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Giant generic topological Hall resistivity of MnSi under pressure
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We report detailed low-temperature magnetotransport and magnetization measurements in MnSi under
pressures up to ∼12 kbar. Tracking the role of sample quality, pressure transmitter, and field and temperature
history allows us to link the emergence of a giant topological Hall resistivity ∼50 n� cm to the skyrmion lattice
phase at ambient pressure. We show that the remarkably large size of the topological Hall resistivity in the
zero-temperature limit must be generic. We discuss various mechanisms which can lead to the much smaller
signal at elevated temperatures observed at ambient pressure.
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I. MOTIVATION

Changes of the Berry phase of the conduction electrons in
metals reflect sensitively the topology of adiabatic changes of
their spin orientation. These Berry phases can be described
by emergent (fictitious) Aharonov-Bohm magnetic fields Beff

which control the quasiclassical motion of electrons in phase
space. As the Aharonov-Bohm fields cause a deflection of the
trajectory in the plane perpendicular to the field, they lead to a
Hall signal. Two limits of this Berry-phase deflection may be
distinguished.1,2

On the one hand, spin-orbit coupling and local electric
fields varying on an atomic length scale may lead to a band
structure where the spin orientation depends on its momentum.
The resulting Berry phases can be described by an emergent
magnetic field which acts, however, not in position but in
momentum space. In this case, an anomalous contribution to
the Hall conductivity σA

xy arises in terms of dissipationless Hall
currents, which reflect differences of the Berry phase collected
by majority and minority charge carriers. In the simplest
scenario, σA

xy scales with the uniform spin polarization. This
is referred to as the intrinsic anomalous Hall effect since
σA

xy turns out to be independent of impurity scattering. In
turn, this implies that the corresponding Hall resistivity ρxy

is proportional to the square of the longitudinal resistivity
ρxy ≈ −σA

xyρ
2
xx, where we assumed σxy � σxx as for most good

metals.
On the other hand, smoothly varying magnetic textures,

which change their spin orientation on length scales much
longer than the Fermi wavelength, give rise to Berry phases
picked up in real space. The corresponding emergent magnetic
field acts similar to a real magnetic field. This effect may
be described in terms of quasiparticles supporting emergent
charges with the important difference that majority and mi-
nority electrons carry opposite emergent charges (a technical
description follows). As for smooth magnetic textures, the real-
space Berry phases are directly associated to the real-space
winding of the magnetization, the corresponding contribution
to the Hall effect is then referred to as the topological Hall
resistivity ρ

top
xy . As for the conventional Hall effect, ρ

top
xy is

approximately independent of the total scattering rate. In
multiband systems, however, the relative strength of scattering
rates determines the relative size of contributions from the
various bands and therefore also the size of ρ

top
xy .

The concepts of real- and momentum-space Berry phases
may also be generalized to Berry phases in phase space.2

These arise when the local direction of the electron spin is
governed both by spin-orbit coupling in the bands and by
smooth magnetic textures. Their importance in real materials
is essentially unexplored.

An increasing number of experimental studies support
the existence of the intrinsic anomalous Hall effect.1,3 A
vital piece of evidence is thereby related to the temperature
dependence of the Hall conductivity, which scales with the
magnetization. In turn, the intrinsic anomalous Hall resistivity
vanishes for T → 0 in high-purity metals with low residual
resistivities as ρA

xy ∝ ρ2. This is contrasted by the temperature
and field dependence of the topological Hall resistivity, which
is approximately independent of the elastic scattering rate.
As minority and majority electrons carry opposite emergent
charges, the topological Hall resistivity is thereby sensitive to
the strength of the local magnetization. Since the difference
in density of minority and majority electrons also decreases
with increasing temperature, ρ top

xy may therefore be expected to
decrease with increasing temperature in materials with a well-
defined nonzero topological winding number per magnetic unit
cell. Qualitatively, the temperature dependence caused by the
local magnetization may be enhanced by spin-flip scattering,
which prohibits that the electrons follow the magnetic texture
adiabatically. Since spin-flip scattering typically increases with
increasing temperature, the topological Hall signal may there-
fore decrease even faster than expected from the temperature
dependence of the difference of majority and minority charge
carriers alone.

Numerous experimental studies have addressed the ex-
istence of topological Hall contributions. However, their
identification has been ambiguous, especially in the absence
of topological quantization, i.e., nonzero topological winding
of the spin structure per magnetic unit cell. For instance, in a
seminal paper, a topological Hall signal has been reported for
three-dimensional pyrochlore lattices.4,5 Yet, in these systems
the noncoplanar spin structure is due to geometric frustration
on short length scales, which thus can not be described as a
smoothly varying structure in position space. Moreover, the
topological Hall effect is not related to a nonzero topological
winding number per magnetic unit cell. Recently, an analogous
study reported a large topological Hall signal for geometrically
frustrated noncollinear spin order in UCu5.6 Likewise, a
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topological Hall signal has also been considered, e.g., in
La1−xCoxMnO3,7 CrO2,8 and Gd.9 Yet, for these systems there
is essentially no independent microscopic information on the
relevant spin structures.

A new generation of experimental studies of the topological
Hall effect has become possible with the discovery of lattices
of magnetic whirl lines, so-called skyrmions, in chiral magnets
such as MnSi, described in further detail in Sec. II. The
skyrmion lattice represents the first example of long-range
magnetic order with a well-defined nonzero topological wind-
ing number per magnetic unit cell. Measurements of the Hall
effect have indeed revealed a contribution to the Hall signal,
which appeared to be switched on and off when entering or
leaving the skyrmion phase, respectively.10 This was attributed
to the topological Hall effect. In a pioneering high-pressure
study of Lee and co-workers,11 the existence of a tenfold larger,
hitherto unexplained, topological Hall signal was reported
above 6 kbar, where no data were shown between ambient
pressure and 6 kbar. The main goal of the work reported in
our paper is to clarify how the large signal reported in Ref. 11
is related to the magnetic phase diagram of MnSi and the
skyrmion lattice phase at ambient pressure and which factors
determine the size of the Hall signal.

Clarification of the origin of the large topological Hall
signal observed in MnSi under pressure provides an important
point of reference for a wide range of problems. First, recent
experiments have identified the effects of spin-transfer torques
in the skyrmion lattice of MnSi at tiny electric current
densities.12,13 Here, the size of the topological Hall signal
reflects the strength of the coupling between the electric
currents and the spin structure. Thus, understanding the size
of the topological Hall effect promises major advances in the
understanding of the origin of spin-transfer torques. Second,
the largest topological Hall signals have so far been reported
for MnGe (Ref. 14) and SrFeO3 (Ref. 15), reaching up
to ∼200 n� cm. It has been speculated that this provides
evidence for Aharanov-Bohm fields up to many hundred tesla.
If correct, this might pave the way to a completely new
generation of phenomena in which even larger emergent fields
approach the quantum limit. It is therefore of great interest to
gain an understanding as to what determines the quantitative
size of the topological Hall signal and whether the generic size
of the topological Hall effect may be even much larger. Third,
understanding the topological Hall signals in skyrmion lattices
and related structures will also shed new light on the large
number of more conventional materials in which topological
Hall effects have been claimed.

In this paper, we address the question of the generic size
of the topological Hall effect in terms of a comprehensive
high-pressure study of the itinerant electron magnet MnSi. For
ease of reading, we summarize in Figs. 1 and 2 our main results
consisting in the evolution of the magnetic phase diagram
and the topological Hall signal as a function of pressure,
respectively. Regimes in the magnetic phase diagrams, where
we observe a topological Hall signal, are thereby shown in red
shading, where dark red shading refers to reversible behavior in
field sweeps as well as zero-field cooling and field cooling. An
important aspect of our study is the additional discovery that
the topological Hall signal for pressures larger than ambient
pressure survives under field cooling down to the lowest

FIG. 1. (Color online) Magnetic phase diagrams of MnSi at
various pressures inferred from the magnetotransport properties for
B ‖ 〈110〉. Plots are based on data recorded with a methanol:ethanol
(ME) mixture as pressure transmitter. Dark red shading, denoted as
the A-phase, represents the regime of an additional topological Hall
signal in field scans arising from the skyrmion lattice. Bright red
shading indicates the metastable topological Hall signal under field
cooling.

temperatures. This is illustrated in Fig. 1 by light red shading.
Based on the dependence on field and temperature history, we
obtain an estimate of the size of the topological Hall signal
and its pressure dependence in the zero-temperature limit as
shown in Fig. 2. Here, full symbols represent the maximum
topological Hall contribution observed in field sweeps slightly
below Tc. Open symbols represent a metastable topological
Hall contribution under field cooling for temperatures of 2 K,
the lowest temperature measured, i.e., the topological Hall sig-
nal without the degrading effects of finite temperatures. Taken
together, our study establishes that the emergence of a giant
generic topological Hall signal under pressure is connected
with the skyrmion lattice phase at ambient pressure. We
thereby identify pressure inhomogeneities and mediocre
sample quality [low residual resistivity ratios (RRRs)] as
important factors that influenced previous high-pressure
studies. We further identify that temperature is an important
factor affecting the size of the topological Hall signal and
discuss various mechanisms which explain its strong variation
with pressure.
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FIG. 2. Estimated magnitude of the topological contribution to
the Hall effect and the normal Hall constant R0 as a function
of pressure. (a) Full symbols represent the maximum topological
Hall contribution observed in field sweeps slightly below Tc. Open
symbols represent a metastable topological Hall contribution under
field cooling for temperatures of 2 K [for clarity, only data from
Fig. 11(f) are taken into account here]. (b) Normal Hall constant
determined at 2.8 K as the slope of ρxy at large fields around 10 T.

The presentation of our study is organized as follows.
We continue our introduction with the properties of MnSi in
Sec. II, describing in detail the understanding of the skyrmion
lattice phase and the topological Hall signal as reported
so far. This is followed in Sec. III by an account of the
experimental methods, where we specifically address the role
of the pressure transmitter, cooling conditions, sample quality,
and temperature and field history. The presentation of our
results in Sec. IV begins with the magnetic field dependence of
both the electrical transport properties and the magnetization,
followed by their temperature dependence. This allows us to
appreciate better the metastable properties we observe under
field cooling. The brief theoretical discussion in Sec. V A
focuses on the interplay of topological and anomalous Hall
effect. The paper concludes with a discussion of the results
observed in Sec. V B, where we consider various factors which
determine the size of the anomalous Hall effect. A short set of
conclusions is given in Sec. VI.

II. INTRODUCTION TO MnSi

The itinerant-electron magnet MnSi is ideally suited to
pursue the question of the generic size of the topological Hall
resistivity in a real material. In the noncentrosymmetric cubic
B20 crystal structure, space group P 213, three hierarchical
energy scales account for the magnetic properties.16 A compe-
tition between ferromagnetic exchange and Dzyaloshinsky-
Moriya interactions on the strongest and second strongest
scales, respectively, generates a long-wavelength helimagnetic
modulation λh(T → 0) ∼ 180 Å, below Tc ≈ 29.5 K.17 The
helical modulation propagates along the cubic space diagonal
〈111〉 due to magnetic anisotropies by higher-order spin-orbit
coupling providing the weakest scale.

Of particular interest is the magnetic phase diagram of
MnSi. Below Tc and as a function of increasing magnetic field,
the helimagnetic order undergoes a reorientation transition
at a field Bc1 ≈ 0.1 T into a spin-flop phase also known as
conical phase. Depending on field direction, this reorientation
is either a crossover or a symmetry-breaking second-order
phase transition. When further increasing the field, a second
transition takes place from the conical phase to a spin-
polarized (ferromagnetic) state at Bc2 ≈ 0.6 T.18–20 Finally,
in the vicinity of Tc, a small additional phase pocket exists
within the conical phase, historically referred to as the A
phase.19 Although the A phase had been known for a long
time, the underlying spin structure was only recently identified,
providing the first example of long-range magnetic order in
which each magnetic unit cell supports a nonzero topological
winding number.10,21–23 The skyrmions may be visualized as
a kind of vortex lines that stabilize parallel to the applied
magnetic field.

The topological winding number supported by the skyrmion
lattice may be determined by integrating the winding density
over the two-dimensional magnetic unit cell (UC): � =∫

UC � d2r, where �μ = 1
8π

εμνλn̂ · (∂νn̂ × ∂λn̂). Here, εμνλ is
the antisymmetric unit tensor and n̂ = M/|M| the magnetic
unit vector.24 For the case of the skyrmion lattice in MnSi, a
winding number � = −1 per magnetic unit cell is obtained.
Thus, in contrast to some of the noncollinear magnetic struc-
tures in geometrically frustrated magnets, where the winding
senses are staggered causing cancellations of topological
contributions to the Hall resistivity, no such cancellations
occur in the skyrmion lattice of chiral magnets since the topo-
logical winding is quantized and nonzero per magnetic unit
cell.

Measurements of the Hall effect in MnSi have revealed
three contributions: first, the normal Hall effect ρn = R0 B,
which is proportional to the applied magnetic field B; second,
an intrinsic anomalous Hall conductivity σxy, below the
helimagnetic transition temperature Tc = 29.5 K, which scales
with the magnetization σxy = SH M;25–27 third, a topologi-
cal Hall signal ρ

top
xy in the regime of the skyrmion lattice

phase, which reflects the nonzero topological winding number
of the spin structure. Assuming the absence of intraband
(spin-flip) scattering and that the interband (non-spin-flip)
scattering may be captured by the normal Hall constant
R0, an estimate of ρ

top
xy has been given by ρ

top
xy = P R0 Beff .

Here, P is the charge carrier spin polarization, and Beff the
emergent Aharonov-Bohm field associated with the Berry
phase arising from the topological winding of the texture10

(see Sec. V A for an account of the considerations entering
this formula and for a precise definition of P ). The emergent
magnetic field per magnetic unit cell is thereby topologically
quantized:7,28–30 its average strength is given by one flux
quantum per magnetic unit cell times the winding number (see
Sec. V A).

For a quantitative estimate, we note that the skyrmion lattice
is hexagonal, similar to the vortex lattice in type-II supercon-
ductors. Hence, the reciprocal and real-space lattice vectors of
the skyrmion lattice have length 2π/λS and λS/ sin(2π/3),
respectively, where λS corresponds approximately to the
wavelength of the helical state near Tc, λh ≈ λS ≈ 165 Å.17

The size of the unit cell is in turn given by λ2
S/ sin(2π/3) and
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one obtains for MnSi

Beff = −h

e

( √
3

2λ2
S

)
≈ −13.15 T. (1)

The sign thereby reflects the winding number of −1, implying
that the emergent field Beff is oriented antiparallel to the
physical magnetic field.

We note that the same expression for Beff of minus one
flux quantum per unit cell was used in Ref. 10. However,
due to an unfortunate calculational mistake, a five times
smaller value for Beff ≈ −2.5 T was stated in this paper.31

The experimentally observed10 contribution ρ
top
xy ≈ −(4 ±

1) n� cm is hence approximately a factor of 5 smaller than
than the theoretically estimated value inferred from the
simple expression ρ

top
xy = P R0 Beff , when one uses P ≈ 0.1

and R0 = 1.7 × 10−10 �m T−1 as in Ref. 10. Both P and
R0 thereby yield considerable uncertainties. As discussed
in Sec. V A, P depends on a complicated Fermi-surface
average, while the value of R0 is difficult to extract in the
relevant parameter regime due to a huge anomalous Hall
contribution. For example, the normal Hall constant R0 given
above, which was used for the estimate in Ref. 10, was
inferred from the Hall signal at room temperature, while a
simultaneous fit of the normal and anomalous Hall signal at
low temperatures suggests R0 ≈ −0.8 × 10−10 �m T−1.25,26

Nevertheless, contrary to the conclusions of Ref. 10, the value
of ρ

top
xy observed experimentally is, in fact, much smaller than

the theoretical prediction. This may be explained, in principle,
by several mechanisms discussed in detail below, which were
not considered in Ref. 10.

The detailed pressure dependence of the helimagnetic
properties of MnSi offer a fresh perspective as concerns
the origin and the size of the topological Hall signal. In a
pioneering study, Lee et al. reported a topological Hall signal
for hydrostatic pressures in the range 6 to 12 kbar (Ref. 11)
that seemed puzzling in two ways. First, the signal was very
large, ρ

top
xy ∼ −40 n� cm. Such a tenfold larger signal either

requires a drastic reduction of the skyrmion lattice spacing
by over a factor of 3, or a tenfold increase of the conduction
spin polarization P or a tenfold increase of the normal Hall
constant R0 (or a highly unusual combination of these aspects).
Second, the field range of this very large topological Hall signal
extended all the way from Bc1 to Bc2 and did not correspond to
the range over which a skyrmion lattice phase may be expected
based on the phase diagram at ambient pressure.

The results reported by Lee et al.11 and their relationship to
the magnetic phase diagram at ambient pressure seemed also
surprising in view of the very detailed high-pressure studies of
MnSi reported in the literature. These comprise measurements
of the resistivity,32–35 ac susceptibility,36 magnetization,37–39

thermal expansion,40 thermopower,41 neutron scattering,42,43

NMR,44 and μ-SR.45 They may be summarized as follows.46

With increasing pressure, the helimagnetic transition tem-
perature measured in the resistivity, ac susceptibility, and
magnetization decreases and vanishes around pc ≈ 14.6 kbar.
The temperature-versus-pressure phase diagram displays con-
siderable complexities for p > p∗ ∼ 12 kbar. For instance,
the helimagnetic transition turns distinctly first order, where
the appearance of itinerant metamagnetism under applied

magnetic fields provides the most striking evidence. Neutron
scattering, μ-SR, and NMR suggest phase separation of the
magnetic order for p > p∗ ∼ 12 kbar, where a decreasing
volume fraction of helimagnetic order tracks Tc(p) as inferred
from the resistivity and ac susceptibility.

A major puzzle surrounds the temperature dependence of
the electrical resistivity which displays a T 3/2 non-Fermi-
liquid form for T � 12 K in the regime where the helimagnetic
order has been suppressed, namely, p > pc. The non-Fermi-
liquid resistivity thereby survives up to pressures of at least
2 pc, contrasting the expectations of a conventional quantum
critical point. Neutron scattering moreover shows the presence
of a peculiar magnetic scattering intensity on the surface of a
small sphere in reciprocal space at a wavelength of the helical
modulation. By analogy with liquid crystals, this scattering
pattern has been referred to as partial order. As the partial
order extends deep into the NFL regime without signs of
phase transitions, it appears to be the signature of a spin liquid,
possibly with nontrivial topological character.

Regarding the possible origin of the very large topological
Hall signal, reported in the pressure range from 6 to 12 kbar,
studies reported in the literature provide the following key
information. First, the wavelength of the helical modulation is
essentially unchanged as a function of pressure. This implies
that a skyrmion lattice phase associated with the helimag-
netic state, like that at ambient pressure, has an unchanged
lattice constant, i.e., Beff remains essentially unchanged
under pressure. Second, the ordered magnetic moment in the
helimagnetic state decreases gently by ∼10% up to 12 kbar (it
certainly does not increase). Since the Curie-Weiss moment
in the paramagnetic state is also unchanged, the polarization
P of the electron bands does not appear to change drastically.
Third, neither the electrical resistivity, which is well behaved,
nor the normal Hall effect, as inferred from the data shown by
Lee et al., suggest a change of R0 as a function of pressure
(Lee et al. do not comment on the pressure dependence of R0).
Finally, the critical fields Bc1 and Bc2 do not change under
pressure, consistent with the unchanged helical modulation.
Hence, the phase boundaries of the skyrmion lattice phase
should be unchanged. In turn, the size and the field range
of the topological Hall signal reported by Lee et al. either
represent a completely novel phenomenon or an unexpected
conspiracy of mechanisms, both of which are of great
interest.

In order to identify the generic size of the topological
Hall signal in a well-known material, we have revisited the
pressure dependence of MnSi reported in Ref. 11 and its
seeming inconsistencies with the topological Hall signal at
ambient pressure.10 In the study reported here we present
data up to p∗ ≈ 12 kbar, avoiding the complexities associated
with the first-order transition, itinerant metamagnetism, phase
coexistence, partial magnetic order, and extended non-Fermi-
liquid resistivity. As all of these aspects are beyond the scope
of the work presented here, Hall effect measurements above
p∗ will be reported elsewhere.47

III. EXPERIMENTAL METHODS

The pressure dependence of the magnetotransport prop-
erties was studied down to 1.5 K under magnetic fields up
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to 14 T with an Oxford Instruments variable temperature
insert (VTI) as combined with a superconducting magnet
system. The temperature of the sample was monitored with
a calibrated Cernox sensor, closely attached to the pressure
cell. The magnetoresistance and the Hall voltage of the MnSi
samples were measured simultaneously in a conventional
six-terminal configuration using standard digital lock-in tech-
nology. Impedance matching low-noise signal transformers
were used to increase the signal-to-noise ratio. Low excitation
currents and frequencies were used to avoid resistive heating
and parasitic signal pickup, respectively.

Field sweeps were recorded for increasing and decreasing
fields; temperature sweeps were recorded at positive and
negative field values. This permitted us to subtract longi-
tudinal voltage components of the transverse contacts due
to unavoidable contact misalignment by antisymmetrizing
the transverse voltage pickup. Vice versa, transverse signal
components at the longitudinal voltage contacts were corrected
by symmetrizing the signal. We note that the result of the
antisymmetrization/symmetrization procedure, by design, is a
single field dependence from negative to positive field. The
sign of the Hall signal was checked very carefully.27 In the
following, the antisymmetric transverse signal is referred to as
ρxy and the symmetric longitudinal signal is referred to as ρxx.

The single crystals studied were grown by optical
float-zoning under ultrahigh vacuum (UHV) compatible
conditions.48 Typical residual resistivity ratios (RRR) of our
samples were in the range 40 to 300. The origin of the
different RRRs can thereby be associated with the precise
starting composition before float-zoning as determined in
a careful systematic study to be reported elsewhere.49 The
differences we observe in the magnetotransport properties may
be grouped into low-quality MnSi with low RRRs around ∼45
and high-quality MnSi with RRRs above ∼90. The latter allow
us to connect the topological Hall effect under pressure with
the skyrmion lattice phase (the A phase) at ambient pressure
as described in the main part of our paper.

In our transport measurements, platelet-shaped samples
were studied with typical dimensions 2.8 mm long, 1 mm
wide, and less than 0.2 mm thick. They were oriented such that
the magnetic field was applied perpendicular to the platelet
and parallel to 〈110〉. We have chosen this direction since

neutron scattering under pressure shows that the easy axis of
MnSi remains unchanged along 〈111〉 up to ∼12 kbar,42,50 the
〈110〉 axis is neither a magnetically hard nor soft axis for the
pressure range studied, i.e., the crystallographic orientation is
not distinct in any way. Electric currents were applied either
along a 〈100〉 or 〈110〉. The effects of demagnetizing fields
were corrected by approximating the sample shape with a
rectangular prism.51

Conventional nonmagnetic Cu:Be clamp cells were used
to study the pressure dependence of the magnetotransport
properties. For the transport measurements, eight pressure
cells were assembled. A detailed list of the pressure cells and
pressures is given in Table I, where only pressures relevant
to the work reported here are listed. The applied pressure
was inferred from the combination of the superconducting
transition of Sn measured resistively as well as a comparison
of the helimagnetic transition temperature of MnSi with
previous studies. For all pressure points investigated, we
recorded at first the resistivity as a function of temperature at
B = 0 (data are not shown to safe space and because
they are perfectly consistent with all previous studies). The
transition temperature Tc referred to in the following was
thereby determined from ρxx consistent with all previous
studies. Further details of the temperature dependence will
be addressed in Sec. IV.

For our high-pressure measurements, the platelet-
shaped samples were mounted perpendicular to the cylin-
der axis of the pressure cell. Shown in Fig. 3 is
typical set as seen from the top of the electrical
feedthrough (along the cylinder axis of the pressure cell).
The current carrying Cu leads (diameter 0.120 mm)
were soldered directly to the small faces of the sample. Pt
wires (diameter 0.025 mm) were spot welded to the sample
providing tiny, nonsuperconducting voltage contacts. The Pt
wires were in turn soldered to Cu leads exiting the pressure
cell. A polytetrafluoroethylene (PTFE) disk was used to guide
the electrical leads exiting the feedthrough inside the pressure
cell, such that the sample was stabilized against accidental
tilting during pressure changes. As the main advantage of
this setup, the sample was essentially floating freely in the
pressure transmitter suspended by the current leads only.
This minimizes parasitic effects anticipated of differences of

TABLE I. Pressure cells prepared for our magnetotransport and magnetization measurements under pressure. Pressures are stated in the order
in which they were applied. The residual resistivity ratio (RRR) was determined at the lowest pressure as the ratio ρxx(T = 280 K)/ρxx(T → 0).
FI: Fluorinert FC72:FC84 mixture at a 1:1 volume ratio. ME: methanol:ethanol mixture at a 4:1 volume ratio. The current was applied along
the long direction of the sample, the field was applied along the shortest direction.

Pressure Sample size (mm3) Pressure
cell (pc) RRR l × w × t Orientation medium Pressures (kbar)

1 ≈93 2.9 × 1.0 × 0.22 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 FI 6.6
2 ≈92 2.8 × 1.0 × 0.25 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 FI 7.0, 10.0
3 ≈300 2.5 × 1.0 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 ME 10.7
4 ≈300 2.7 × 0.9 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 ME 8.1
5 ≈45 2.8 × 1.0 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈110〉 ME 7.6, 6.7, 5.9, 5.7, 5.1, 4.6, 3.4, 2.9, 2.6, 2.2, 0.3
6 ≈40 2.7 × 1.0 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 ME 5.2, 7.4, 9.6, 11.0, 11.2, 12.8, 0.4
7 ≈45 2.8 × 1.0 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈110〉 ME No pressures below p∗

8 ≈150 2.9 × 1.1 × 0.20 B ‖t‖ 〈110〉, I ‖l‖ 〈100〉 ME 11.5, 10.3, 9.3, 7.8, 6.1, 4.9, 3.7, 0.5
M ≈70 6.0 × 1.0 × 1.0 B ‖t‖ 〈100〉 ME 0.0, 4.05, 7.50, 10.13, 11.80
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FIG. 3. (Color online) Photograph of a sample as mounted on
the electrical feedthrough of the clamp-type pressure cell. A PTFE
ring is used to fix the location of the electrical wires, which suspend
the sample inside the pressure liquid. Also visible is the Sn sample
used as pressure gauge, which was bent slightly to the side for better
visibility.

compressibilities when gluing the sample directly to a support
structure [empirically, the latter is long known to drive changes
of the magnetic easy axis in MnSi (see, e.g., Ref. 50)]. Also
visible in this picture is the Sn sample used to determine
the pressure (for better visibility it was slightly bent to
the side).

The geometry factors used for calculating ρxx and ρxy were
at first determined with a light microscope. To account for
small systematic differences between samples and to permit
better comparison of data recorded for different samples, we
adjusted the longitudinal resistivity at 35 K to the pressure
dependence determined in Ref. 32, ρxx(B = 0, 35 K, p) =
48 μ� cm − 0.8 μ� cm kbar−1 p. Likewise, we adjusted the
geometry factor used for the Hall data by virtue of a
comparison with data recorded with two pressure cells over
the full pressure range at a field of 13.5 T and a temperature
of 2.8 K, notably ρxy(13.5 T, 2.8 K, p) = 0.19 μ� cm −
0.002 μ� cm kbar−1 p. The adjustments were no larger then
10%.

To ensure ideal pressure conditions, the majority of our
experiments were carried out with a 4:1 methanol:ethanol
mixture as pressure transmitter, reported to provide the best
pressure homogeneity in the pressure range of interest as
compared with other organic liquids.52 Data recorded with
the methanol:ethanol pressure transmitter are labeled ME. In
addition, we performed a few experiments with a 1:1 mixture
of Fluorinert FC72 and FC84 as pressure transmitter, denoted
by FI. This mixture has been reported to provide, in principle,
fairly uniform pressure conditions up to 15 kbar.53 However,
as summarized in Fig. 13, we find discrepancies consistent
with local strains in the Fluorinert pressure transmitter as
compared with data recorded with methanol:ethanol. In fact,
it is important to note that a single-component Fluorinert
(FC77) was used in previous magnetotransport studies in MnSi
under pressure,11 which is known to provide even less uniform
pressure conditions.

In our studies we found that the topological Hall signal
varied sensitively with the cooling procedure. Following care-
ful tests, the largest topological Hall signal was systematically
observed under two conditions: first, cooling the pressure cells
from room temperature, and second, cooling at sufficiently
slow cooling rates between 200 and 100 K, which covers the
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FIG. 4. (Color online) Typical Hall signal of a low-RRR MnSi
sample in the regime of the A phase (i.e., the skyrmion lattice phase)
as recorded following different cooling procedures of the pressure
cell. For further details, see main text. All data reported in this paper
were recorded after cooling the pressure cell through the freezing
point of the methanol/ethanol mixture at 1 K/min (red line).

solidification temperature of the methanol:ethanol mixture. In
fact, this observation was insensitive to the pressure transmit-
ters we tested. We have therefore systematically recorded all
data presented in this paper after initially cooling the sample
from room temperature with a rate of 1 K/min between 200 and
100 K. We presume that this procedure minimizes local strains
that arise otherwise from the solidification of the pressure
transmitter.

Typical data illustrating the sensitivity to the cooling
procedure are shown in Fig. 4, where data recorded after
cooling from room temperature are marked with (**) and data
recorded after heating to 250 K followed by cooling from
250 K are marked with (*). Data of one sequence shown in
Fig. 4 consisted in cooling the cell always at 1 K/min, first
from room temperature, second from 250 K after heating the
cell up from 2 K, and third again from room temperature
having cooled the cell to 2 K again. Data of the other
sequence shown in Fig. 4 were recorded after the cell was
heated to 250 K, but the subsequent cooling was done at
three different rates of 0.5, 2, and 3 K/min, respectively. It
is important to emphasize that the pressure cell never reached
room temperature in the second sequence. Thus, the pressure
transmitter must have retained some of the frozen-in pressure
inhomogeneities, which completely vanish when heating the
pressure cell consequently to room temperature.

The pressure dependence of the magnetization was, finally,
measured with a nonmagnetic Cu:Be miniature clamp cell54 in
an Oxford Instruments vibrating sample magnetometer (VSM)
at temperatures down to 2.3 K for magnetic fields up to 9 T
under pressures up to 12 kbar. The empty pressure cells
were measured and their signal (even though tiny) carefully
subtracted to determine the signal of the MnSi sample. Typical
magnetization samples had the shape of a bar (6 × 1 × 1 mm3)
oriented along the cylinder axis of the pressure cell and thus
parallel to the applied magnetic field.

IV. EXPERIMENTAL RESULTS

A. Magnetic field dependence

We begin with the magnetotransport properties at a low
temperature of 2.8 K under magnetic fields up to 14 T,
the largest fields measured. As shown in Fig. 5(a), the
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FIG. 5. (Color online) Typical magnetotransport properties of
MnSi at 2.8 K under applied magnetic fields up to 14 T for various
pressures up to 11.5 kbar. (a) Magnetoresistance ρxx as normalized
to B = 0. (b) Hall resistivity ρxy as a function of magnetic field. Only
a very weak pressure dependence is observed. (c) Hall conductivity
σxy calculated from the data shown in panels (a) and (b).

magnetoresistance ρxx displays a maximum with respect to
zero magnetic field, followed by a shallow minimum and an
increase at high fields. With increasing pressure, the same
qualitative field dependence is observed up to ∼12 kbar, where
the magnetoresistance up to 14 T increases.

For the same conditions, the Hall resistivity ρxy decreases at
2.8 K over the entire field range up to 14 T as shown in Fig. 5(b).
With increasing pressure ρxy displays a very weak pressure
dependence. Most important, the high-field slope of ρxy and
thus the effective charge carrier concentration in this field
range are essentially unchanged [see also Fig. 2(b) below]. The
Hall conductivity σxy = −ρxy/(ρ2

xx + ρ2
xy) calculated from the

magnetoresistance and Hall resistivity, shown in Fig. 5(c), is
essentially featureless. A small nonlinear contribution at high
fields provides evidence of an anomalous Hall contribution due
to the uniform magnetization. As shown below, the anomalous
Hall contribution vanishes with decreasing temperature and
is therefore already very small at 2.8 K. Consistent with the
magnetization shown below, the Hall conductivity decreases
weakly with increasing pressure.

We now turn to the detailed behavior in the vicinity of
Tc for low magnetic fields. Shown in Fig. 6 are typical mag-
netotransport data for p = 7 kbar as a function of magnetic
field up to 1 T [temperatures are also stated as reduced values
Tred = (T − Tc)/Tc]. At high temperatures, the transverse
magnetoresistance ρxx, shown in Fig. 6(a), decreases with
increasing magnetic field. For T < Tc, the magnetoresistance
increases at first gently up to Bc1, levels off, and displays a
shallow maximum in a field and temperature range somewhat
larger than the skyrmion lattice phase at ambient pressure
before decreasing further. At the lowest temperatures, the
magnetoresistance decreases on the field scale shown here
with distinct changes of slope at Bc1 and Bc2 (for clarity, Bc1

is not marked in Fig. 6).
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FIG. 6. (Color online) Typical magnetotransport data in single-
crystal MnSi at a pressure of 7 kbar under applied magnetic fields
up to 1 T for various temperatures. (a) Magnetoresistance ρxx as a
function of field for various temperatures. (b) Hall resistivity ρxy as
a function of field at various temperatures. Note the giant top-hat-
shaped topological contribution. (c) Hall conductivity σxy calculated
from the data shown in panels (a) and (b).

The Hall resistivity ρxy, shown in Fig. 6(b), displays a
gradual field dependence with a pronounced top-hat-shaped
enhancement in a small field and temperature range BA1

and BA2, somewhat larger than the skyrmion lattice phase
at ambient pressure. In other words, with increasing field the
enhancement appears abruptly at a field BA1, and vanishes
again equally abruptly at a field BA2. The magnitude of the
top-hat-shaped signal contribution is substantially larger than
a similar signal contribution in the skyrmion lattice phase
at ambient pressure.10 The signal size corresponds thereby
quantitatively to the data reported in Ref. 11. However,
depending on the precise experimental conditions, the field
range in which we observe the top-hat signal is smaller to that
reported in Ref. 11, where it existed all the way from Bc1 to Bc2

(we return to the importance of sample quality and pressure
homogeneity for this effect below).

To elucidate the origin of the large magnitude of the top-
hat-shaped signal contribution, we show in Fig. 6(c) the Hall
conductivity σxy = −ρxy/(ρxy + ρxx)2 ≈ −ρxy/ρ

2
xx. The top-

hat-shaped contribution in σxy grows much stronger for lower
temperature (and therefore lower ρxx) than the signal in ρxy. As
discussed in the Introduction, for the intrinsic anomalous Hall
effect, one expects a universal Hall signal in σxy independent
of the scattering time τ , while for the topological Hall effect
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FIG. 7. (Color online) Typical magnetoresistance and Hall effect
for two different pressures. The figure illustrates the definitions of
the characteristic transition fields. (a) Magnetoresistance at 2.9 kbar
and two different temperatures. The magnetoresistance initially
decreases and changes slope at Bc1. (b) Hall resistivity at 2.9 kbar.
(c) Magnetoresistance at 7.4 kbar and two different temperatures.
At the transition from the helical to the conical phase, a shallow
maximum is observed. (d) Hall resistivity at 7.4 kbar and 13.9 K.
Note that the upper curves in panels (a) and (c) have been shifted up
for clarity.

ρxy is independent of τ (such that σxy increases proportional
to 1/ρ2

xx). Therefore, these data suggest that the top-hat signal
can be identified with the topological Hall signal which is
switched on and switched off when the system enters and
leaves the skyrmion phase, respectively.

Shown in Fig. 7 are typical data to illustrate the definition
of the transition fields Bc1, Bc2, BA1, and BA2. Values for
increasing and decreasing field strength are denoted by the
superscripts “+” and “−,” respectively. For the transition fields
Bc1 and Bc2, no hysteresis is observed at all pressures and
temperatures studied. Moreover, the same qualitative field
dependencies are observed for all pressures studied up to
∼12 kbar, with the exception of ρxx below Bc1. This is
illustrated in Figs. 7(a) and 7(c), where the magnetoresistance
drops slightly at Bc1 at low pressures, while it displays a
shallow minimum up to Bc1 for higher pressures, respectively.

Closer inspection of the top-hat-shaped topological signal
reveals the presence of hysteresis at BA1 and BA2 as shown
in Fig. 8. This suggests that the transitions at BA1 and BA2

are first order (cf. Ref. 20). In comparison, the features of Bc1

and Bc2 are not hysteretic (the transitions may nevertheless be
very weakly first order). In passing, we note that high-pressure
studies reported previously11 have not addressed the question
of hysteresis at all.

It is now instructive to consider changes of the magnetic
field dependence of ρxx and ρxy with changes of pressure as
summarized in Fig. 9. We thereby focus at first on the top-hat
contribution and return to the rest of the Hall signal further
in the following. For the pressure range of our study, the top-
hat-shaped signal contribution becomes maximal at roughly
the same reduced temperature below Tc and vanishes in the
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FIG. 8. (Color online) Typical field dependence of Hall data in
the regime of the A phase. Shown are data for increasing field (red
arrow) and decreasing field (blue arrow). (a) In the regime of the A
phase, a clear hysteresis is observed at BA1 and BA2, while Bc2 and the
data outside the A phase are not hysteretic. (b) The size of ρ

top
xy was

determined as the peak height of ρxy after subtracting the estimated
normal and anomalous Hall contributions.

field-dependent data when decreasing the temperature further.
It is thereby important to note that the reduced temperature
of the maximum top-hat Hall signal depends on the sample
quality. Namely, for a sample with low RRR (∼45) akin that
studied in Ref. 11, the maximum top-hat contribution is located
roughly ∼17% below Tc. The associated field dependence at
17% below Tc for various pressures is shown in Fig. 9(a).
With increasing pressure, the size of the top-hat contribution
increases, where we return to the detailed pressure dependence
below. At the same time the field range of the top-hat signal
contribution is rather wide for this low-quality sample.

In contrast, samples with much higher RRRs (∼150)
display the maximum top-hat contribution about ∼4% below
Tc. Typical field dependencies for a temperature around 4%
below Tc are shown in Fig. 9(b). With increasing pressure,
the top-hat contribution increases. Here, the field range of
the top-hat contribution is smaller than for the lower-quality
sample. Taken together, the temperature and field range of the
top-hat contribution of the high-RRR samples are much closer
to the field and temperature range of the skyrmion lattice phase
at ambient pressure than for low-RRR samples. This clearly
demonstrates a high sensitivity of the top-hat contribution to
the sample quality.

In view of the importance of the sample quality we
have performed preliminary tests of the role of the pressure
transmitter. Namely, we used a Fluorinert mixture (denoted
FI in the figures), which is known to provide inhomogeneous
pressures, for some measurements. Here, the field range of
the top-hat contribution is even wider as compared with the
ME mixture (cf. Fig. 6). In comparison, data reported in
Ref. 11, where the top-hat-shaped topological contribution
was observed all the way up to Bc2, were recorded with a
single-component Fluorinert pressure transmitter.

We finally turn to the Hall signal outside the field range of
the top-hat contribution (i.e., outside of the skyrmion phase).
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FIG. 9. (Color online) Typical Hall resistivity and magnetization
data at similar reduced temperatures below Tc for various pressures.
The Hall data are shown for increasing field strength; the magneti-
zation data are shown for both sweep directions. Note the data are
shown as function of estimated internal field, i.e., demagnetizing
fields were corrected. (a) Hall resistivity for a low-quality sample
with RRR = 45. The top-hat-shaped contribution extends over a
wide range much wider than for the A phase at ambient pressure.
(b) Hall resistivity for a sample with RRR = 150. (c) Magnetization
of sample with RRR = 70. (d) Susceptibility calculated from the data
shown in panel (c). The pronounced narrow maxima at the boundary
of the skyrmion lattice phase vanish with increasing pressure, while
the field value of the transition remains unchanged.

This part of the Hall signal varies strongly with pressure for
the high-quality sample, while it changes only weakly for the
low-quality sample as shown in Figs. 9(a) and 9(b). Since
the data shown in these figures were recorded at the same
reduced temperature below Tc, and Tc decreases by a factor of
2 between p = 0 and 12 kbar, the decrease of the Hall signal
outside the field range of the top-hat contribution is essentially
a consequence of the decrease of ρxx with decreasing Tc. Thus,
the non-top-hat part of the Hall signal is characteristic of a
normal plus an (intrinsic) anomalous Hall signal.

The difference between the topological and anomalous
contribution to the Hall signal is strongly supported by the
magnetization as a function of magnetic field, shown in

Fig. 9(c) for various pressures at a temperature 5% below
Tc. With increasing pressure and thus decreasing Tc, the
magnetization is slightly reduced, while the magnetic field
dependence changes very little qualitatively. The non-top-hat
part of the Hall signal therefore qualitatively tracks the
magnetization as expected of a dominant anomalous Hall
contribution. Unfortunately, it is not possible to carry out a full
analysis, in which the anomalous Hall contribution is directly
calculated from the magnetization, since the pressures and
demagnetizing fields differ between the magnetization data
and the magnetotransport data.

More subtle changes of the magnetization with increasing
pressure may be revealed by the susceptibility μ0 dM/dB,
calculated from the magnetization as shown in Fig. 9(d). As
recently established in a comprehensive study, μ0 dM/dB

provides a reliable probe of phase boundaries as compared
with the ac susceptibility.20 Namely, at ambient pressure,
μ0 dM/dB displays sharp spikes at the boundary of the
skyrmion lattice phase, characteristic of a first-order transition.
With increasing pressure, these spikes smear out and vanish
while the transition fields remain essentially unchanged [this
corresponds also to the smearing reported recently in the
resistivity at Tc (Ref. 35)]. The simultaneous presence of the
large top-hat signal suggests that the spikes in μ0 dM/dB

vanish due to small pressure inhomogeneities which do
not affect the main conclusions of the study reported here.
The magnetization, hence, suggests that the top-hat Hall
contribution is not the result of a possible contribution in the
uniform magnetization. In fact, in the field range of the large
topological Hall signal, the magnetization decreases ∼20%
with increasing pressure. This suggests strongly that the large
topological Hall signal is not connected with changes of the
local spin polarization.

The size of the top-hat signal contribution of ρxy may
be estimated by subtracting the normal and anomalous Hall
signal in two steps as illustrated in Fig. 8. The normal Hall
contribution was first inferred from ρxy at high fields and a
linear field dependence subtracted. For the resulting signal, a
linear field dependence was assumed up to Bc2 and subtracted.
The resulting signal is dominated by the top-hat contribution.
The size of this signal, �ρ

top
xy , is estimated as shown in Fig. 8(b).

We return to the pressure dependence of �ρ
top
xy below.

Taken together, we observe a large top-hat (topological)
Hall signal even in high-quality single crystals under (es-
sentially) homogeneous pressure conditions. We are thereby
empirically able to attribute the extended field region where
a topological Hall signal was found in previous studies under
pressure, and which appeared to be inconsistent with the field
region of the topological Hall signal at ambient pressure, to
a combination of sample quality and anisotropic pressure
conditions. The role of sample quality, discussed in more
detail in the next section, suggests that the pinning due to
disorder and/or pressure inhomogeneities and local uniaxial
strain arising due to local difference in the compressibility
strongly affect the field and temperature range where the
top-hat Hall contribution is observed. While the (meta)stability
of the corresponding phase is strongly affected, the magnitude
of this signal is rather insensitive to sample quality (a more
detailed discussion of the signal size will be presented in the
following).
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B. Temperature dependence

It is now instructive to explore the temperature dependence
of the top-hat contribution of the Hall signal in further detail.
Two measurement protocols have thereby been used, as the
Hall signal is sensitive to the field and temperature history.
In the first protocol, denoted zfc/fh, the sample was first
zero-field cooled, the magnetic field applied next at the lowest
temperature accessible (typically 2 K) and data recorded while
heating the sample in the applied field. In the second protocol,
denoted fc/fh, the sample was cooled down in the applied
field and data recorded while heating the sample in the same
unchanged applied field. This way, data were recorded while
heating in the same way, minimizing systematic errors between
zfc/fh and fc/fh. In order to justify this approach, we have
confirmed that data recorded during field cooling agree with
data recorded while field heating after field cooling.

Typical temperature dependencies are shown in Fig. 10. For
all magnetic fields, the Hall signal is essentially dominated
by a broad maximum in the vicinity of Tc. No difference is
observed between zfc/fh and fc/fh data for magnetic fields
outside the field range in which the top-hat contribution to the
Hall signal is seen in field sweeps just below Tc [Figs. 10(a),
10(b), and 10(d)]. However, for magnetic fields in the range
of the top-hat contribution, the Hall signal for fc/fh retains
a large value below the broad maximum, while the data
recorded under zfc/fh decrease below the broad maximum.
The difference suggests that the top-hat Hall signal survives
under field cooling as a metastable state down to the lowest

ρ
Ω

ρ
Ω

ρ
Ω

ρ
Ω

FIG. 10. (Color online) Typical temperature dependence of the
Hall signal as recorded while heating in an applied field after field
cooling or zero-field cooling, denoted as fc/fh and zfc/fh, respectively.
No difference is observed at very small and sufficiently high fields as
shown in panels (a), (b), and (d). In the field range of the A phase,
the Hall signal remains high and essentially unchanged down to the
lowest temperatures under field cooling [panel (c)].
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FIG. 11. (Color online) Hall resistivity as a function temperature
for different sample qualities and various pressures. (a) Hall resistivity
after field cooling (fc) for a sample with RRR = 150. (b) Hall
resistivity under field heating after zero-field cooling (zfc) for a
sample with RRR = 150. (c) Difference of panels (a) and (b).
Pressures of panels (a)–(c) are indicated in panel (c). (d)–(f) are
same as panels (a)–(c) for a sample with RRR = 45. Pressures of
panels (d)–(f) are indicated in panel (f).

temperatures. This is consistent with the picture that once
the sample has been prepared in the skyrmion lattice phase,
thermal fluctuations are not successful to unwind the magnetic
structure, which therefore remains as a metastable state (see
Sec. IV C below).

Trying various other combinations of field and temperature
histories, we find no other possibility to prepare a similarly
large Hall signal at the lowest temperatures as compared
with field cooling. Interestingly, however, similar metastable
behavior has been observed in small-angle neutron scattering
studies of the skyrmion lattice phase in Fe1−xCoxSi.55

Typical data illustrating the metastable temperature depen-
dence at various pressures are shown in Fig. 11 for two different
sample qualities at a field of 0.25 T. For pressures exceeding
several kbar, the metastable behavior emerges. When field
cooling (fc) at a slow rate in the field range of the skyrmion
lattice phase, ρxy increases for decreasing temperature with
a maximum just above Tc, typically retaining a high value
down to the lowest temperatures measured [Figs. 11(a) and
11(d)]. In contrast, data recorded under slow field heating
after zero-field cooling (zfc/fh) drops to a low value below the
maximum [Figs. 11(b) and 11(e)]. For all pressures studied,
the temperature dependence observed under zfc/fh is perfectly
consistent with the field-dependent data.

The differences between the Hall signal recorded for fc/fh
and zfc/fh are shown in Figs. 11(c) and 11(f). Panels on the
left-hand side show data for a sample with a high RRR of 150,
while the panels on the right-hand side show data for a low-
quality sample with RRR of 45. For the low-quality sample,
we observe much less variation for different pressures, while
the size of the metastable Hall contribution in the high-quality
sample varies a fair amount. This suggests that pinning at
defects is needed to stabilize a metastable state of matter. Most
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FIG. 12. (Color online) Magnetization as a function of temperature at various magnetic fields and pressures. Panels in the second row
show the magnetization divided by the applied magnetic field to reveal better relative variations. Panels in the bottom row show the derivative
1/HdM/dT . Data were recorded while heating in an applied field after field cooling or zero-field cooling, denoted as fc/fh and zfc/fh,
respectively. Essentially, no difference is observed between fc/fh and zfc/fh.

remarkably, however, at the lowest temperatures the metastable
signal contribution for all pressure and samples studied appears
to limit around a similarly large value of 50 n� cm. In turn, the
metastable Hall contribution offers the possibility to determine
the size of the top-hat Hall signal without the effects of finite
temperature (see Sec. V B).

To distinguish if the metastable signal contribution rep-
resents an anomalous or a topological Hall effect, we have
measured the temperature dependence of the magnetization
following the same field and temperature history. Typical data
for various magnetic fields are shown in Fig. 12, where we
find no difference under fc and zfc/fh. Panels in the first row of
Fig. 12 show the magnetization as a function of temperature as
measured experimentally. In order to reveal better qualitative
differences for the applied fields, we show in the second row
of Fig. 12 the ratio M/H . This highlights the absence of
significant differences between zfc/fh and fc/fh magnetization
data at all fields. The third row of Fig. 12 displays, finally, the
derivative of the magnetization with respect to the temperature.
On the one hand, this permits us to determine the transition
temperature accurately. On the other hand, this corresponds to
the magnetocaloric effect dM/dT = dS/dB. While the sharp
spike near Tc for p = 0 vanishes with increasing pressure, we
find essentially no changes of the qualitative behavior under
applied fields. The reduction of the spike is thereby most likely
the result of small pressure inhomogeneities across the sample
volume.

Taken together, the magnetization as a function of tempera-
ture clearly supports the interpretation that the metastable Hall
signal represents a topological Hall signal. This is also reflected
by the temperature dependence of the Hall resistivity ρxy

outside the field range of the top-hat contribution. Consistent
with the anomalous Hall signal observed as a function of field,
the Hall resistivity becomes very small due to the temperature

dependence of ρxx, i.e., here the Hall signal corresponds
to an intrinsic anomalous Hall conductivity that tracks the
magnetization.25

C. Magnetic phase diagram

Shown in Fig. 1 are typical magnetic phase diagrams
inferred from the magnetotransport data. The phase diagram
at ambient pressure [Fig. 1(a)] is based on susceptibility data
as reported elsewhere, where we confirmed consistency with
the features in our magnetotransport data (cf. Fig. 7; see also
Ref. 10). With increasing pressure, the helimagnetic transition
is suppressed, while the magnetic phase diagram does not
change qualitatively. In particular, the lower critical field Bc1

appears to increase slightly under pressure. The small increase
differs from small-angle neutron scattering (SANS) studies
under pressure, where no pressure dependence was observed.
However, we believe that the small increase of Bc1 under
pressure inferred from the magnetoresistance reflects mostly
changes of the form of the magnetoresistance as discussed
above. This may be compared with the upper critical field
Bc2, which does not change under pressure consistent with the
SANS data.

The weak pressure dependence of Bc1 and Bc2 is contrasted
by the regime in which a reversible top-hat (topological)
Hall contribution (red shading) is observed. This comprises
mostly data obtained in field sweeps. In comparison to ambient
pressure, the field and temperature range increases under
pressure. Yet, in contrast to the data reported in Ref. 11, we still
find a well-defined phase pocket that is strongly reminiscent
of that seen at ambient pressure. This links the top-hat
Hall contribution to the skyrmion lattice phase at p = 0. As
discussed below, our study even links the quantitative size of
the top-hat signal to the skyrmion lattice phase at p = 0. While
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FIG. 13. (Color online) Magnetic phase diagram at ∼7 kbar for
different pressure transmitter. (a) Phase diagram inferred from data
recorded with a methanol:ethanol (ME) mixture on a sample with
RRR = 40. (b) Phase diagram inferred from data recorded with a
Fluorinert (ME) mixture on a sample with RRR = 92. Fluorinert is
known to be much less isotropic.

the skyrmion lattice phase (denoted as the A phase) increases
in size, the only truly different property with respect to ambient
pressure concerns the metastable behavior we observed under
field cooling. This metastable behavior is indicated in the phase
diagrams in terms of a light red shading extending down to the
lowest temperatures studied.

As the metastable behavior emerges under pressure along-
side the increase of the A phase, this raises the question as to
what extent it may be driven by pressure inhomogeneities
and local strains. We have therefore also determined the
magnetic phase diagram at a pressure around 7 kbar for
the methanol:ethanol and the Fluorinert mixture as pressure
transmitter. As shown in Fig. 13, the extent of the A phase is
considerably larger for the Fluorinert mixture. In combination
with the sensitivity to sample purity, this appears consistent
with the evidence reported elsewhere of less uniform pres-
sure conditions for the Fluorinert mixture. However, typical

FIG. 14. (Color online) Magnetic phase diagram inferred from
the magnetotransport properties and two different current directions
for B ‖〈110〉 at a pressure around ∼5 kbar. (a) Phase diagram for
current parallel 〈100〉 on a sample with RRR = 40. (b) Magnetic
phase diagram for current parallel 〈110〉 on a sample with RRR = 46.

anisotropies reported elsewhere of order �10−1 kbar are tiny
as compared with the overall pressure range of order ∼10 kbar,
i.e., a few % (pressure inhomogeneities have been inferred, for
instance, in Larmor diffraction40).

A comparison of the magnetic phase diagrams for field
parallel to 〈110〉 and current along 〈100〉 and 〈110〉 is finally
shown in Figs. 14(a) and 14(b), respectively. Within the
accuracy of determining the phase boundaries, no differences
are observed. This corresponds to the expected behavior,
notably that the magnetic phases as inferred from the Hall
signal are not sensitive to current direction.

V. DISCUSSION

The discussion of our experimental results is organized in
two parts. In the first part of this section we present theoretical
aspects as to how the intrinsic anomalous Hall effect and the
topological Hall effect as well as other factors determine the
size of the Hall signal. This is followed by a discussion of
the consistency of the experimental results with the theoretical
description.

A. Theory of the interplay of the topological and
anomalous Hall effects

As emphasized in the Introduction, the intrinsic anomalous
Hall effect arises from Berry phases which an electron picks
up when moving in momentum space, while the motion of
the electron in the presence of a smooth magnetic texture is
described by real-space Berry phases. In the following, we
present a rather qualitative introduction of these effects. A full
account of the complex interplay of various Berry phase terms
in phase space will be developed in a future publication.

In a magnetic metal without inversion symmetry, the
orientation of the spin of the electron is determined by two
factors. First, the magnetism leads to an exchange splitting of
the bands which can be described by a Zeeman field bex. By
virtue of this field, the electron spins are aligned parallel or
antiparallel to the magnetic field. Second, spin-orbit coupling
in addition leads to a splitting of bands and the orientation of
the spin becomes locked to its momentum. For weak spin-orbit
coupling and smooth magnetic textures (as in MnSi), one can
add up the two terms to obtain for a single band model the
Hamiltonian

H = εp1 + gSO(p)σ + bex(r)σ , (2)

where εp1 represents the band without the effects of exchange
splitting and spin-orbit coupling. Further, we measure bex in
units of |gμB/2| = |h̄ge/(4m)| where g is the g factor, e

the electron charge, and m the electron mass. The sign in
the above equation takes into account that e < 0. Therefore, the
spin (magnetic moment) of an electron orients preferentially
antiparallel (parallel) to the Zeeman field, respectively.

In the semiclassical limit, this allows us to define the
direction of the local magnetization n̂, which is a function
defined in the six-dimensional phase space comprising both
position and momentum

n̂(x) = gSO(p) + bex(r)

|gSO(p) + bex(r)| . (3)

134424-12



GIANT GENERIC TOPOLOGICAL HALL RESISTIVITY OF . . . PHYSICAL REVIEW B 87, 134424 (2013)

Here, we consider only situations, where as in MnSi the
exchange fields vary on length scales much longer than the
Fermi wavelength. With ↓ we denote in the following a
spin-orientation antiparallel to n̂. As this is the spin orientation
with the lower energy, a ↓ spin is carried by the majority
electrons. Further, the coordinate in phase space is denoted as
x = (r,p).

Berry phase effects induced by the change of the local
wave function |u(x)〉 of the majority spin ↓, defined by
[n̂(x)σ ] |u(x)〉 = −|u(x)〉, are described by the six components
of a Berry vector potential qe

↓Aj (x) = ih̄〈u(x)| ∂
∂xj

|u(x)〉, j =
1, . . . ,6. Majority electrons, with a spin antiparallel to n̂
pick up the opposite Berry phase compared to minority
electrons with parallel orientation. This is taken into account
by attributing the charges qe

↓ = 1
2 and qe

↑ = − 1
2 to the majority

and minority electrons, respectively. Note that we use different
sign conventions compared to Ref. 13, correcting a typo in that
paper.

The resulting effective magnetic fields are described by the
antisymmetric 6 × 6 matrix2

�ij = ∂Aj

∂xi

− ∂Ai

∂xj

= h̄n̂ ·
(

∂

∂xi

n̂ × ∂

∂xj

n̂
)

. (4)

The geometric interpretation of this term is that �ijdxidxj

describes the Berry phase (times h̄) picked up upon moving
on an infinitesimal loop in the (ij ) plane in phase space with
area dxidxj , which is given by the solid angle enclosed by
the vectors n̂(x) in this loop. The first 3 × 3 components
of the antisymmetric matrix � are identified with the three
components of the emergent magnetic field13 arising from the
real-space Berry phases only:

Be
i (x) =

∣∣∣∣ e

qe
σ

∣∣∣∣Beff
i (x) = 1

2

∑
j,k=1...3

εijk�jk (5)

with i ∈ {1,2,3}. Note that the sum runs only over the real-
space indices 1 . . . 3. The emergent B field Be has the units
of h̄ per area and is related to Beff (measured in tesla) used in
Eq. (1) by the factor |e/qe

σ |.
Three other components (i,j ∈ {4,5,6}) of �ij describe the

corresponding Berry phase fields in momentum space which
are responsible for the intrinsic anomalous Hall effect.1 The
remaining nine independent components of � keep track of
Berry phases picked up for loops in phase space involving
both position and momentum directions which also contribute
to the Hall effect.

The Berry fields � determine the semiclassical equations
of motion2

∂txi = Jij

(
∂ε

∂xj

− qe�jk∂txk

)
(6)

or, equivalently,

(
qe

σ� − J
)
∂tx = ∂ε

∂x
, (7)

where ε is the energy and

J =
(

0 1

−1 0

)
(8)

is the symplectic version of the identity (1 is the 3 × 3
identity matrix). Note that chiral metals with skyrmion lattices
may be one of the first experimental systems where not
only real-space and momentum-space Berry phases, but also
mixed phase-space Berry phases, described by the 6 × 6
matrix �, may become important. A full discussion of the
corresponding contributions to the Hall effect is deferred to
a future publication, while we focus in the following on the
topological contribution.

When integrating Be over a magnetic unit cell of the
skyrmion lattice (in real space), one obtains h̄ times the total
solid angle covered by n̂:

�e(p) =
∫

UC
Be(x) d2r = 2πh̄∣∣qe

σ

∣∣ n(p) (9)

=
{

0 |gSO(p)| > |bex(r0)|
− 2πh̄

|qe
σ | |gSO(p)| < |bex(r0)| . (10)

Due to the periodic boundary condition, the total solid angle
has to be a multiple of 4π = 2π/|qe

σ | which can be identified
with a quantum of emergent flux. Therefore, n(p) is an integer.
The topological winding number of the spin in real space
determines directly the number of flux quanta per unit cell. As
in the skyrmion lattice phase bex(r) winds once around the unit
sphere with winding number −1, one obtains the flux −h̄4π

when the exchange field Bex is larger than the spin splitting
due to spin-orbit interactions. In the other limit, when gSO(p)
is much larger than the exchange field, the spin orientation
within the unit cell only wiggles around its dominant direction
gSO(p) and the winding number vanishes. For fixed momentum
p, the transition from winding number −1 to 0 occurs when
at the point r0, where Bex(r0) is antiparallel to gSO(p), the two
vectors compensate each other exactly, Bex(r0) + gSO(p) = 0,
such that locally the two bands cross.

In the limit |gSO| � |bex|, one can ignore the spin-orbit
coupling effects in the band structure. In this limit, the
contribution to the Hall effect can be estimated from the
Boltzmann equation using the relaxation-time approximation
with spin-dependent relaxation time τ↓ and τ↑ for majority and
minority spins, respectively. For Be in the z direction and k-
independent scattering rates, for example, the relaxation-time
approximation predicts the following topological contribution:

σ top
xy ≈ Be

∑
σn

∫
e2qe

σ τ 2
σn

((
v

y

kn

)2

mxx
kn

− vx
knv

y

kn

m
xy

kn

)

× ∂f0(εkσn)

∂ε

d3k

(2π )3
, (11)

where vkn is the velocity in band n and m
ij

kn =
(∂2εkσn/h̄

2∂ki∂kj )−1 are the elements of the effective mass
tensor. One obtains exactly the same formulas for the Hall
conductivity due to orbital magnetic fields, if one replaces the
emergent charge qe

σ by the electron charge e < 0. Therefore,
it is convenient to express the topological Hall resistivity by
the normal Hall coefficient R0:

ρ top
yx ≈ R0B

e

〈
qe

σ

e

〉
FS

= R0B
effP, (12)
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where

P =
∣∣∣∣ e

qe
σ

∣∣∣∣
〈
qe

σ

e

〉
FS

(13)

is an effective polarization and

〈· · · 〉FS =
∑

nσ

∫ · · · wkσn∑
nσ

∫
wkσn

(14)

a certain average over all Fermi surfaces weighted by the
square of the spin-dependent scattering rates,

wkσn = τ 2
σn

((
v

y

kn

)2

mxx
kn

− vx
knv

y

kn

m
xy

kn

)
∂f0(εkσn)

∂ε
. (15)

In MnSi, the size of Beff is given by Eq. (1).
It is useful to discuss the sign of 〈qe

σ /e〉FS and therefore of
the effective polarization P . If the Fermi surface is electronlike,
the average is dominated by the majority spin with qe

↓ = 1
2

and the ratio 〈qe
σ /e〉FS and therefore also P is negative as the

electron charge is negative, e < 0. In contrast, for a holelike
Fermi surface, we expect a higher density of states for minority
spins and therefore 〈qe

σ /e〉FS > 0 and P > 0. Because Be is
antiparallel to the applied magnetic field in MnSi and the
sign of the normal Hall effect suggests dominant holelike
Fermi surfaces, one expects that the topological and normal
contributions to the Hall effect have opposite sign consistent
with experiment.10 Note, however, that these simple rules
can be violated in multiband systems due to the complicated
Fermi-surface average.

As a final remark in this section, we note that one can
repeat the same considerations also in the language of holes.
Under a particle-hole transformation (c†σ → σc

†
−σ ), the charge

e and the mass m change sign, but the spin operator is not
affected. Since a missing spin-up electron is a spin-down
hole, an up-spin electron Fermi surface with emergent charge
qe

↑ = − 1
2 maps to a spin-down hole Fermi surface with

opposite emergent charge qe
↓ = 1

2 . As above, we obtain that
for a holelike Fermi surface 〈qe

σ /e〉FS is positive.

B. Comparison with experiment

In the light of the theoretical aspects presented above, we
address now the following questions: Which factors determine
the size of the topological contribution to the Hall effect
in MnSi? Can the giant contributions at finite pressures
observed in MnSi be explained by the topologically quantized
emergent field of the skyrmion lattice at ambient pressure?
What is the generic size of the topological Hall contribution
at low temperatures? Why is the topological signal at ambient
pressure so much smaller?

In Fig. 2(a), we summarize two key features of the pressure
dependence of the topological Hall resistivity we observe
in our experiments. Shown by full symbols is the estimated
maximum size of the top-hat-shaped topological Hall signal
just below Tc, denoted �ρ

top
xy , as measured under reversible

conditions. This corresponds to data obtained in field sweeps
(cf. Fig. 9), where a rough estimate of the anomalous Hall
contribution is subtracted as illustrated in Fig. 8. In principle,
samples with high and low RRRs, which display this maximum
signal contribution at slightly different reduced temperatures

as described above, show the same trends. With increasing
pressure, the size of the revisable maximum signal increases,
where the curve provides an estimated upper boundary as a
guide to the eye. It is important to note that increasing pressure
corresponds to decreasing Tc and thus decreasing absolute
temperatures at which this signal is determined. The increase
of �ρ

top
xy with pressure hence corresponds also to an increase

with decreasing temperature.
To obtain an estimate of the generic value of the topological

Hall signal in the low-temperature limit, we consider the
metastable topological Hall contribution observed under field
cooling. The open symbols in Fig. 2(a) show the difference
between the Hall signal observed under field cooling and zero-
field cooling for a temperature of 2 K. In this plot, for clarity
only data of low RRR samples are shown since the metastable
behavior is more pronounced for them. Yet, regardless of
the RRR, the estimated zero-temperature contribution limits
for a given pressure to the same low-temperature value [cf.
Fig. 11(f)]. With increasing pressure, the extrapolated value of
�ρ

top
xy at 2 K decreases. For pressures exceeding p∗ ∼ 12 kbar,

the pressure dependence of the open and filled symbols
appears to merge (as emphasized above data for p > p∗ will
be presented elsewhere47 since the phase diagram displays
further complexities above p∗ beyond the scope of the work
presented here). We attribute the merging of the two pressure
dependencies to the reduction of Tc, causing that both signals
overlap significantly.

It is now instructive to address the pressure and temperature
dependencies of all factors entering Eq. (12), namely, the size
of the emergent field Be, the normal Hall constant R0, and the
Fermi-surface average 〈qe

σ /e〉FS of the emergent charge.
We begin with the emergent field Be. For low temperatures

and deep in the ordered phase, we may assume that the size
of the exchange splitting bex is much larger than the spin-orbit
splitting of the bands. Therefore, if the skyrmion lattice is
unchanged, the average value of the emergent magnetic field
Be is also unchanged and given by one flux quantum per
magnetic unit cell. Unfortunately, a direct measure of the
size of the magnetic unit cell of the skyrmion lattice phase
as a function of pressure is, to our knowledge, presently
not available. However, detailed neutron scattering studies of
the helimagnetic order in MnSi have long established that
the periodicity of the helix is essentially unchanged under
pressure.42,43,50 This is also reflected by the lack of pressure
dependence of Bc2. Moreover, preliminary uniaxial pressure
studies clearly show that the periodicity of the magnetic
modulation remains unchanged while the alignment and
orientation of the magnetic modulation responds sensitively to
uniaxial stress.56 Finally, all B20 compounds studied to date
which order helimagnetically display also a skyrmion lattice
phase, where the magnetic periodicities in the skyrmion lattice
phase and the helimagnetic state are consistent with each other
and theory.21 We therefore conclude that the magnetic unit cell
must be essentially unchanged in size. Unless the topological
winding number changes, which appears extremely unlikely,
the strength of Be is almost pressure independent. The value of
the emergent magnetic field is therefore essentially unchanged,
Beff ∼−13.15 T [cf. Eq. (1)].57

We address next the pressure dependence of the normal
Hall constant R0. A value of R0 at low temperatures and high
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magnetic fields inferred from the experimental data is shown in
Fig. 2(b). R0 is thereby approximately independent of pressure
at high fields. Similar values for R0 have been estimated from
high-field data close to Tc at ambient pressure.25,58 A much
more difficult question concerns variations of the normal Hall
constant under changes of the size of the local magnetization
at small fields and/or temperatures in the vicinity of Tc. Due
to the large size of the anomalous Hall contribution, a reliable
experimental determination of the normal Hall constant proves
to be very difficult in this regime. More importantly, perhaps,
the rather smooth field dependence observed experimentally
does not indicate any particular complexities.

In contrast, nonrelativistic band-structure calculations59

suggest that the local magnetization may be accounted for
by a rigid shift of minority versus majority bands as the
local magnetization increases. Moreover, the calculated band
structure suggests that the topology, shape, size, and sign of the
effective masses of the minority and majority Fermi surfaces in
MnSi change strongly when the magnetization increases from
0 to 0.4 μB , the size of the ordered moment at low T . Extensive
de Haas–van Alphen measurements by Brown60 support this
view as they reproduce in remarkable detail the experimentally
observed Fermi surfaces at large magnetic fields. We therefore
conclude that on the one hand, R0 at fixed magnetization
depends weakly on pressure. However, we can not rule out
definitively sizable changes of R0 for small values of the
magnetization close to the transition temperature.

The remaining factor in Eq. (12) to be addressed is the
Fermi-surface average of the emergent charge 〈qe

σ /e〉FS. As
qe

σ is of opposite sign for majority and minority spins, it may
be expected to scale linearly with the strength of the local
spin polarization in the absence of strong changes in the band
structure, discussed in the following. Shown by the straight
line in Fig. 2(a) is a linear regression of the open symbols.
The slope of this line corresponds to the relative pressure
dependence of the magnetization dmred/dp ≈ −0.02 kbar−1

with mred = m(p)/m(p = 0), as extrapolated for zero field
from fields above Bc2.39 This rate of decrease is also consistent
with the decrease of the ordered magnetic moment inferred
from SANS.42,43 The rate of decrease of �ρ

top
xy with increasing

pressure hence follows quantitatively the pressure dependence
of the spin polarization as expected from Eq. (12) and the
weak pressure dependence of Be and R0 discussed above. This
provides further support of our interpretation of the topological
Hall signal and of Eq. (12).

Using Eq. (12), we obtain for the effective polarization

P =
∣∣∣∣ e

qe
σ

∣∣∣∣
〈
qe

σ

e

〉
FS

≈ ρ
top
yx

R0Beff
≈ 0.22 (16)

at low temperatures and pressures where we used ρ
top
yx ≈

−50 n� cm, Beff ≈ −13.15 T, and R0 = 1.7×10−10 �m T−1

[for a value of λS ≈ 180 Å the polarization is P ≈ 0.27
(Refs. 17 and 57)]. This is a reasonable value which is of the
same order of magnitude as the ratio P0 = μspo/μsat ≈ 0.18 of
the local magnetization (about μspo ≈ 0.4 μB ) and the nominal
saturation moment of the Mn ions (μsat ≈ 2.2 ± 0.2 μB ).
Taking into account the complicated Fermi-surface averages
determining P and the complex band structure of MnSi,59,60

this shows that the large signal at low temperatures and finite

pressure can naturally be explained by the topological Hall
effect arising from the skyrmion lattice.

The remaining question concerns the reduction of the topo-
logical signal at higher temperatures and, most importantly, the
nature of the reduction of the signal size by about a factor 10 at
ambient pressure close to Tc. Here, one important factor is the
reduction of the ordered moment (and therefore of P ) when the
temperature increases. In Ref. 10, it was originally estimated
that at ambient pressure the local polarization P0 ≈ 0.1 is
only a factor of 2 smaller than at T = 0. While quantitative
measurements of the size of the ordered moment in the
skyrmion phase at ambient and high pressure are presently not
available due to subtle extinction effects, it is plausible that
the reduction of the magnetization under pressure explains
the decrease of the topological Hall signal with increasing
pressure.

Yet, even though the reduction of P0 close to Tc at ambient
pressure was probably underestimated in Ref. 10, we do not
think that the linear dependence of 〈qe

σ /e〉FS on P0 fully ex-
plains the order-of-magnitude reduction of the topological Hall
signal. Taking into account that an abundance of particle-hole
excitations characteristic of the itinerant-electron magnetism
of MnSi has been inferred from polarized neutron scattering61

as well as the temperature dependence of the damping of
magnetic resonance data,62 five mechanisms and combinations
thereof may be at the heart of this reduction.

First, as explained above, without the effects of scattering,
one expects from band-structure calculations strong changes
of the Fermi surface for variations at small values of the local
magnetizations. This would modify R0 and also the Fermi-
surface averages 〈qe

σ /e〉FS. Second, close to Tc, the relevant
scattering processes may be completely different compared to
the low-temperature situation. This can also strongly affect the
Fermi-surface average 〈qe

σ /e〉FS as different Fermi surfaces are
weighted by the square of the scattering time.

Third, as the exchange splitting close to Tc is weak, it is
possible that the spin-orbit splitting of the bands prohibits
that the electron spin follows fully the magnetic texture. As
shown in Eq. (10), a possible consequence is that for some of
the bands the topological contribution is completely switched
off! It is also possible that only a part of a given Fermi
surface is affected by the real-space Berry phase, while for
other parts the emergent magnetic flux vanishes. Fourth, it is
possible that close to Tc the adiabatic approximation breaks
down. Especially, if the spin-flip scattering length describing
the scattering from minority to majority electrons (and vice
versa) is smaller than the distance of the skyrmions, the
topological Hall signal will become strongly suppressed. It
is possible that the third and forth mechanisms are related.
Namely, when spin-orbit splitting and exchange splitting are of
similar magnitude, the splitting of majority and minority bands
vanishes on three-dimensional planes in the six-dimensional
phase space which may give rise to enhanced spin-flip
scattering.

Fifth and final, when spin-orbit and exchange splittings
are of similar magnitude, one can not neglect the fact that
aside from the real-space Berry phases, also the intrinsic
anomalous Hall effect, caused by momentum-space Berry
phases, is affected by the presence of the skyrmions and
even new phase-space Berry phases emerge. These effects

134424-15



R. RITZ et al. PHYSICAL REVIEW B 87, 134424 (2013)

will be studied in the future. At present, neither the size nor
the sign of these extra contributions are known theoretically
or experimentally.

Most likely a combination of several of the effects de-
scribed above is responsible for the strong reduction of the
topological Hall contribution at ambient pressure. However,
the experiments under pressure and the theoretical analysis
show unambiguously that the giant low-temperature value of
the topological signal is robustly given by a value of the order
of 50 n� cm, which depends only weakly on sample quality
and pressure.

VI. CONCLUSIONS

In conclusion, we reported comprehensive measurements
of the Hall effect in MnSi at low temperatures and high
pressures across the magnetic phase diagram that reveal a
large generic topological Hall signal. Exploring carefully
the importance of the field and temperature history for the
topological Hall signal opens an unexpected route to determine
its generic size. Notably, tracking the topological Hall signal
under field cooling allows us essentially to switch off the
effects of finite temperatures. Exploring the importance of
the sample purity and pressure transmitter allows us to
attribute the wide field range of the large topological Hall
signal reported by Lee et al.11 to defect-induced pinning and
pressure inhomogeneities. The field dependence observed in
our study under improved experimental conditions thereby
unambiguously links the large topological Hall signal to the
skyrmion lattice phase at ambient pressure.

As the large topological Hall signal clearly evolves under
pressure out of the skyrmion lattice phase at ambient pressure,
we can directly link it to the topological Hall signal arising
from the winding of magnetization characteristic for skyrmion
textures. It increases by about a factor of 10 from the small
signal observed at ambient pressure close to Tc whenever the
skyrmion lattice phase is stabilized at lower temperatures. The
reduction of the ambient pressure signal arises very likely
from a combination of several factors where the substantial
reduction of the local polarization close to Tc and associated
changes of the Fermi surfaces are probably the most important
ones. The size of the topological Hall signal at low temperature
is, as in the case of the normal Hall effect, determined by how
the scattering rates average over the various Fermi surfaces in
MnSi. Taken together, the increase of the topological Hall
resistivity with increasing pressure (and hence decreasing
helimagnetic transition temperature) arises clearly from a
rather unusual combination of mechanisms. It is, nevertheless,
fully compatible with the present understanding of the spin
order and electronic properties of MnSi.
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