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Phase structure and phase transitions in a three-dimensional SU(2) superconductor
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We study the three-dimensional SU (2)-symmetric noncompact CP1 model, with two charged matter fields
coupled minimally to a noncompact Abelian gauge field. The phase diagram and the nature of the phase transitions
in this model have attracted much interest after it was proposed to describe an unusual continuous transition
associated with deconfinement of spinons. Previously, it has been demonstrated for various two-component
gauge theories that weakly first-order transitions may appear as continuous ones of a new universality class in
simulations of relatively large, but finite systems. We have performed Monte Carlo calculations on substantially
larger systems sizes than those in previous works. We find that in some area of the phase diagram where at finite
sizes one gets signatures consistent with a single first-order transition; in fact, there is a sequence of two phase
transitions with an O(3) paired phase sandwiched in between. We report (i) a new estimate for the location of a
bicritical point and (ii) the first resolution of bimodal distributions in energy histograms at relatively low coupling
strengths. We perform a flowgram analysis of the direct transition line with rescaling of the linear system size in
order to obtain a data collapse. The data collapses up to coupling constants where we find bimodal distributions
in energy histograms.
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I. INTRODUCTION

Recently, the CP1 model consisting of two matter fields
coupled to an Abelian gauge field has been of great interest
in condensed-matter physics. One of the sources of interest
is the proposed concept of deconfined quantum criticality
(DQC). It has been intensively debated as a possible novel
paradigm for quantum phase transitions.1–18 Such quantum
criticality has been suggested to describe phase transitions
that would not fit into the Landau-Ginzburg-Wilson (LGW)
paradigm of a continuous (second-order) phase transition.1,2,19

In particular, the continuous quantum phase transition from
an antiferromagnetic Néel state into a paramagnetic valence-
bond solid (VBS) state20,21 does not agree with the LGW
description, according to which two phases with different
broken symmetries generically are separated by a first-order
phase transition. Recently, evidence for the DQC scenario
has been claimed in studies of the so-called J -Q model,3

which is a Heisenberg model with additional higher-order spin
interaction terms. Namely, it was suggested that high-precision
quantum Monte Carlo simulations of this model support a
continuous Néel-VBS phase transition in accordance with the
DQC scenario.3–8

It has been proposed that the critical field theory of
a continuous Néel-VBS phase transition is the so-called
noncompact CP1 model (NCCP1), with a SU (2) symmetric
field coupled to a noncompact U (1) gauge field in three
dimensions (3D).1,2,9 Initial efforts on studying this effective
model were focused on the special case where the SU (2)
symmetry was broken down to a U (1) × U (1) symmetry,
i.e., the easy-plane limit. For this case, a continuous phase
transition was claimed.9 However, in Ref. 10, the existence
of a paired phase in the U (1) × U (1) easy-plane action was
pointed out. (For earlier discussions of paired phases in various
U (1) × U (1) systems, see Refs. 11 and 22–24.) Furthermore,
resorting to mean-field theory arguments, it has been pointed

out that at least in the vicinity of a paired state (in the
parameter space of the model), the direct phase transition
from a symmetric state to a state with broken U (1) × U (1)
symmetry, should be first-order.10 Subsequent Monte Carlo
calculations have reported a weak first-order phase transition
for the easy-plane NCCP1 model.10,12 The so-called flowgram
method has also been introduced in Ref. 10, specifically to
characterize weak first-order phase transitions. Using this
method, the direct phase transition from a symmetric state
to a state with broken U (1) × U (1) symmetry, has been
claimed to be first-order for any nonzero value of the coupling
constant. The phase transitions in the easy-plane limit of the
NCCP1 model were also extensively studied in variety of other
regimes in the context of two-component superconductors with
independently conserved condensates.11,22–27

For the SU (2)-symmetric case, Monte Carlo computations
have been performed in Ref. 9. Here, a direct second-order
phase transition was suggested, but the system sizes that
were considered were quite small. In a subsequent paper,13

an extensive study of the model was performed. In particular,
for the direct transition line, a second-order phase transition
was claimed. At higher couplings to the gauge field, it was
suggested to turn into a first-order transition via a tricritical
point. On the other hand, in Ref. 14 (see also Ref. 28), it
was argued that the direct transition line is first order. The
flowgram method employed in Ref. 14 showed no evidence for
a tricritical point along the direct transition line. Rather, in this
work the large-scale behavior at small couplings to the gauge
field was found to be the same as for higher couplings, where
indications of a first-order transition were seen by resolving a
bimodal distribution in the energy histograms. Note that at the
system sizes studied in Ref. 14, no bimodal distributions were
resolved at small coupling constants. Nonetheless, in Ref. 14,
it was concluded that even for weaker couplings, bimodal
distributions indicative of a first-order phase transition would
emerge for large-enough system sizes. This conclusion was
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based on the similarity of scaling of various quantities for
large and small couplings, as evidenced by the flowgrams.

The weakness of the observed first-order phase transition,
combined with the necessity of assessing the order of the
phase transitions also in the limit of vanishingly small coupling
strength, renders this problem computationally extremely de-
manding. In this work, we therefore examine the phase diagram
of the NCCP1 model at substantially larger systems sizes
than what has been done in previous works.13,14 Performing
the computations on larger systems allows us to perform a
very detailed investigation of the range of parameters where
a paired phase is sandwiched between the fully disordered
and the fully ordered state. This means that these two phases
are separated, not by a direct transition, but by two separate
transitions. At small system sizes, these two separate phase
transitions, in fact, give signatures which would lead one to
conclude that the system features one single first-order phase
transition. The existence of a paired phase sandwiched between
the fully ordered and disordered states emerges only when one
considers large-enough systems. Our study thus allows us to
provide improved analysis of the phase diagram of the system.

II. MODEL

The continuum NCCP1 model is written as

Z =
∫

D�D�†DA e−βH , (1)

H = 1

2

∫
d3x{|[∇ − ieA(x)]�(x)|2 + [∇ × A(x)]2}, (2)

where β is the inverse temperature and �†(x) = (ψ∗
1 (x),ψ∗

2 (x))
are two complex fields that are coupled to a noncompact gauge
field A(x) with charge e. The fields ψc(x), c ∈ {1,2}, obey the
CP1 constraint, |�(x)| = 1.

The model can be mapped onto a nonlinear O(3) σ model
coupled to massive vector fields.25 By introducing the fields,

C(x) = i

2

∑
c

[ψc(x)∇ψ∗
c (x) − ψ∗

c (x)∇ψc(x)] − eA(x), (3)

n(x) = �†(x)σ�(x), (4)

where the components of σ are the Pauli matrices, the NCCP1

model (1) can be rewritten as25

H = 1

8
[∂μn(x)]2 + 1

2
[C(x)]2

+ 1

2e2

{
εμνλ

[
∂νCλ(x) − 1

4
n(x) · ∂νn(x) × ∂λn(x)

]}2

,

(5)

where sum over repeated indices is assumed. The model
represents an O(3) nonlinear σ model coupled to a massive
vector field C(x). The latter represents a charged mode, and
its mass is the inverse magnetic field penetration length. At
least for sufficiently large values of electric charge coupling,
the model can undergo a Higgs transition (where gauge
field becomes massless) without restoring simultaneously any
broken global symmetries. In that case, the remaining broken
global symmetry is O(3) which is described by the order
parameter n(x).

If one introduces an easy-plane anisotropy for the vector
field n(x), this would break the symmetry of the model to
U (1) × U (1), and the separation of variables yields a neutral
and a charged mode, the physics of which has been extensively
studied.10,11,22–27 However, compared to London limit there is
one substantial difference in the case of SU (2) symmetry. The
charged and neutral sectors are coupled through the last term in
Eq. (5). Another difference compared to the U (1) × U (1) case
is that in two dimensions, stable singly quantized vortex lines
do not exist in a type II SU (2) model (the same applies to vortex
lines in three dimensions).29 On the other hand, a type I SU (2)
model has energetically stable counterparts of ordinary singly
quantized type I vortices. Since composite vortices are topo-
logical excitations which lead to the occurrence of paired states
in U (1) × U (1) systems, this aspect makes the phase diagram
of SU (2) theory an especially interesting problem to study.

In the Monte Carlo simulations, we employ a lattice
realization of this model on a cubic lattice with size L3 and
with lattice constant a = 1. The fields ψc(x) are then defined
on the vertices r ∈ {ix̂ + j ŷ + kẑ|i,j,k ∈ {1, . . . ,L}} of the
lattice, ψc(x) → ψc,r. For the first term in Eq. (2), we rescale
the gauge field by e−1 and invoke the gauge-invariant lattice
difference,[

∂

∂xμ

− ieAμ(x)

]
ψc(x) → ψc,r+μ̂ e−iAμ,r − ψc,r, (6)

where μ ∈ {x,y,z} and r + μ̂ denotes the nearest-neighbor
lattice point to vertex r in the μ direction. The gauge field Aμ,r
lives on the (r,r + μ̂) links of the lattice. For the Maxwell term
we get

[∇ × A(x)]μ → e−1
∑
ν,λ

εμνλ	νAλ,r, (7)

where 	ν is the forward finite difference operator, 	νAλ,r ≡
Aλ,r+ν̂ − Aλ,r, and εμνλ is the Levi-Civita symbol. In addition,
by invoking the CP1 constraint and discarding constant factors
in the partition function Z, we obtain the following lattice
realization of the NCCP1 model:

Z =
∫

DA
∫ 1

0
Du

∫ 2π

0
Dθ1

∫ 2π

0
Dθ2 e−βH ,

H =
∑
r,μ

[
−√

ur
√

ur+μ̂ cos(	μθ1,r − Aμ,r)

−
√

1 − ur
√

1 − ur+μ̂ cos(	μθ2,r − Aμ,r)

+ 1

2e2

(∑
ν,λ

εμνλ	νAλ,r

)2]
, (8)

where ur = |ψ1,r|2 = 1 − |ψ2,r|2 and where |ψc,r| is the
amplitude and θc,r is the phase of the complex fields ψc,r.

III. DETAILS OF THE MONTE CARLO SIMULATIONS

The Monte Carlo simulations are performed on a cubic
lattice with periodic boundary conditions in all directions and
with size L3, where L ∈ {8, . . . ,96}. Up to 4.0 × 107 sweeps
over the lattice were performed for the largest systems, while
up to 1.0 × 107 sweeps were used for initial equilibration and
initialization of the coupling distribution (see below). Monte
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Carlo time series were routinely inspected for equilibration. To
test for ergodicity, typically four independent large simulations
were performed for the largest system sizes. Histograms based
on raw data and reweighted data were also compared for
consistency. For most of the simulations, the parallel tempering
(PT) algorithm was employed.30–32 To be specific, we fix the
coupling e and perform the computations on a number of
replicas (typically from 8 to 32 depending on the system size
L and the range of β values) in parallel at different values of β.
A Monte Carlo sweep consists of systematically traversing all
lattice points with local trial moves of all six field variables by
the Metropolis-Hastings algorithm.33,34 For ur, the proposed
new values are chosen with uniform probability within the
interval [0,1], and for θc,r, the proposed new values are chosen
with uniform probability within the interval [0,2π〉. For the
noncompact gauge field, the proposed new values are chosen
within some limited increment (typically [−π/4,π/4]) from
the old values.35 There is no gauge fixing involved in the
simulations. In addition to these local trial moves, the Monte
Carlo sweep also includes a PT trial move of swapping replicas
at neighboring β values.

All replicas were initially thermalized from an ordered
or disordered start configuration. Then, initial runs were
performed in order to produce an optimal distribution of
couplings for the simulation. In some cases, the set of
couplings was found by measuring first passage times.36 In
this approach, the optimal set of couplings maximizes the flow
of replicas in parameter space, essentially by shifting coupling
values towards the bottlenecks.37 However, in cases with no
severe bottleneck, the optimal set of couplings was found by
demanding that the acceptance rates for swapping neighboring
replicas were equal for all couplings.38 Irrespective of how
the set of couplings was found, it was always ascertained
that replicas were able to traverse parameter space sufficiently
many times during production runs. The measurements were
postprocessed by multiple histogram reweighting.39 Random
numbers were generated by the Mersenne-Twister algorithm.40

Errors were determined by the jackknife method.41

As mentioned in the Introduction, the NCCP1 model is a
difficult model on which to perform Monte Carlo computa-
tions. In Ref. 14, the NCCP1 model was mapped to a so-called
J -current model, which allows simulations based on the worm
algorithm.42,43 (For the sake of completeness, and since to our
knowledge the details of the mapping have not been published,
we present the derivation of this mapping in the Appendix.)
An approach based on the J -current model was attempted as
well. However, due to the presence of long-range interactions
in this formulation, it was difficult to work with lattice sizes
above L ∼ 40. Hence, the computations were performed on
the model in the original NCCP1 formulation, using the PT
algorithm with which it is easy to grid parallelize the lattice.

IV. OBSERVABLES AND FINITE-SIZE SCALING

Perhaps the most familiar quantity that is used to explore
phase transitions is the specific heat Cv . The specific heat is
given by the second moment of the action,

Cv = β2

L3
〈(H − 〈H 〉)2〉, (9)

where brackets 〈· · ·〉 denote statistical averages. In most cases,
Cv exhibits a well-defined peak at the phase transition. For
a continuous phase transition the correlation length diverges
with critical exponent ν as ξ ∼ |t |−ν , with t = (β − βc)/β
being the deviation from the critical coupling βc. The critical
exponent α is defined by the singular part of Cv , given by
Cv ∼ |t |−α . Then, in a limited system of size L3, the finite-size
scaling (FSS) of the specific heat is given by

Cv ∼ C0 + C1L
α/ν, (10)

where C0 and C1 are nonuniversal coefficients. For a first-
order transition, with two coexisting phases and no diverging
correlation length, there is indeed no critical behavior. Still,
first-order transitions exhibit well-behaved FSS with “effec-
tive” exponents, α = 1 and ν = 1/3.44,45 Hence, the peak of
the specific heat scales as

Cv ∼ L3, (11)

for a first-order transition. Distinguishing between continuous
and first-order transitions is an important issue in the present
work. For that purpose, FSS of the specific heat peak will play
an important role.

We also investigate the third moment of the action given
by46,47

M3 = β3

L3
〈(H − 〈H 〉)3〉. (12)

In the vicinity of the critical point, this quantity typically
features a minimum point and a maximum point [see, for
instance, the inset in panel (b) of Fig. 2]. The difference in the
M3 value of these two extrema scales as

(	M3)height ∼ L(1+α)/ν, (13)

and the difference in the coupling values scales as

(	M3)width ∼ L−1/ν, (14)

for a continuous phase transition. For a first-order transition,
the FSS is

(	M3)height ∼ L6, (15)

and

(	M3)width ∼ L−3. (16)

As mentioned above, one may construct a three-component
gauge neutral field nr,25 given by

nr = �∗
rσ�r, (17)

where the components of σ are the Pauli matrices. Since it is
a unit O(3) vector, we can introduce a “magnetization,”

M =
∑

r

nr. (18)

The order parameter 〈m〉, where m = M/L3, signals the onset
of order in the O(3) gauge neutral vector field nr, and the
critical point of this transition can be accurately determined by
a proper analysis of the finite-size crossings of the associated
Binder cumulant,48–50

U4 = 5

2
− 3〈M4〉

2〈M2〉2
. (19)
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The finite-size crossings of the Binder cumulant are known to
converge rapidly towards the critical coupling βc. Hence, βc

can be accurately determined by a simple extrapolation of the
finite-size crossings to the thermodynamic limit or by invoking
scaling forms that account for finite-size corrections.50,51

A number of quantities related to magnetization may be
used to extract critical exponents from the Monte Carlo
simulations. The magnetic susceptibility, given by

χ = L3β〈m2〉, (20)

when β < βc, scales as χ ∼ L2−η at β = βc. Hence, we may
determine the anomalous scaling dimension η by FSS of χ

measurements obtained at βc.
The exponent ν can, alternatively, be determined by

calculating the logarithmic derivative of the second power of
the magnetization,52

∂

∂β
ln〈m2〉 = 〈m2H 〉

〈m2〉 − 〈H 〉. (21)

The FSS of this quantity is ∂
∂β

ln〈m2〉 ∼ L1/ν . Since the
logarithmic derivative exhibits a peak that is associated with
the critical point, it is possible to extract ν by measuring the
logarithmic derivative at the pseudocritical point, without an
accurate determination of βc.

Similar to Ref. 13, we search for the critical point of the
Higgs transition by computing the dual stiffness

ρ
μμ

dual(q) =
〈∣∣ ∑

r,ν,λ εμνλ	νAλ,r eiqr
∣∣2

(2π )2L3

〉
, (22)

which is the Fourier space correlator of the magnetic field.
This order parameter for the Higgs transition is dual in the
sense that it is finite in the high-temperature phase and zero
in the low-temperature phase. Like in Ref. 13, this quantity
is measured at the smallest available wave vector q �= 0. We
chose to measure ρzz

dual at qmin = (2π/L,0,0). At the critical
point, the quantity Lρ

μμ

dual(qmin) is universal, such that the
finite-size crossings of Lρ

μμ

dual(qmin) can be used to estimate the
critical point of the Higgs transition. In addition, measuring
the coupling derivative of Lρ

μμ

dual(qmin) can be used to estimate
the correlation length exponent ν as

∂

∂β
Lρ

μμ

dual(qmin) ∼ L1/ν (23)

at the critical point.

V. NUMERICAL RESULTS

A. Outline of the phase diagram

The phase diagram of the NCCP1 model is presented in
Fig. 1. For small values of β, there is a normal phase that can
be recognized by a disordered gauge neutral vector field nr
and a massless gauge field. Hence, 〈m〉 = 0 and ρ

μμ

dual(q) �= 0
in this phase. For large values of e and higher values of β, there
is a transition into a phase that we label the O(3) phase. Here,
the vector field nr is ordered [the O(3) symmetry is sponta-
neously broken], 〈m〉 �= 0, whereas the gauge field remains
massless, ρ

μμ

dual(q) �= 0. In the case of U (1) × U (1) symmetric
superconductors, this phase is sometimes denoted a metallic
superfluid or a paired phase, with long-range order in the gauge

SU(2) phase

O(3) phase

Normal phase

e

β

76543210

3.5

3

2.5

2

1.5

1

0.5

0

FIG. 1. (Color online) Phase diagram of the NCCP1 model.
SU (2) phase: Fully ordered phase where the O(3) symmetry is
spontaneously broken, 〈m〉 �= 0, and the gauge field is massive,
ρ

μμ

dual(q) = 0. O(3) phase: O(3) symmetry is spontaneously broken,
〈m〉 �= 0, but the gauge field is massless, ρμμ

dual(q) �= 0. Normal phase:
O(3) symmetry is restored, 〈m〉 = 0, and the gauge field is massless,
ρ

μμ

dual(q) �= 0. The direct transition line from the SU (2) phase to the
normal phase is denoted by + markers and a solid red line. The Higgs
transition line between the SU (2) phase and the O(3) phase is denoted
by ∗ markers and a dotted blue line. The transition line between the
O(3) phase and the normal phase is denoted by × markers and a
dashed green line. Lines are guides for the eyes.

neutral linear combination of the phases [in the U (1) × U (1)
case], but not in the individual ones.10,11,22–24,27,53 From the
O(3) phase, by reducing the value of e, one enters an ordered
phase that we label the SU (2) phase. Going into this phase, the
gauge field dynamically acquires a Higgs mass and the system
becomes a two-component NCCP1 superconductor. Note that
the Higgs transition is related to a local symmetry and, indeed,
is not associated with spontaneous symmetry breaking.54 This
aspect should be kept in mind where we, for brevity, refer to
the fully ordered state as “broken SU (2)” or “fully broken
state” to distinguish it from a paired state. The SU (2) phase is
recognized by measuring 〈m〉 �= 0 and ρ

μμ

dual(q) = 0.
It is generally expected that at small values of e, the SU (2)

phase may also be entered directly from the normal phase,
i.e., without going through the intermediate paired phase. The
nature of the phase transition along this direct transition line in
this and related multicomponent models has been intensively
debated due to its relevance to deconfined quantum criticality.
We return to the direct transition line in Secs. V B and V C.
First, we present results for the two separate transition lines.

1. O(3) line

In Refs. 14, 55, and 56 the existence of an intermediate
paired phase, separating a fully ordered state from a fully
disordered one, was shown in the SU (2)-symmetric theory.
The nonlinear σ model mapping presented above suggests
that the transition line between the normal phase and the O(3)
phase should be a continuous transition in the O(3) universality
class, at least in the limit far from the bicritical point. We have
considered this for the case e = 6.0, and the FSS results are
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=
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2
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=

β
p
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FIG. 2. FSS results for the transition between the normal phase
and the O(3) phase when e = 6.0. Thirteen system sizes L ∈
{8, . . . ,64} are used. In all panels, the solid straight line is the
best fit obtained for a fitting function on the form aLb with two
free parameters a and b. Panel (a) Log-log plot of the maximum in
the logarithmic derivative of the second power of the magnetization
(∂/∂β ln〈m2〉)β=βpc [see Eq. (21)] as a function of L. The best fit
is obtained for sizes L ∈ {20, . . . ,64}. The inset shows the measure
of (∂/∂β ln〈m2〉)β=βpc in the case when L = 40. Here, βpc is the
pseudocritical coupling. Panel (b) Log-log plot of the third moment
height difference (	M3)height as a function of L. The best fit is obtained
for sizes L ∈ {10, . . . ,64}. The inset shows the measure (	M3)height

in the case when L = 14. Panel (c) Log-log plot of the magnetic
susceptibility measured at the critical coupling χβ=βc as a function of
L. The best fit is obtained for sizes L ∈ {12, . . . ,64}. The inset shows
χβ=βc for the case when L = 40, and the arrowheads indicate that χ

is measured at the same fixed coupling βc for all sizes.

given in Fig. 2. A log-log plot of the FSS of the peak height in
∂
∂β

ln〈m2〉 is given in panel (a), and the measured peak heights

fall on a straight line for L � 20. The best fit to the form
∂
∂β

ln〈m2〉 ∼ L1/ν yields ν = 0.715 ± 0.004. In panel (b), we
also measure (	M3)height, and this quantity exhibits negligible
finite-size corrections to scaling at least for L � 10. The best fit
according to Eq. (13) yields α = −0.117 ± 0.011, where the
value of ν obtained above was used. In this case, it was found
that ν was most precisely determined by measuring the peak
height in ∂

∂β
ln〈m2〉 rather than measuring (	M3)width. The

maximum peak in M3 is not very sharp [see the inset of panel
(b)]. Thus, the error bars in (	M3)width are large. In order to
determine η, the FSS of the magnetic susceptibility χ is given
in panel (c). Here, χ is measured at the critical coupling βc =
2.7894 ± 0.0003, which was determined by fitting the Binder
crossings of L and L/2 to a function that accounts for power-
law finite-size corrections. The best fit of χ (L) was determined
for sizes L ∈ {12, . . . ,64} to yield η = 0.024 ± 0.014. All the
exponents listed above correspond well with the exponents of
the O(3) universality class.57,58

2. Superconducting transition

Computations have also been performed along the tran-
sition line between the O(3) phase and the SU (2) phase.
In analogy with the paired phase of the U (1) × U (1)
model10,11,22–24,26,27 (i.e., the metallic superfluid), the transition
to the O(3) sector should be associated with the proliferation
of single-quanta vortices. In the U (1) × U (1) model, such
vortices have similar phase windings in both complex fields
and are topologically well-defined objects. In the SU (2) case,
such vortices can have either similar phase windings in both
components or a phase winding only in one component if
the other component exists only in the vortex core of the
former. Such objects are nontopological and are unstable
in type II SU (2) superconductors.29 This suggests that the
system should be a type I SU (2) superconductor in order
to feature a phase transition into a paired phase. In analogy
with single-component type I superconductors, one would
then expect a first-order phase transition.59,60 A different
viewpoint is based on mean-field arguments, which suggest
that the transition line could be a first-order transition line in
the vicinity of a bicritical point.10 Other objects which can
disorder the Higgs sector, are Hopfions.25,61 In this work we
have made no serious attempts at resolving such topological
defects.

To check the universality class of this line, FSS results of
∂/∂β[Lρzz

dual(qmin)], obtained at the critical point with e = 5.0,
are given in Fig. 3. First, the critical coupling was determined
to be βc = 2.7347 ± 0.0005, by considering the crossings of
Lρzz

dual(qmin) (see the inset of Fig. 3). Then, the correlation
length exponent was estimated to be ν = 0.664 ± 0.039. This
value is consistent with an inverted 3Dxy transition line.62 We
have not been able to resolve a first-order phase transition on
this line.

B. Estimate for a bicritical point

In Ref. 14, the flowgram method has been suggested as a
useful tool to assess whether there is a tricritical point at weak
couplings to the gauge field. This method relies on resolving
a first-order phase transition at stronger couplings, just below
the bicritical point at which the paired phase opens up between
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FIG. 3. Log-log plot of ∂

∂β
Lρzz

dual(qmin) measured at the critical
point βc, as a function of system size L. The charge is e = 5.0.
Measurements are performed for 15 different system sizes L ∈
{8, . . . ,64}. The derivative was found by calculating the differences
of ρzz

dual(qmin). The solid straight line is the best fit obtained with a fit
function on the form aLb, where a and b are two free parameters.
The inset shows the Lρzz

dual(qmin) crossings for systems L and L/2 as
a function of L−1. These crossings were used to estimate the critical
point, βc = 2.7347 ± 0.0005. Errors in determining βc are taken into
account by also considering the sensitivity of ν with respect to β

when estimating the uncertainty in the exponent.

the normal phase and the SU (2) phase. It is thus important to
be able to determine the bicritical point accurately. For this
purpose, we focus on the region slightly above the bicritical
point and establish when two separate phase transitions are
clearly resolved. In this way, we can determine an upper bound
on the bicritical point.

1. Signatures of an intermediate paired phase at e = 4.2

In order to discern two separate, but close-lying phase
transitions, we need to establish signatures that can be taken
as evidence for splitting of a transition line. To this end,
results are presented for the case when e = 4.2. We find
unambiguous evidence for two separate phase transitions.
Remarkably, at smaller system sizes we find characteristics
of the phase transition consistent with a first-order transition,
and it was interpreted as such in Ref. 14. (e = 4.2 corresponds
to g ≈ 1.88 in the units of Ref. 14. This reference gave the
estimate for the position of the bicritical point at g ≈ 2.0.) As
we shall see, performing computations on larger systems leads
to a different conclusion. The reason is that finite-size effects
will disguise the existence of separate transitions and make
them appear as one.

In Fig. 4, results are presented for four different observables
obtained at 12 different system sizes, L ∈ {8, . . . ,56}, in a
coupling range covering both phase transitions. In panel (a),
results for the specific heat are given. When system sizes are
small, it is only possible to resolve one peak in the specific
heat. However, when L = 40, it is possible to resolve a bump
to the left of the peak. The bump, which corresponds to the
O(3) ordering phase transition, becomes more pronounced
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FIG. 4. (Color online) Monte Carlo results for four different
quantities and 12 different system sizes obtained for a coupling
range covering two separate, but close-lying phase transitions. The
gauge-field coupling e = 4.2. For clarity, the panels only show
results for L ∈ {16,24,32,40,48,56}, but insets include all 12 sizes,
L ∈ {8, . . . ,56}. Panel (a) shows results for the specific heat Cv , and
the inset shows the scaling of the peak Cv,max in a log-log scale.
Panel (b) shows the results for the third moment of the action M3,
and the insets show the scaling of (	M3)height and (	M3)width in a
log-log scale. Panel (c) shows the Binder cumulant U4, and the inset
shows the coupling βcross where the Binder curves cross as a function
of (L1L2)−1/2, where L1 and L2 are the two actual sizes. Panel (d)
shows the quantity Lρzz

dual(qmin) and the inset shows the coupling
where the curves cross. Lines are guides for the eyes.
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when L increases. This behavior suggests that there are two
transitions instead of one. Moreover, in the inset of panel (a)
we study the scaling of the peak on a log-log scale. When L

is small, there is a rather steep and slightly increasing slope.
However, at higher values of L there is a definite change in
the slope towards smaller values, corresponding to a sudden
slowing down in the growth of the peak. This behavior should
clearly be associated with resolving separate transitions with
increasing L.

In panel (b) of Fig. 4, results for the third moment of the
action are presented. When system sizes are small, it is only
possible to resolve a characteristic form corresponding to a
single phase transition. However, at L � 40, a secondary form
is developing to the left of the original form, resolving the O(3)
ordering transition. When studying the scaling of the quantities
(	M3)height and (	M3)width in the insets of the panel, it is clear
that they both exhibit slope changes associated with resolving
both transitions.63

The Binder cumulant is given in panel (c) of Fig. 4, and its
crossings are given in the inset of the panel. By considering the
crossings with largest L, we find that the critical point of the
O(3) ordering transition is βc = 2.347 ± 0.001, a value that
corresponds well with the leftmost transition point in panels
(a) and (b). Note that there is a nonmonotonic behavior in the
coupling values of the Binder crossings.

In panel (d) of Fig. 4, we show results for the
quantity Lρzz

dual(qmin), and the corresponding crossings are
given in the inset. We estimate the critical point of the
Higgs transition to be βc = 2.353 ± 0.001 by a crude extrapo-
lation to the thermodynamic limit. Hence, the critical point of
the Higgs transition is significantly different from the critical
point of the O(3) ordering transition.

The results in Fig. 4 show that it is of particular importance
to simulate large systems in regions where there might be
multiple phase transitions in multicomponent gauge theories.
Discarding data points for L > 20, the crossings in panels (c)
and (d) appear to converge to the same coupling. In panels (a)
and (b), we would only resolve a single phase transition with
rather strong thermal signatures.

2. Monte Carlo results for e ∈ {3.0, . . . ,4.6}
We first turn our attention to the region with e < 4.2

to look for the signatures that we have established above.
Figure 5 shows the FSS of the peak in the heat capacity for
e ∈ {3.0, . . . ,4.2}. The results show that there is a definite
change in the slope of the scaling of Cv,max, also for e = 4.0
and 3.8. Note that this signature of splitting appears at higher
L when e is reduced, corresponding to the coupling difference
between the two transitions being smaller. The slope of the
dotted line in Fig. 5 is the slope of a first-order transition [see
Eq. (11)]. For all values of e in Fig. 5, we find that for small and
intermediate L the slope is steep and increasing, and one might
be tempted to conclude that they all are first-order transitions.
However, the change towards a smaller slope that we find for
large L and e ∈ {3.8,4.0,4.2} is indeed inconsistent with a
single first-order phase transition.

In Fig. 6, we show the FSS of (	M3)height and (	M3)width.
Observe that the same signatures of splitting appears for e ∈
{3.8,4.0} as found for e = 4.2 above, namely that the slope
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FIG. 5. (Color online) Log-log plot of the value of the specific
heat peak Cv,max as a function of system size L for seven different
values of e ∈ {3.0, . . . ,4.2}. The dotted line corresponds to the slope
expected for a first-order transition, according to Eq. (11). For
e � 3.8, the scaling of Cv,max shows a negative curvature, instead
of curving up towards the first-order characteristic scaling line. From
this, our upper bound on the position of the bicritical point in the
phase diagram would be e = 3.8. Lines are guides for the eyes.

of (	M3)height changes to a smaller value and the slope of
(	M3)width changes to a higher value. This is again inconsistent
with the scaling of a single first-order transition. For a first-
order transition the slopes should converge towards the scaling
for first-order transitions, given in Eqs. (15) and (16) (see
Ref. 12 for an example).

To determine the positions of the O(3) ordering transition
and the Higgs transition, the finite size crossings of U4 and
Lρzz

dual(qmin) are given in Fig. 7 for eight different values
of e ∈ {3.2, . . . ,4.6}. For e ∈ {4.0, . . . ,4.6}, the U4 crossings
and the Lρzz

dual(qmin) crossings clearly extrapolate to different
couplings, as expected for two separate transitions. Also note
the corresponding nonmonotonic behavior for the Binder
crossings. When the coupling difference between the two
phase transitions decreases, larger systems are needed to
resolve this feature. For e = 3.8, we observe that the leftmost
U4 crossing (L1 = 80,L2 = 96) deviates, consistent with the
nonmonotonic behavior for the larger e values. For the sizes
available, the crossings seem to converge to the same coupling
value for e ∈ {3.2, . . . ,3.6}.

The results in Figs. 5–7, show that there are two separate
transitions when e � 3.8. We thus estimate that the bicritical
point must be below e = 3.8. Clearly, the system sizes we
are able to reach are too small to conclusively determine if
there are separate transitions for e < 3.8. However, in order to
estimate the bicritical point ebc, in Fig. 8 we show results for
the coupling difference between the two phase transitions 	βc

as a function of the coupling e. To estimate when 	βc → 0,
in the bottom panel, we show 	βc as a function of e − e∗
on a log-log scale where e∗ is some trial value as labeled
in the key of the figure. If e∗ ≈ ebc, a straight line should
be expected. A positive curvature suggests that e∗ > ebc and
a negative curvature suggests that e∗ < ebc. Since there is a
clear positive curvature both for e = 3.8 and e = 3.6, this
suggests that ebc < 3.6. Note that the results given in the
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FIG. 6. (Color online) Log-log plot of the FSS of the height (top)
and the width (bottom) of the third moment of the action, for seven
different values of e ∈ {3.0, . . . ,4.2}. The dotted lines correspond to
the slope expected for a first-order transition, according to Eqs. (15)
and (16). Lines are guides for the eyes.

bottom panel of Fig. 8 essentially is an extrapolation of the
difference 	βc (which also is an extrapolation) in the top
panel to find the point ebc where 	βc = 0. As is clear below,
even at the largest system sizes accessible to us, we could not
prove that there is a single first-order transition at e = 3.6.
Therefore, simulations of even larger systems are needed
to determine more accurately the existence and the position
of ebc.

Our estimates for the bicritical point differ from the results
in Refs. 13 and 14, which studied substantially smaller
systems. Our upper bound ebc < 3.8 corresponds to Kbc >

0.151 in Ref. 13. This means that a part of the line that was
interpreted as a direct first-order transition in that work in fact
represents two separate transitions. Our upper bound ebc < 3.8
corresponds to gbc < 1.65 in Ref. 14, where the bicritical point
was estimated to g ≈ 2.0.

3. Signatures of a weak first-order transition

Although we are led to a different conclusion concerning
the phase diagram than Refs. 13 and 14 for e � 3.8, we find
some of the same thermal signatures. As mentioned above (see
Figs. 5 and 6), when systems are too small to resolve two phase
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FIG. 7. (Color online) Plots of the finite size crossings of the
Binder cumulant U4 [Eq. (19)] and the quantity Lρzz

dual(qmin) for
eight different values of e ∈ {3.2, . . . ,4.6}. The x values are given
by (L1L2)−1/2, where L1 and L2 are the two sizes that form the
crossing.

transitions, the Monte Carlo results show that the scaling of
Cv,max and (	M3)height are almost as one would expect for
a single first-order transition. Moreover, when investigating
the energy distributions for e ∈ {3.8,4.0} in Fig. 9, we find
that the histograms are broad. In contrast to previous works,
we have also resolved bimodal structures for e ∈ {3.4,3.6}.
This could be interpreted as evidence of a first-order phase
transition. At the same time we note that they only appear
at the largest system sizes. Thus, it is difficult to determine
if the correct scaling for first-order transition is obeyed.64,65

The histograms that appear at the largest system sizes have not
yet started to evolve into distributions resembling δ functions.
In particular, for the system sizes which we can access, the
dips between the peaks are still increasing with system size,
rather than decreasing. The latter is required for drawing a firm
conclusion that there is a direct first-order phase transition at
e = 3.4 and e = 3.6. Although rare, there are examples in
the literature where bimodal energy distributions are found in
cases with no first-order phase transition.66–69

For e = 3.8, we do not resolve any bimodality, but the
histograms are wide. The width of the histograms decreases
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FIG. 8. (Color online) Plot of the difference in the critical cou-
pling between the Higgs transition and the O(3) ordering transition,
	βc. 	βc is determined by calculating the difference between the
Lρzz

dual(qmin) crossing and the U4 crossing and averaging over four
of these differences with largest value of (L1L2)1/2 (i.e., the four
leftmost data points from the panels in Fig. 7). We only include
results for e � 4.0 where the nonmonotonic behavior of the Binder
crossings can clearly be resolved. (Top) 	βc as a function of e.
(Bottom) Log-log plot of 	βc as a function of e − e∗, where e∗ is
given in the key. Positive curvature suggests that e∗ > ebc, negative
curvature suggests that e∗ < ebc, and a straight line suggests that
e∗ ≈ ebc. Lines are guides for the eyes.

and the flat top structure disappears when L increases. This is
not consistent with a single first-order transition. Note that
if this point is located slightly above the bicritical point,
then according to a mean-field argument, the Higgs transition
should be first order.10,13 Also, as mentioned above, the
instability of composite vortices in type II SU (2) theory
suggests that the system should be a type I superconductor in
the proximity of the paired phase (since the paired phase results
from proliferation of composite vortices), with a possibility of
a first-order phase transition.59 We could not access large-
enough system sizes to resolve this issue.

Combining the results in Figs. 5, 6, and 9, it appears that
for couplings slightly above the estimated bicritical point,
there are strong thermal signatures in terms of broad energy
distributions and rapidly increasing peaks in the specific heat
and the third moment of the action. However, when system
sizes are larger, we can explicitly see signatures of splitting for
e � 3.8. We cannot exclude the possibility that this may also
be the case for some of the couplings with e < 3.8. Indeed, the
crude extrapolation in Fig. 8 suggests that e = 3.6 also is above
the bicritical point. If so, we should expect to see signatures
of splitting for system sizes larger than those available in this
work. On the other hand, the strong thermal signatures we
find for e < 3.8 can also be consistent with a weak single
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FIG. 9. (Color online) Histograms of the probability distribution
of the energy per site H/L3, for e ∈ {3.4,3.6,3.8,4.0}. In every
case the flattest (or most bimodal) energy histograms were found
by reweighting in the vicinity of the pseudocritical coupling corre-
sponding to the peak of the specific heat, Cv,max. The areas under the
curves are normalized to unity.

first-order transition. In that case, we should expect to see that
proper first-order scaling is obeyed for larger system sizes.

Summarizing this part, we find that the strongest signatures
for a single first-order phase transition were found at e = 3.4
and e = 3.6. Previous works on smaller systems did not resolve
bimodal structure at these couplings. For e < 3.4, we did not
find any bimodal structure in the energy histograms at the
system sizes which we can reach.

C. The flowgram method

To analyze situations where it is difficult to resolve and
analyze bimodal structures in histograms such as those con-
sidered above, the authors of Ref. 10 proposed the flowgram
method. By rescaling the linear system size L → C(g)L,
where g = e2/(4β) and where C(g) is a monotonous scaling
function of the parameter g, it may be possible to collapse
curves for various physical quantities computed at the phase
transition, for different system sizes and coupling constants,
onto a single curve.28 If such uniform scaling is found for all
coupling constants, one may conclude that a phase transition
has the same characteristics for all these coupling constants.
For instance, if a first-order phase transition were to be found
for large coupling constants, and the scaled plots fall on a single
line for all other coupling constants, one may conclude that the
transition is first order for all these coupling constants. To draw
such a conclusion, it is very important that a broad-enough
window of systems sizes L is considered, such that there is
adequate overlap of data points for all coupling constants,
when the data are plotted in terms of C(g)L.

In Fig. 10, we show results of a flowgram analysis of the
quantity Lρzz

dual(qmin) along the O(3) ordering transition line.
For this analysis, the phase transition is defined to be at the
coupling where the Binder cumulant U4 = 0.775. With this
definition, we follow the O(3) ordering transition line. As
mentioned above, Lρzz

dual(qmin) is a universal quantity for a
continuous Higgs transition, whereas it will diverge ∼L for a
first-order transition. We clearly see such diverging behavior
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FIG. 10. (Color online) Flowgram of Lρzz
dual(qmin) along the O(3)

ordering transition line. In this analysis, the critical point is fixed
by U4 = 0.775. Then Lρzz

dual(qmin) is measured at this point and
plotted as a function of system size L. The results are given for
13 different values of e ∈ {0.5, . . . ,3.4}. The upper panel shows
results on a normal scale and the inset zooms in on the results for
e ∈ {1.0, . . . ,3.0}. The lower panel shows the results on a log-log
scale. Lines are guide to the eyes.

when e � 3.6 (not shown here) and the FSS is consistent with
Lρzz

dual(qmin) ∼ L. In Refs. 13 and 28, this was interpreted as a
first-order phase transition. However, a diverging Lρzz

dual(qmin)
is also consistent with being above the bicritical point when
following the transition line of the O(3) ordering transition.
Hence, the results in Fig. 10 correspond well with there being
two closely separated phase transitions for these values of e;
see Figs. 4–8 above.

For e ∈ {3.0,3.2,3.4}, the flowgram analysis suggests that
Lρzz

dual(qmin) diverges, but the FSS is weaker than ∼L for the
sizes available. This is consistent either with being above the
bicritical point or with a first-order transition. For smaller
couplings, the large size behavior of the flowgrams is hard
to determine. In particular, for the couplings e � 2.0 the
flowgrams seem to converge slowly to a fixed value, but one
cannot rule out diverging behavior at larger sizes.

In Fig. 11, we plot the results for the flowgram data in Fig. 10
in terms of the variable C(g)L on a log-log scale, using the
scaling function C(g) = 3.0324g + 0.0997 [exp(4.1005g) −
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FIG. 11. (Color online) Rescaled flowgram of the data in Fig. 10.
The system size L is rescaled by L → C(g)L, where C(g) =
3.0324g + 0.0997[exp(4.1005g) − 1], with g = e2/(4β). Lines are
guides for the eyes.

1].70 For large values of C(g)L, the collapse appears to
be good and consistent with Ref. 28. In our case, we note
that for various couplings there are sizable finite-size effects
which make it impossible to collapse smaller systems onto the
same master curve. Removing the data points for the smallest
systems for each coupling constant would improve the collapse
considerably.

What can the results of Figs. 10 and 11 tell us about the
character of the phase transition, and about the existence of a
possible tricritical point separating a line of first-order phase
transitions from a critical line? In Fig. 11, the presence of
a tricritical point and a line of second-order phase transition
would show up as a bifurcation of the master curve at large
C(g)L. In Ref. 10, a tricritical point in a global U (1) × U (1)
model was detected via a breakdown of the curve collapse
just below a tricritical point. We did not observe such a
breakdown of the curve collapse for the NCCP1 model. There
may exist special cases where the universalities of the line of
second-order phase transitions and of a tricritical end point are
quite similar. Then, one may not be able to resolve different
plateaus at finite system sizes. In such a situation for large
couplings e, we would have the behavior shown in Fig. 11.
For small couplings, there should appear another horizontal
branch of the scaling function at large values of the argument
C(g)L, were a tricritical point to exist. The results in Fig. 11
show no such feature. However, note that the data points for
e � 1.50 only extend to about the middle of the plateau in
Fig. 11. This illustrates the fact, which is also obvious from
the bottom panel of Fig. 10, that for small couplings e � 1.50,
we have not reached large-enough system sizes to be able to
ascertain if the curves are horizontal, or if there is an upward
curvature in any of the curves for e � 1.50. Consider, for
instance, the coupling e = 1.50, which is the curve in Fig. 10
which features the most pronounced horizontal part for the
system sizes we have studied. In Fig. 11, this curve extends
out to C(g)L ≈ 120, which is in the middle of the plateau. To
ascertain whether this curve falls on the upward curving master
curve or continues horizontally would require an extension
of the curve out to C(g)L ≈ 400, or system sizes of about
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3003. No computations have been performed on these types
of systems remotely approaching this range. Another way of,
in principle, detecting a tricritical point would be as follows.
Suppose that one, in order to get good data collapse for the
entire range of coupling constants, would need to resort to two
different types of scaling functions, one below some coupling
constant and another one above this coupling constant. At the
point where these functions are joined, one typically has a
nonanalyticity. One can thus, in principle, locate a tricritical
point in numerical computations by detecting a nonanalyticity
in C(g).71 With our current data we have not resolved such a
feature in C(g).

VI. SUMMARY

In this work, we have studied the three-dimensional SU (2)-
symmetric noncompact CP1 model. We have implemented an
algorithm which permits us to perform an investigation of the
model at substantially larger system sizes than those reached
in previous works. It has been shown that at couplings e = 3.8
and e = 4.0, which were previously estimated to belong to the
regime where the system undergoes a single first-order phase
transition, certain signatures should be taken as direct evidence
of two separate phase transitions. Hence, we conclude that
a bicritical point must be located below e = 3.8. We find
bimodality in histograms, consistent with early stages of
development of a first-order transition, at e = 3.4 and e = 3.6
(though the histograms do not yet resemble two δ functions and
thus indeed it cannot represent a proof of a first-order phase
transition13,14,56).72 Although our estimate for the position of
bicritical point is different, the data collapse which we find is
overall consistent with Ref. 14.
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APPENDIX: MAPPING THE NCCP1 MODEL TO A
J-CURRENT MODEL

We start with the lattice formulation of the NCCP1 model,

Z =
∏
c,r

∫
dψc,rdψ∗

c,r

∏
μ,r

∫
dAμ,r e−S, (A1)

S = St + Sg, (A2)

St ≡ −t
∑
c,μ,r

ψc,rψ
∗
c,r+μ̂ eiAμ,r + c.c., (A3)

Sg ≡ 1

8g

∑
μ,r

( ∑
ν,λ

εμνλ	νAλ,r

)2

, (A4)

|ψ1,r|2 + |ψ2,r|2 = 1 ∀ r, (A5)

where we have introduced t ≡ β/2 and g ≡ e2/(4β), the same
coupling constants as in Ref. 14. Writing the complex fields
on polar form,

ψc,r = ρc,r eiθc,r , (A6)∫
dψc,rdψ∗

c,r =
∫ 2π

0
dθc,r

∫ ∞

0
ρc,rdρc,r, (A7)

we note that the constraint (A5) becomes

ρ1,r
2 + ρ2,r

2 = 1, ∀ r, (A8)

which describes the unit circle in the first quadrant of the
ρ1,rρ2,r plane (since ρc,r � 0). This means that we can incor-
porate the constraint directly into the integral by introducing
the new field φ,

ρ1,r = cos φr, ρ2,r = sin φr (A9)

∏
c

∫ ∞

0
ρc,rdρc,r

∣∣∣∣∑
c ρc,r

2=1

=
∫ π

2

0
cos φr sin φrdφr, (A10)

such that Eqs. (A1), (A3), and (A5) can be replaced by

Z =
∏

r

∫ 2π

0
dθ1,rdθ2,r

∫ π
2

0
cos φr sin φrdφr

∏
μ,r

∫
dAμ,r e−S, (A11)

St = −t
∑
μ,r

[cos φr cos φr+μ̂( ei(θ1,r−θ1,r+μ̂+Aμ,r) + c.c.) + sin φr sin φr+μ̂( ei(θ2,r−θ2,r+μ̂+Aμ,r) + c.c.)]. (A12)

Next, we focus on the the θ -dependent part of the integrand, namely exp(−St ), aiming at replacing this field with a J -current
field. First we symmetrize Eq. (A12): Assuming periodic boundary conditions and using that

Aμ,r−μ̂ = −A−μ,r, (A13)

we get

St = − t

2

∑
κ,r

[cos φr cos φr+κ̂ ( ei(θ1,r−θ1,r+κ̂+Aκ,r) + c.c.) + sin φr sin φr+κ̂ ( ei(θ2,r−θ2,r+κ̂+Aκ,r) + c.c.)], (A14)
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where κ runs over negative as well as positive lattice directions, κ ∈ {±x,±y,±z}. Then we split exp(−St ) into its individual
factors and Taylor expand each of them:

e−St =
∏
κ,r

∞∑
k1,κ,r = 0
l1,κ,r = 0

∞∑
k2,κ,r = 0
l2,κ,r = 0

[(
t
2 cos φr cos φr+κ̂

)k1,κ,r+l1,κ,r

k1,κ,r!l1,κ,r!

(
t
2 sin φr sin φr+κ̂

)k2,κ,r+l2,κ,r

k2,κ,r!l2,κ,r!

× ei(k1,κ,r−l1,κ,r)(θ1,r−θ1,r+κ̂+Aκ,r)ei(k2,κ,r−l2,κ,r)(θ2,r−θ2,r+κ̂+Aκ,r)
]
. (A15)

The factors of the product over the lattice and directions in
Eq. (A15) may be rearranged such that all the terms containing
θc,r are collected into one,

e−St =
∑
{k,l}

∏
c,r

eiθc,r
∑

κ (kc,κ,r−lc,κ,r−kc,κ,r−κ̂+lc,κ,r−κ̂ )

(everything else). (A16)

Here {k,l} denotes the set of all possible Taylor expansion
index field configurations. Inserting this in the partition
function (A11), the θ integrals may now be performed. The
result is Dirac δ functions (up to an irrelevant scaling factor,
which we ignore) at each lattice point, revealing the (“J
current”) constraint∑

κ

kc,κ,r − lc,κ,r − kc,κ,r−κ̂ + lc,κ,r−κ̂ = 0, ∀ c,r. (A17)

It is convenient to introduce the non-negative bond subcur-
rents

Jc,κ,r ≡ kc,κ,r + lc,−κ,r+κ̂ ∈ N0, (A18)

as well as the total bond currents

Ic,κ,r ≡ Jc,κ,r − Jc,−κ,r+κ̂ ∈ Z. (A19)

Reordering the sum, the constraint (A17) then simplifies to∑
κ

Ic,κ,r = 0, ∀ c,r, (A20)

the current conservation in each component at each lattice site.
Having integrated out the θ fields, we next turn our attention

to the φ field. The terms containing φr for a given r are on the
form ∫ π

2

0
dφr cos1+2N1,r φr sin1+2N2,r φr (everything else)

= N1,r!N2,r!

2
(
N1,r + N2,r + 1

)
!

(everything else), (A21)

where, using Eqs. (A18)–(A20),

Nc,r ≡ 1

2

∑
κ

kc,κ,r + lc,κ,r + kc,κ,r−κ̂ + lc,κ,r−κ̂

= 1

2

∑
κ

Jc,κ,r + Jc,−κ,r+κ̂

=
∑

κ

Jc,κ,r ∈ N0. (A22)

The Taylor expansion (A15) contains an index field-
dependent factor as well,

∑
{k,l}

∏
c,κ,r

(
t
2

)kc,κ,r+lc,κ,r

kc,κ,r!lc,κ,r!
, (A23)

which we want to write as a function of the J -subcurrent field
instead. It is easy to see that

∏
c,κ,r

(
t

2

)kc,κ,r+lc,κ,r

=
∏
c,κ,r

(
t

2

)Jc,κ,r

(A24)

by reordering the terms in the product. Using the definition
(A18), as well as some standard combinatorial results, we
may rewrite the denominator part of Eq. (A23) as

∑
{k,l}

∏
c,κ,r

1

kc,κ,r!lc,κ,r!
=

∑
{J }

∏
c,κ,r

Jc,κ,r∑
kc,κ,r=0

1

kc,κ,r!(Jc,κ,r − kc,κ,r)!

=
∑
{J }

∏
c,κ,r

1

Jc,κ,r!

Jc,κ,r∑
kc,κ,r=0

(
Jc,κ,r
kc,κ,r

)

=
∑
{J }

∏
c,κ,r

2Jc,κ,r

Jc,κ,r!
, (A25)

where {J } denotes the set of all possible subcurrent config-
urations. (There is no problem in summing k away, as it is
an independent variable, and all other terms in the partition
function are exclusively J dependent, as we will see in a
moment.) Inserting Eqs. (A24) and (A25) into Eq. (A23) gives

∑
{J }

∏
c,κ,r

tJc,κ,r

Jc,κ,r!
, (A26)

which is what we desired.
Last, we want to integrate out the gauge field. The gauge-

field-dependent factors of (A15) are of the form

exp

[
i
∑
c,κ,r

Aκ,r
(
kc,κ,r − lc,κ,r

)] = exp

[
i
∑
c,μ,r

Aμ,rIc,μ,r

]
.

(A27)

Note that the summation is over only positive directions on the
right-hand side. [The right-hand side is found by expanding
and reordering the sum in the exponent on the left-hand
side and applying the identity (A13) and the bond current
definition (A19).] Combining Eq. (A27) with exp(−Sg), the
total gauge-field contribution to the partition function reads
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(up to an irrelevant scaling factor)

∏
μ,r

∫
dAr exp

∑
μ,r

[
iAμ,r

(
I1,μ,r + I2,μ,r

) − (8g)−1

(∑
ν,λ

εμνλ	νAλ,r

)2 ]
∝ exp

⎛
⎜⎜⎜⎝−g

2

∑
c,c′,
μ,r,r′

Ic,μ,rVr,r′Ic′,μ,r′

⎞
⎟⎟⎟⎠ , (A28)

where we have applied the Coulomb gauge 	μAμ,r = 0. Vr,r′ is a long-range potential given by by the inverse Fourier transform

Vr,r′ ≡ F−1

{[ ∑
μ

sin2

(
qμ

2

)]−1}
(r − r′), (A29)

where qμ is the μ component of the Fourier space wave vector q.
Combining everything, Eqs. (A20), (A21), (A26), and (A28), leaving out trivial scaling factors, we end up with

Z =
∑

{J | ∑κ Iκ=0}

[∏
c,κ,r

tJc,κ,r

Jc,κ,r!

] [∏
r

N1,r!N2,r!

(N1,r + N2,r + 1)

]
exp

⎛
⎜⎜⎜⎝−g

2

∑
c,c′,
μ,r,r′

Ic,μ,rVr,r′Ic′,μ,r′

⎞
⎟⎟⎟⎠ , (A30)

which is a J -current formulation of the NCCP1 model; see also Ref. 14.
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