, thus resulting both
the absorption and dispersion of the probe response, i.e.,
the generalized probe susceptibility. Otherwise, numerical
calculations are a necessity. However, relying only on proper
matrix truncation and inversion, the solutions are numerically
stable and simple to find. We noted that the accuracy of
the analytic, and to some extent the numerical, calculation
is dependent on the choice of the atomic basis. Indeed, the
detailed study of the transition from the adiabatic to the
diabatic behavior would be interesting and possible by using
the probe absorption spectroscopy of quasienergies.

We reinterpreted two recent experiments.8,9 Although the
estimated lifetime of the quasienergy excitations in the referred
experiments were too short to distinguish the quasienergy
contours, we were able to point out features in the measured re-
sponses that stem from the underlying quasienergy landscape.
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APPENDIX: THE GENERALIZED FLOQUET METHOD

The generalization of the Floquet method was developed
in Ref. 36. It enables the handling of bi- or polychromatic
driving fields in a way similar to the monochromatic case.
Here, we use the two-mode Floquet method in the analysis
of the strongly driven and weakly probed qubit. We assume
the bichromatic Hamiltonian defined in Eq. (15). In the
generalized Floquet picture, the solution of the time-dependent

Schrödinger equation is given in the form

|�(t)〉 = e−iεt/h̄ |u(t)〉, (A1)[
−ih̄

d

dt
+ Ĥ (t)

]
|u(t)〉 = ε |u(t)〉, (A2)

where the quasienergy state |u(t)〉 is also bichromatic and the
quasienergies are quasiperiodic, ε = εr,n1,n2 = εr + h̄n1ω +
h̄n2ωP.

To take advantage of the periodicity, we express the
Hamiltonian (15) and the state |u(t)〉 using a “double” Fourier
series representation:

Ĥ (t) =
∞∑

n1=−∞
n2=−∞

∑
σ,σ ′

ei(n1ω+n2ωP)t h
(n1),(n2)
σσ ′ |σ 〉 〈σ ′|, (A3)

|u(t)〉 =
∞∑

n1=−∞
n2=−∞

∑
σ

ei(n1ω+n2ωP)t c(n1),(n2)
σ |σ 〉. (A4)

Similar to the case of the single-mode Floquet method
[see Eq. (7)], we get a time-independent eigenvalue equation:

HF2 |u〉 = ε |u〉. (A5)

The Hamiltonian (15) can be expressed in terms of the subma-
trices H[0] = (ε0σ̂z + 	σ̂x) /2, H[±1] = Aσ̂z/4, and B[±1,0] =
APσ̂z/4:

Ĥ (t) = H[0]+ H[±1](eiωt + e−iωt ) + B[±1,0](eiωPt + e−iωPt ).

(A6)

The two-mode Floquet matrix HF2 of the Hamiltonian is given
as an infinite-dimensional matrix:36

HF2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
... . .

.

HF − Ih̄ωP B[1] 0

· · · B[−1] HF B[1] · · ·
0 B[−1] HF + Ih̄ωP

. .
. ...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A7)

All the entries in HF2 are matrices of infinite rank. The single-
mode Floquet matrix HF is on the diagonal and it has the
familiar form

HF =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
... . .

.

H[0] − Ih̄ω H[1] 0

· · · H[−1] H[0] H[1] · · ·
0 H[−1] H[0] + Ih̄ω

. .
. ...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A8)

In HF2 of Eq. (A7), the kh̄ωP-shifted single-mode entries HF +
Ikh̄ωP are coupled by infinite-rank coupling matrices B[n],
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FIG. 9. (Color online) Quasienergy in the generalized Floquet method. (a) Quasienergy landscape in the ε0-A plane with the parameters
	/h̄ω = 0.37, ωP/ω = 0.10, and AP/h̄ω = 0.20; the solid black line shows the weak probe resonance condition (23) deduced from the
corresponding single-mode quasienergy landscape [see Fig. 3(b)]. (b) Projection of (a) at A/h̄ω = 5.6, denoted with arrows and dashed line.
The quasienergy εr,n,m (black) is periodic so that εr (blue) is shifted by nh̄ω + mh̄ωP, where n,m = 0, ±1, ±2, . . . . The red dash-dotted line
shows the corresponding quasienergy calculated with the single-mode Floquet-method. (c) Comparison of the two-mode quasienergies with
the probe amplitude AP/h̄ω = 0.20 (solid) and 0.40 (dashed). Magnified view of the box in (b).

defined as

B[±1] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
... . .

.

B[±1,0] 0 0

· · · 0 B[±1,0] 0 · · ·
0 0 B[±1,0]

. .
. ...

. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A9)

By solving the two-mode Floquet eigenvalue problem (A5),
one obtains the quasienergies and the quasienergy states. The
energy difference 	q2 = ε+ − ε− between two consecutive
quasienergies is plotted in Fig. 9(a). By applying the period-
icity, the single-mode quasienergy structure is reconstructed
almost everywhere, as visualized in Fig. 9(b). At the locations
where the weak probe is in resonance with the single-mode
quasienergy states (	q = h̄ωP or 	q = h̄ω − h̄ωP), a gap,
i.e., an anticrossing opens in between degenerate single-
mode quasienergy levels, shown in Fig. 9(c). The gap at
the anticrossing is the largest when it corresponds to a
single-probe-photon resonance [solid black lines in Fig. 9(a)].

The gaps at the other anticrossings are opened by increasing
the probe amplitude, corresponding to the possibility of
multiphoton probe processes.

The comparison of the generalized quasienergies [see
Fig. 9(c)], calculated with AP/h̄ω = 0.20 (solid) and AP/h̄ω =
0.40 (dashed), gives an example of how the probe field starts
to interplay with the single-mode quasienergy levels as the
probe amplitude AP increases. By comparing the two-mode
quasienergies calculated with different probe amplitudes, one
observes a horizontal shift in the location of the anticrossing,
and an enhanced deviation from the single-mode quasienergy
(dash-dotted). These are examples of quantitative deviations
from the perturbative results (13). This kind of a comparison
gives a qualitative method to study nonperturbatively the
higher-order processes in the probe amplitude AP.

The vertical shift of the probe resonances in Fig. 9(c) is
understood as a Bloch-Siegert-type35 correction due to the
moderately strong probe field. Moreover, the increasing probe
amplitude generates effects similar to the dynamic (ac) Stark1

and generalized Bloch-Siegert6,35 shifts, but now in terms of
the perturbed single-mode quasienergy levels.
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