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Theory of ground-state switching in an array of magnetic nanodots by application
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A theory of a ground-state switching in an array of axially magnetized cylindrical magnetic dots arranged in a
square lattice is developed. An array can be switched into a quasiregular chessboard-antiferromagnetic state by
the application of a short pulse of external in-plane magnetic field having a sufficiently long trailing front. The
statistical properties of an array magnetization in its final (after switching) state are determined at the linear stage
of growth of unstable collective spin-wave modes of the array under the action of a time-dependent magnetic
field, and depend critically on the rate of the field decrease: the slower this decrease, the more regular is the final
magnetization state. An analytical procedure is presented that allows one to relate the statistical properties of the
final demagnetized state of the array and the linewidth of the array’s microwave absorption to the parameters
of the external switching pulse. The comparison of the developed analytic theory with the results of numerical
simulations is presented and demonstrates good agreement between analytical and numerical results.
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I. INTRODUCTION

The magnetic structures with periodic variations of mag-
netic parameters [magnonic crystals (MCs)] have been attract-
ing much attention recently due to their possible applications
in microwave technology and signal processing.1 All the
MCs can be classified into two main types. The MCs of the
first type are formed from continuous magnetic materials by
periodic modulation of the material parameters, for instance,
by variation of a ferromagnetic film thickness,2,3 formation
of an antidot lattice,4,5 or application of a periodic external
magnetic field.6 These periodic variations of the magnetic
parameters lead to significant changes in spin-wave (SW)
spectrum of the periodically modulated medium, and, in
particular, to the formation of prohibited frequency bands (or
stop bands). In has been shown recently6 that the position
and the depth of these stop bands in a periodically modulated
medium can be controlled dynamically.

The MCs of the second type are formed by periodic arrays
of distinct magnetic elements (e.g., magnetic nanowires7 or
nanodots8), usually coupled by the long-range magnetodipolar
interaction. The main characteristic feature of this second type
of MCs is their multistability, i.e., existence in them of many
different ground states (static magnetization configuration). It
should be noted that at the zero external field, the ground
state of an individual magnetic element is at least double
degenerate since the magnetic energy is an even function of
the magnetization. Therefore, there are many possible static
magnetic configurations in an array of magnetic elements
under the same external conditions. The magnetodipolar
interaction between the elements removes the degeneracy of
different magnetization configurations of the MC leading to
the instability of most of them.

Nevertheless, there is a large region of the array’s pa-
rameters in which an array could have several stable ground
states, separated by energy barriers.9–11 Different ground states

correspond to different SW spectra and, as a consequence, to
different microwave properties of an array, which has been
demonstrated both theoretically11,12 and experimentally.13,14

Also, in contrast with the conventional magnetic materials, the
multistable magnetic materials with tunable properties could
be used without the application of a permanent bias magnetic
field.

It is of a great practical interest to find simple methods of
ground-state switching in a MC based on an array of individual
magnetic elements. In principle, every dot in an array can
be switched independently, for example, by means of spin-
transfer torque effect.15 However, the arrangement in which
each individual dot in an array is addressed independently
will greatly complicate the fabrication of an MC and will
substantially increase the MC cost.

One of the ways to switch a ground state of an array of
magnetic elements without addressing each individual element
is to fabricate an array consisting of several groups of magnetic
elements with different geometry. Since the elements in each
group have different reversal fields, by applying external
magnetic fields of different magnitude, one can reverse the
magnetization direction in each separate group of elements,
thus achieving different ground states of the array. This concept
was successfully realized experimentally with an array of
magnetic stripes having different width.13,14

This method, however, has several drawbacks. First of all,
the structure of the SW spectrum in arrays consisting of several
groups of elements is rather complex, as the number of the SW
branches in such a composite array can not be smaller than the
number of magnetic sublattices, which, in its turn, is no less
than the number of different groups of elements in the array.12

Thus, even in the case when all the array elements are
ferromagnetically ordered (magnetized in the same direction),
the spectrum of a ferromagnetic resonance (FMR) in such a
composite array consists of several absorption peaks. Also,
the process of switching between different ground states in
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FIG. 1. (Color online) Scheme of the ground-state switching in
an array of dipolarly coupled magnetic dots: (a) initial out-of-plane
ferromagnetic (FM) ground state; (b) transient in-plane FM state
reached after the application of an in-plane magnetic field pulse with
magnitude greater than a certain critical value Bc,x ; (c) temporal
profile of the switching in-plane magnetic field pulse; (d) final
chessboard-antiferromagnetic (CAFM) ground state reached after the
end of the switching pulse.

a composite array is quasistatic and, therefore, rather slow,
requiring times of the order of a second for each ground-state
switching.13

In our previous work (Ref. 16), we proposed a method
of ground-state switching in an array consisting of identical
single-domain perpendicularly magnetized cylindrical mag-
netic nanodots, arranged in a square lattice. The two simplest
stable ground states of such an array at zero external bias
magnetic field are the ferromagnetic (FM) and chessboard-
antiferromagnetic (CAFM, see Fig. 1) states. The prominent
feature of such an array is the degeneracy of the SW branches
in the CAFM state at zero wave vector,11,12 leading to only one
peak in its microwave absorption spectrum.

While switching of the array of identical elements into a
FM state is trivial (one just needs to apply a field pulse of
a sufficiently large amplitude in the direction of the static
magnetization of dots), the switching into a CAFM state is not
so simple. By means of numerical simulations we have shown
in Ref. 16 that after the application of an in-plane bias field
pulse with long trailing front, the array switches into a state
consisting of clusters with CAFM periodicity. The sizes of
these clusters and, therefore, the microwave properties of the
array after the switching, depend on the length of the trailing
front of the applied bias field pulse (see Sec. II). The typical
time range of switching is of the order of 100 ns.

Our present work is devoted to the theoretical consideration
of the switching process in an array of dipolarly coupled
identical magnetic dots. The main goal of this work is to
find relations between the parameters of the externally applied
bias magnetic field pulse and the properties of the final (after
switching) magnetization state of the dot array. Although most
of the equations presented in the text were obtained for an array
of axially magnetized cylindrical magnetic dots arranged in a
square lattice [Fig. 1(a)], the developed theory of the array

switching is general, and can be applied to any array switched
into a regular demagnetized state. Following, we discuss what
changes in the final expressions are necessary to make them
applicable for a different array geometry or/and the different
magnetization direction.

We note that the problem of the magnetization relaxation in
arrays of dipolarly coupled magnetic elements with perpendic-
ular anisotropy has been previously discussed in literature.17–19

Also, the processes of spin lattice ordering under the action of
thermal fluctuations have been discussed in Refs. 20 and 21.
The principal difference between these previously published
results and our current work is in the fact that previously
the relaxation of the magnetization state was considered as a
sequence of thermally activated random jumps of magnetic
moments (from the orientation Mz = ±Ms to the opposite),
while in our current work, the magnetization relaxation to a
final state on a short-time scale is mostly determined by a
different process: the growth of the spin-wave instability.

The paper is organized as follows. In Sec. II, we describe
the method of a ground-state switching in an array of dipolarly
coupled magnetic dots and the main features of the switching
process observed in numerical simulations. The magnetization
dynamics of the switching process and the statistical properties
of a final state of the array are considered in Sec. III. Then, we
compare the predictions of the analytic theory with the results
of numerical simulations (Sec. IV) and consider microwave
properties of the array in its final state (Sec. V). Finally, a
summary of the obtained results and conclusions are presented
in Sec. VI.

II. METHOD OF GROUND-STATE SWITCHING

As it was mentioned above, a magnonic crystal in the form
of an array of dipolarly coupled magnetic elements in the
absence of an external bias magnetic field may have more than
one stable ground state and these states may have distinctly
different microwave absorption properties. For a square array
of magnetic dots with radius R and height h with out-of-plane
shape anisotropy (h/R � 2, see Ref. 22), one of such possible
states is the out-of-plane FM state, when all the dots are
magnetized in the same out-of-plane direction [see Fig. 1(a)].
Another possible state (and this is thetrue ground state of the
array corresponding to the absolute minimum of its energy)
is the CAFM state, in which magnetizations of neighboring
dots are opposite [Fig. 1(d)]. Obviously, any array of magnetic
dots under the influence of thermal fluctuations tends ro reach
its true ground state (CAFM for our particular geometry), but
such thermal relaxation is useless for applications as it requires
a very long time (typically in a range of minutes, hours, and
more) or a significant heating of an array which can destroy it.

Another and more practical way to make an array of dots
to relax into its true ground state is to put an array into a
uniform but unstable state by application of an external field
pulse. In the following, we will call such an unstable state
existing only during the application of a switching magnetic
field pulse a transient state. After removal of the switching
pulse, the array will relax from the transient state into the
most probable state, which is expected to be close to the ideal
CAFM ground state. Obviously, the magnetizations of dots
in the transient state, which is, in fact, an in-plane FM state
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[see Fig. 1(b)], have to be perpendicular to magnetizations of
the dots in a true ground CAFM state. This unstable transient
state is realized under the action of an in-plane magnetic field
with the magnitude Bx > Bc,x , where the critical field Bc is
equal to

Bc,x = μ0Ms

(
Fxx

0 − Fzz
κ

)
. (2.1)

Here, F̂k is the array’s demagnetization tensor, defined in
Ref. 12, μ0 is the vacuum permeability, Ms is the saturation
magnetization, and κ = πex/a + πey/a, where a is the lattice
constant, is the wave vector corresponding to the minimum in
the spin wave spectrum of the dot array in the in-plane FM
state. If duration τx of a pulse with amplitude Bx [see Fig. 1(c)]
exceeds the critical value τx > τc,x , where

τc,x ∼ ln[(Bx − Bc,x)MsV/kBT ]

2γ (Bx − Bc,x)αG

, (2.2)

an array reaches a state of thermal equilibrium at the in-plane
field Bx and temperature T , and, therefore, loses all the
memory about its previous state. In the equation above, V

is the volume of a dot, kB is the Boltzmann constant, γ is the
gyromagnetic ratio, and αG is the Gilbert damping constant of
the dot magnetic material.

On the other hand, if the external in-plane bias magnetic
field, which created the transient state, decreases below the
critical value Bc,x , the transient state becomes unstable, and the
array starts to switch into another state. The most probable final
state is the CAFM state since even at a nonzero in-plane field
Be < Bc,x the energy minimum corresponds to the arrange-
ment of z component of the dots’ magnetization into a CAFM
periodicity. However, the CAFM state is double degenerate:
two different, but equivalent, configurations are related by the
inversion of the magnetization of all dots. Obviously, due to
this degeneracy and thermal fluctuations, the whole array can
not reach the ideal periodic true CAFM ground state. Instead,
the array is separated into clusters with local ideal periodicity
of two different degenerate kinds. The sizes of clusters of two
degenerate CAFM states depend significantly not only on the
array geometry, but also on the time rate of decrease of the
in-plane bias magnetic field16 [i.e., on the duration of pulse
trailing front τf ; see Fig. 1(c)]. When the bias field decreases at
a slower rate, the size of clusters becomes larger (see examples
in Fig. 2). In a real-life situation, with arrays consisting
of millions of dots, it would be practically impossible to
achieve the ideal CAFM state, and the remanent state will
always contain many CAFM clusters. However, concerning the
microwave properties of an array in the resulting CAFM state
and, in particular, the absorption spectrum of an array, the case
of an array divided into large CAFM clusters (with hundreds
of dots in each cluster) is practically indistinguishable from
the case of an ideal CAFM array. Thus, for microwave
applications, the existence of several large CAFM clusters
in the final state of an array is not important.

It should be noted that in all the above-presented cal-
culations, as well as in the further considerations, we use
the macrospin approximation, thus, assuming the uniform
magnetization distribution inside a dot during the whole
switching process. In other words, we use the classical
Stoner-Wohlfarth model23 for the dot magnetization rever-
sal. This model is correct for sufficiently small magnetic

(a) (b)

FIG. 2. (Color online) Examples of final states in a magnetic
dot array reached after the application of an in-plane magnetic field
pulse with different durations of the trailing front: (a) τf = 2000/ωM ;
(b) τf = 6000/ωM , where ωM = γμ0Ms . Blue (dark gray) and
yellow (light gray) circles correspond to the dots having the magneti-
zation directed up and down, respectively. Green (gray) background
indicates clusters with the CAFM periodicity μj = (−1)jx+jy , while
the rest of the dots form clusters with inverse periodicity μj =
−(−1)jx+jy (indices jx and jy denote position of a dot in an array).

nanodots, having radius R < 3.5lex [lex is the exchange
length (for permalloy lex ≈ 5.5 nm)]. The last condition
is satisfied for the dots made from soft magnetic mate-
rials in a single-domain state at remanence.24 However,
the assumption of the uniform dot magnetization during
the whole switching process is not crucial for the remag-
netization theory developed in this paper. As it will be
explained in the following, the only critical requirement
for the theory is the assumption that a soft spin-wave mode
inside the magnetic dot has a quasiuniform magnetization
profile in the transient state of the array.

III. THEORY OF SWITCHING

In this section, we present a theoretical description of
the switching process of an array of magnetic dots into a
final demagnetized state. First, we formulate a model of
magnetization dynamics while switching. Then, we develop
a convenient way to describe the properties of the final state
of the array. After this, we derive dynamical equations for
the dots’ magnetizations, solve them, and find the statistical
properties of a final state of the dot array. Finally, we formulate
the limits of applicability of the developed theory.

A. Model of switching

In the following, we will denote the position of the bottom
of the array’s SW spectrum in the transient state as κ . For
the square array considered in this calculation, this is the “M”
point of the first Brillouin zone (1BZ) κ = πex/a + πey/a

(see Fig. 3). Note that, in principle, there could be more than
one bottom points in the SW spectrum of the array within the
first Brillouin zone, and, thus, several wave vectors κ i , so-
called “star” wave vectors. It may seem that for a square array
considered here there are four points of spectrum minimum
located in the corners of the 1BZ. However, all these points
are physically equivalent, and by the shift of the 1BZ one can
obtain a Brillouin zone with only one value of κ . All the theory
developed in the following is also valid in such a case. Also
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FIG. 3. (Color online) (a) Spin-wave (SW) spectrum of a square
array of dipolarly coupled cylindrical nanodots in the in-plane FM
state (transient state) at the critical magnitude Bx = Bc,x of the
external bias magnetic field; (b) path of the spectrum plot in (a)
(shown by green arrows) and the first Brillouin zone of the array
lattice (shown by a gray dashed line). Parameters of the dot array: dot
aspect ratio h/R = 5, lattice constant a = 4R.

note that wave vectors κ do not necessarily correspond to a true
ground state of the array, as it is, for instance, for a hexagonal
array of dots with perpendicular anisotropy.25,26

At the critical magnitude of the external bias field, the SW
frequency at the point κ is zero. If the external field is slightly
smaller than critical, the SWs in the vicinity of κ become
unstable and start to grow exponentially from a thermal level.
At the beginning of this process, the amplitudes of the unstable
SWs are relatively small and, therefore, the different SWs do
not interact with each other (the only exception are the waves
with wave vectors k and −k, see following). In particular, this
means that, at least at the beginning stage of the SW instability,
the growing unstable SWs do not suppress the growth of other
SWs that have just become unstable.

When the unstable SWs have grown to a sufficiently
large level, the nonlinear interaction between them becomes
significant. We assume that at this stage the new unstable
SWs can not start to grow anymore. This can be easily
understood by recalling that the length of the magnetization
vector remains constant and, therefore, the z component of
the total magnetization is also finite: Mz � Ms . Thus, when
the Mz due to the growth of the SW instability reaches the
value Mz ∼ Ms , new unstable SWs can start to grow only
due to the nonlinear interaction with already existing unstable
SWs. Such a situation, when one SW mode with a small initial
amplitude suppresses the SW mode with a large amplitude,
requires strong nonlinear interaction and a large difference in
the growth increments of the two interacting SW modes.27

The results of our calculations show that this nonlinear mode
competition scenario is not realized in the process of switching
of a dipolarly coupled array of magnetic dots. Thus, in all the
following we assume that the properties of the final state of a
remagnetized dot array are determined by the linear stage of
the SW instability. After the magnetizations of the dots have
reached the level Mz ∼ Ms , the rapid growth of the unstable
SWs ends, and the z components of the dots’ magnetizations
do not change their signs anymore.

B. Characterization of a final state of a dot array

Due to the shape anisotropy of the dots, after the end of
the switching in-plane field pulse and the following relaxation
process, the magnetizations of all the dots will be parallel

to the z axis: Mj = μjMsez, μj = ±1. Here, j is a two-
dimensional index describing the dot position in the array. A
natural way to describe a disorder of the final state of the array
is to calculate the correlation function

K(j − j ′) ≡ 〈μjμj ′ 〉, (3.1)

where the angular brackets 〈. . .〉 denote averaging over all the
dots in the array.

Switching of the array into the final CAFM state is a random
process since it is affected by thermal fluctuations. Therefore,
one can define another averaging procedure: averaging over
different possible realizations of the thermal fluctuations. Ac-
cording to the ergodic hypothesis, these averaging procedures
are equivalent in the limit of infinitely large arrays and infinite
number of fluctuation realizations, respectively.

The correlation function is directly related to the probability
P(j ) that two dots (separated by j lattice parameters) have the
same directions of magnetizations:

P(j ) = 1 + K(j )

2
. (3.2)

For the ideal periodic CAFM state, Kid (j ) = (−1)jx+jy , while
for a totally disordered state, K(j ) → 0 for a large separation
j . The width of the correlation function determines the typical
cluster size in a final state of the array. Thus, it is possible to
introduce a single number A that characterizes a typical size
of a cluster:

A ≡
∑

j

Kid (j )K(j ). (3.3)

The number A has the meaning of a typical number of dots
in one cluster, but it is not exactly the averaged cluster size
obtained by dividing the total number of dots in an array by
a total number of clusters in this array. Nevertheless, A is a
convenient universal characteristic of the order in the final state
of the remagnetized array.

C. Relation between correlation function of a final state
with small-angle magnetization dynamics

The main assumption that allows us to relate the final
demagnetized state of a dot array to the small-angle dynamics
of the dot magnetizations in the transient in-plane FM state
is the assumption that when the dynamical part of the
dot magnetization mj (t) ≡ mz,j (t) grows to a substantial
level (|mj | ∼ 1), the z component of the dot magnetization
“freezes,” and the dot magnetization does not cross the surface
mj = 0 anymore. Therefore, the probability P(j ) that two
dots situated at a distance of j lattice parameters have the
same directions of magnetizations can be calculated at the
linear stage of the switching at a time t∗, when |mj (t∗)| ∼ 1. It
is assumed that after this time the relative direction of the dot
magnetizations does not change anymore, and stays the same
until the end of the switching process. Therefore, it is assumed
that P(j ) is equal to the probability that mi and mi+j have the
same sign:

P(j ) = P (mimi+j > 0). (3.4)

Since mi and mi+j are driven by white thermal Gaussian
noise, at the linear stage of instability growth, they are joint
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random Gaussian variables with zero mean values. Their joint
probability density function is given by the expression

p(mi,mi+j )

= 1

2π
√
M2(0) − M2(j )

× exp

[
−

(
m2

i + m2
i+j

)
M(0) − 2mimi+jM(j )

2[M2(0) − M2(j )]

]
,

(3.5)

where the correlation functions are given by M(j ) ≡
〈mimi+j 〉.

Integrating this probability density function over the regions
where mimi+j > 0, we get

P(j ) =
∫∫

xy>0
p(x,y)dx dy = 1

2
+ arcsin(ρj )

π
, (3.6)

where ρj ≡ M(j )/M(0) is the normalized correlation func-
tion at the linear stage of the instability development (small-
angle correlation function). Comparing this expression with
Eq. (3.2), it is possible to find the relation between the
correlation function K(j ) in the final state of the array and
the small-angle correlation function ρj in the form

K(j ) = 2

π
arcsin(ρj ). (3.7)

Obviously, here small-angle correlation function ρ(j ) has to be
calculated at the time t∗. Also, since M(0,t) has the meaning
of the squared magnitude of mj , the condition for the end of the
linear stage of the instability development can be formulated
as M(0,t∗) ∼ 1.

D. Derivation of dynamical equations for the dot magnetization

As it follows from the previous section, to find the
correlation function of the dot magnetizations in the a final
state of the array it is necessary to know the dynamics of the
z component of the dot magnetization at the linear stage of
the magnetization switching. It should be noted that for this
purpose one can not expand the dynamical magnetization of
a dot in a series of dots’ SW eigenmodes and use the usual
equations for the amplitudes of the normal oscillation modes
of a dot [similar to Eq. (3.24) in Ref. 12] for the following
reasons: (i) the eigenmode structure of a dot is time dependent
due to the time-dependent external bias field (switching pulse)
and (ii) the normal SW modes can not be introduced at the
stage when the SW instability is developing. Thus, one needs
to start consideration from the very beginning and to use the
well-known and general Landau-Lifshitz-Gilbert equation for
the dot magnetization:

d Mj

dt
= −γ Mj × Beff,j − γαG

Ms

Mj × (Mj × Beff,j ),

(3.8)

where the effective magnetic field is given by

Beff,j = Be(t) − μ0Ms

∑
j ′

N̂jj ′ · Mj ′ + BT (t). (3.9)

Here, Be(t) is the time-dependent external bias magnetic field
(switching pulse), N̂ is the mutual demagnetization tensor of
magnetic dots,28 and BT (t) is the vectorial isotropic Gaussian
white noise with zero mean value 〈BT 〉 = 0 and correlation29

〈BT (t) · BT (τ )〉 = ν2δ(t − τ ), ν2 = 2αGkT

γMsV
. (3.10)

Next, we represent the dot magnetization Mj as a sum
of the transient state in-plane magnetization μ and a small
dynamical part of the dot magnetization mj :

Mj (t) = Ms[μ + mj (t)]. (3.11)

The dynamical part of the dot magnetization can be expanded
in a series of collective SW modes ck of the array

mj =
∑

k

(mke
ik·rj ck + c.c.), (3.12)

where c.c. denotes complex conjugation. Here, the vector
amplitudes mk form an arbitrary fixed basis that can be k
dependent or not. The only requirement for choosing the
vector amplitudes in this basis mk is the condition that this
basis is full or, in other words, that its norm12 is nonzero
im∗ · μ × m 
= 0. In our particular case, it is convenient to use
a circularly polarized basis m = (0, − i,1)/

√
2.

Using this representation, the above-introduced correlation
function M(j ) is expressed as

M(j ) = Re

[∑
k

(〈ckc
∗
k〉 + 〈ckc−k〉)eik·rj

]
. (3.13)

Substituting Eqs. (3.11) and (3.12) for the dot magnetization
vector in Eq. (3.8) and keeping only the terms linear in ck, one
can obtain the following equation for the amplitudes ck of the
collective SW modes in the array:

dck

dt
= −i
kck − iSkc

∗
−k − �kck + ηk(t). (3.14)

The coefficients in the above equation are


k = γB + ωM

F
yy
κ + Fzz

κ

2
, (3.15a)

Sk = ωM (1 + iαG)
Fzz

κ − F
yy
κ

2
, (3.15b)

�k = αG
k, (3.15c)

where ωM = γμ0Ms and the scalar static internal field is given
by

B = Be,x(t) − μ0MsF
xx
0 . (3.15d)

The thermal fluctuations acting on the collective mode ck are
described by the following term:

ηk = iγ m∗ · ∑
j BT ,j e

−ik·rj

Nd

, (3.16)

where Nd is a number of dots in an array. Noting that the
fluctuation field BT ,j acting on any particular dot is not
correlated with the similar field acting on any other dot
and using the statistical properties of the fluctuations (3.10),
one can prove that ηk is a scalar Gaussian delta-correlated
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stochastic process with zero mean value and a correlation
function given by

〈ηk(t)η∗
k′(t ′)〉 = σ 2

η δ(t − t ′)δk,k′ , (3.17a)

σ 2
η = γ 2ν2

3Nd

. (3.17b)

Note also, that due to a particular choice of the basis m, the
processes ηk and ηk′ are not correlated for any values of the
wave vectors.

E. Dynamics of unstable collective SW modes

The dynamics of unstable collective SW modes in the
dot array is described by two coupled equations (3.14). The
main difficulty in the solution of these equations is the time
dependence of their coefficients 
k and �k due to the time-
dependent external field magnetic field (switching pulse). It
may happen that for a particular choice of the time dependence
of the switching pulse Be(t) it would become possible to find
the exact solution of the equations (3.14) analytically. We,
however, will concentrate below on the approximate solution
of Eqs. (3.14), assuming slow and monotonic time dependence
of the field Be(t) in comparison with the typical period of
collective eigenoscillations of magnetization in the array.

The system of equations (3.14) can be reduced to a single
inhomogeneous differential equation of the second order

c̈k + 2�kċk + (

2

k − |Sk|2 + i
̇k + �̇k + �2
k

)
ck = f (t),

(3.18)

where ċ ≡ dc/dt denotes the time derivative and the external
force f (t) is given by

f (t) = η̇k(t) − iSkη
∗
−k(t) − i
kηk(t). (3.19)

One can also obtain a similar equation for c∗
−k. The solution

of the inhomogeneous equation (3.18) with natural initial
conditions ck(t → −∞) = 0, ċk(t → −∞) = 0 can be rep-
resented via two linearly independent solutions x(t) and y(t)
of a corresponding homogeneous equation as follows:

ck(t) = x(t)
∫ t

−∞

1

W
f (τ )y(τ )dτ − y(t)

∫ t

−∞

1

W
f (τ )x(τ )dτ,

(3.20)

where W ≡ ẋy − xẏ is the Vronsky’s determinant of
Eq. (3.18). Thus, it is necessary to find a general solution
of a homogeneous Eq. (3.18) (with zero right-hand-side part).

To find an approximate solution of Eq. (3.18), one
can neglect all the small damping terms containing αG in
the circular brackets. Also, if the external time-dependent
magnetic field decreases at a sufficiently slow rate, so that
(dBe/dt)/B  ωM , the term 
̇k is significant only during a
short-time interval near the transition from the stable to
unstable regime and, therefore, can be also dropped. Then,
introducing the squared free-running SW frequency as ω2

k ≡

2

k − |Sk|2, we can rewrite the homogeneous part of Eq. (3.18)
in following form:

c̈k + 2�k(t)ċk + ω2
k(t)ck = 0. (3.21)

It should be noted that the derived dynamical
equation (3.21) for the amplitudes of collective SW modes

of a dot array is rather general and is applicable not only to the
particular case of a square array of uniformly magnetized dots
considered in this text, but also for the dot arrays of a different
geometry. A similar equation will work even in the case when
the ground state of the magnetization in a dot is nonuniform,
and will, for example, describe the growth of unstable SW
modes in the case of switching of the ground state of dots in
an array from uniform to vortex.30 The only change will be
in the frequency ωk of the soft SW mode, the mode with the
largest critical field Bc, which becomes unstable first when the
external bias magnetic field is gradually reduced.

To solve Eq. (3.21), we need to find approximations for
the functions ω2

k(t) and �k(t). Let us define the time origin
as the moment when the soft SW mode becomes unstable:
ω2

k(t = 0) = 0. A squared frequency of this soft mode is a
smooth function of the external magnetic field (see Appendix)
and, thus, of time, if the external magnetic field is also a smooth
function of time. Thus, the frequency of the soft mode can be
expanded in a common Taylor series near the point t = 0.

It should be noted that there are two possible types of the
soft mode instability: an unstable focus instability and a saddle
point. For the focus instability, the linear term in the frequency
expansion ω2

k(t) vanishes and the frequency ω2
k is non-negative

at any time. Thus, the unstable mode grows due to “negative
damping.” This type of instability can occur only in the cases
of high symmetry since it requires the equality of F

yy
κ and

Fzz
κ [see Eq. (A1)]. A more common case that, in particular,

takes place for the geometry of the square dot array considered
above is a saddle-point instability, in which ω2

k changes sign
and becomes negative. In the following, we will consider only
this case of a saddle-point instability for which the squared
frequency of the soft SW mode can be approximated as
ω2

k ≈ −ξ t , where

ξ ≡ − dω2
κ

dBe

∣∣∣∣
Bc

· dBe

dt

∣∣∣∣
Bc

. (3.22)

The damping term in Eq. (3.21) is nonzero at the time t = 0
and is approximated as

�k(t) ≈ αG
0, 
0 ≡ 
κ (Be = Bc) = ωM

F
yy
κ − Fzz

κ

2
.

(3.23)

Here, we also assume for simplicity that the only difference
between the collective SW modes with different wave vectors
is the time when the mode becomes unstable when the external
bias field is decreasing and, therefore, the coefficients in the
approximate Eq. (3.21) are independent of the wave vector k.

Under all the above-described assumptions and simplifica-
tions, Eq. (3.21) can be rewritten as

c̈k + 2αG
0ċk − ξ tck = 0. (3.24)

Using the method of slowly varying amplitudes, it is possible
to obtain a fundamental solution of Eq. (3.24) in the form

x(t) = Ai( 3
√

ξ t)e−αG
0t , y(t) = Bi( 3
√

ξ t)e−αG
0t , (3.25)

where Ai and Bi are the Airy’s functions. In the range of
negative times t < 0, both Airy’s functions are oscillating
with the time-dependent period.31 For positive times t > 0,
the function Bi rapidly increases with time, while the function
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Ai rapidly decreases to 0. Keeping only the fastest increasing
term, the following expression for the amplitude of the unstable
soft SW mode can be obtained:

ck(t) = π
3
√

ξ
Bi( 3

√
ξ t)

∫ t

−∞
f (τ )Ai( 3

√
ξτ )eαG
0τ dτ. (3.26)

Here, we have used the well-known expression31 for the Airy’s
functions Ḃi(t)Ai(t) − Ȧi(t)Bi(t) = 1/π .

Using the explicit expression for the driving force f (t)
[Eq. (3.19)] and taking into account the statistical properties
of stochastic process ηk(t) [Eq. (3.17)], one can find the
correlation function for the unstable SW mode

〈ckc
∗
k〉 + 〈ckc−k〉 ≈ 4
2

0σ
2
η

ξ 5/6
√

αG
0
Bi2( 3

√
ξ t). (3.27)

Here, we retained only the largest term in the correlation
function, noting that 
0 � 3

√
ξ, αG
0 for typical parameters

of a magnetic dot array.
In Eq. (3.27), the time t is defined differently for each

particular SW mode, so that each mode becomes unstable
at t = 0. In “real” time, each SW mode becomes unstable
at the moment defined from the condition ω2

k(t ′) = 0. Using
the spectral approximation (A2), this instability condition can
be transformed to the following expression for the instability
moment of each SW mode t ′ = w(�k)/ξ . Noting this and
changing the summation over the mode wave vectors

∑
k

to integration (NdS0/4π2)
∫

dk in Eq. (3.13), we get the
following expression for the small-angle correlation function:

M(j ) = 
2
0γ

2ν2S0

3π2ξ 5/6
√

αG
0
Re ×

[
eiκ ·rj

∫
ξ t>w(�k)

Bi2

× ( 3
√

ξ [t − w(�k)/ξ ])ei�k·rj d�k
]
, (3.28)

where the integration is performed over all the region of
unstable SWs having wave vectors k = κ + �k. Here, S0 is
the area of an elementary cell of the dot array lattice which is
equal to S0 = a2 for a square lattice.

F. Statistics of a final state of a dot array

Using Eq. (3.28), it is possible to evaluate the statistical
properties of the final state of a dot array after the application of
a switching in-plane magnetic field pulse. The general scheme
of the calculation is as follows: (i) find the time moment t∗
at which the growth of unstable SW modes stops from the
condition M(j = 0,t = t∗) = 1; (ii) calculate the small-angle
correlation function M(j ) at the time t∗; (iii) calculate the
correlation function of a final state of the dot array using
Eq. (3.7). Knowing the correlation function K(j ) and using
Eq. (3.3), one can find an average size of the CAFM clusters in
the final state of the array and then can evaluate the microwave
absorption curve of an array in its final state (see Sec. V).

Equation (3.28) is general and is applicable to a dot array
with an arbitrary dispersion relation ω2

k|B=Bc
≡ w(�k), and

in particular to the case when there is more than one unstable
point κ in the Brillouin zone of the array. In a particular case
when there is only one unstable point κ in the Brillouin zone
and when the SW spectrum near this point κ is monotonic and
isotropic, so that it can be approximated as w(�k) = (v|�k|)2,

an explicit expression for the correlation function K(j ) in the
final state of the array can be obtained. The square array of
cylindrical dots considered above satisfies these conditions.

In the switching process, all the unstable SW modes start
to grow from the thermal level, which is very small, and
therefore their amplitudes reach the values ∼1 when the
argument of the Airy’s function in Eq. (3.28) is much greater
than 1. Thus, for the most of the unstable SW modes in the
final state, the relation t∗ � v2�k2/ξ is satisfied, where v

is the group velocity and �k is the wave-number interval of
the unstable SW modes. Using the asymptotic behavior of
the Airy’s function at large values of the argument Bi(x) ≈
exp[2x3/2/3]/ 4

√
π2x and expanding its argument in a Taylor

series to the accuracy of O(�k4), it is possible to obtain the
following approximate expression for the Airy’s function in
Eq. (3.28):

Bi2( 3
√

ξ [t − w(�k)/ξ ]) ≈ 1

π
√

tξ 1/6
e

4
3

√
ξ t3/2

e
−2

√
t
ξ

v2�k2

.

With this approximation, it is possible to perform integration
in Eq. (3.28) extending the integration limits to all the k
space, and to obtain an explicit expression for the small-angle
correlation function

M(j ) = Kid (j )
γ 2ν2


3/2
0 S0

6π2v2t
√

αGξ
exp

[
4

3

√
ξ t3/2 − r2

j

8v2
√

t/ξ

]
.

(3.29)

Here, we have used that Kid (j ) ≡ Re[eiκ ·rj ] = (−1)jx+jy .
Thus, the normalized small-angle correlation ρj ≡ M(j )/
M(0) that, in the end, defines the correlation function of the
final state of the array [see Eq. (3.7)] has a usual Gaussian
form, but with a time-dependent dispersion

ρj (t) = Kid (j )e−r2
j /2σ 2

j (t), σ 2
j (t) = 4v2

√
t/ξ . (3.30)

As one can see, the dispersion σ 2
j increases with time,

which means that the magnetization dynamics becomes more
correlated in space.

As it was mentioned above, the growth of the SW instability
stops and the z component of magnetization freezes after the
dynamic magnetization of the dot reaches a significant level
mz ∼ √

M(0) ∼ 1, which corresponds to the beginning of
a nonlinear interaction between the SW modes. An explicit
expression for this moment of time t∗ can be obtained using
a well-known method of successive approximations. In the
zeroth approximation order, this time is equal to t

(0)
∗ ≈ ξ−1/3

that, finally, leads to the expression

t∗ = C2
t

3
√

ξ
, Ct =

[
3

4
ln

6π2v2√αGξ 1/6

γ 2ν2

3/2
0 S0

]1/3

. (3.31)

As one can see, the time t∗ depends inversely on ξ and,
according to Eq. (3.22), it also depends inversely on the
slope dBe/dt . This is an expected result because the faster
is the decrease of the external magnetic field, the larger is
the increment of the mode growth and, therefore, the faster
the mode reaches the nonlinear stage of its growth.

The value of t∗ is only weakly dependent on all the
parameters of the dot array and/or the parameters of the
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switching pulse, except the parameter ξ determined by
the rate of decrease of the external bias magnetic field. For
typical parameters of an array (see Sec. IV), the constant Ct

is of the order of Ct ∼ 1–2, so for rough estimation of the t∗,
averaged cluster size, etc., one can assume that Ct ≈ 1. We
also note that all the above-developed theory is valid only if
the processes of SW mode growth are finished before the
end of the switching field pulse, so that the time t∗ must
be smaller than t∗ < 2γ
0Bc/ξ , which, in the end, leads to
the following approximate condition for the parameter ξ <√

2γ
0Bc determined by the decrease rate of the amplitude
of the switching pulse.

Finally, using the above-evaluated value of t∗ in Eq. (3.30)
and taking into account relation (3.7), one gets the following
expression for the correlation function of the final state of the
dot array:

K(j ) = (−1)jx+jy
2

π
arcsin e−r2

j /2σ 2
j , σ 2

j = 4v2Ct

ξ 2/3
. (3.32)

For small interdot separations rj the correlation function
decreases as K(j )/Kid (j ) = 1 − πrj/2

√
2σj + O(r2

j ), while
for large interdot separations it behaves like K(j )/Kid (j ) ∼
2 exp[−r2

j /2σ 2
j ]/π .

Using the above expression for the correlation function
in the final state of the array in Eq. (3.3) and replacing the
summation over j by integration, an explicit expression for
the averaged cluster size can be obtained as

A ≈ 17.6
v2Ct

a2(ξ )2/3
. (3.33)

Similarly to the dependence of the characteristic time of the
SW instability growth t∗, the averaged CAFM cluster size
strongly depends on the time derivative of the squared SW
frequency ξ , and, therefore, on the time rate of decrease
of the external switching magnetic field. Another significant
parameter determining the cluster size A is the relative SW
group velocity at the point of instability v/a. As it can be
seen from Eqs. (3.7) and (3.31), the range of SW modes that
become unstable during the switching process is determined
from the condition v�k < const. Thus, for larger values of the
SW group velocity, the unstable SW modes are located closer
to the wave vector of the initial instability κ that, obviously,
leads to a more spatially correlated final state of the dot array.

G. Applicability limits of ground-state switching model

The above-developed theory of a ground-state switching of
a dot array is valid if the z component of a dot magnetization
“freezes” after the end of the linear stage of the SW instability
growth (i.e., at times t > t∗). Such a case is realized if the
energy of thermal fluctuations is insufficient to overcome
the energy barrier between the two opposite orientations of
magnetization (the magnitude of which is time dependent) and
to change the sign of Mz. In the above-presented calculations,
we have assumed that the growth of unstable SWs ends after the
magnetization reaches the value of mz ∼ 1. More rigorously,
this condition can be formulated as a condition for mz to reach
its “equilibrium” value at the instant magnitude of the external
in-plane bias magnetic field meq(Be) (see red dashed line in
Fig. 4). This correction is important to consider for the limits of

FIG. 4. (Color online) Schematic representation of the magneti-
zation dynamics in a dot array [described by the magnetization vector
Mz(t), blue solid line, right axis] during the switching process caused
by the application of the in-plane magnetic field Bx(t) (green dotted
line, left axis). Red dashed line shows the equilibrium value of the
dot magnetization meq (Be) at the instant (time-dependent) magnitude
of the applied field. Thermal fluctuations of Mz are not shown.

applicability of our model, but does not lead to any qualitative
changes in the above-developed theory.

To calculate the equilibrium magnetization meq(Be) and
the value of the energy barrier, let us assume that the external
in-plane magnetic field (directed along the x axis) is smaller
than the critical value and that the z components of the dot
magnetizations are arranged in an ideal CAFM periodic lattice:
Mj = Ms[

√
1 − m2

z,0,(−1)jx+jy mz] (which is the most prob-
able state of the dot array). In a Stoner-Wohlfarth model, the
value of the energy barrier, which prevents the magnetization
from changing the sign of its z component, is determined as
a difference between the energy of a particular state and the
energy of a state in which the magnetization of only one dot is
aligned along the x axis. This energy barrier is equal to

�W (t) = 1
2m2

z(t)MsV
[
μ0Ms

(
Nxx

s − Fzz
κ

) + Bc − Be(t)
]
,

(3.34)

while the equilibrium magnetization is m2
z = 1 − [Be(t)/Bc]2.

The probability of overcoming this barrier due to the ther-
mal fluctuations is given by the Boltzmann distribution
exp[−�W/kT ] and the attempt frequency is of the order
of the SW eigenfrequency |ωκ (t)|. If the average number
of thermally activated jumps during the time interval t ∈
[t∗, Bc/λ] described by the following integral is small,∫ Bc/λ

t∗
|ωκ (t)|e−�W (t)/kT dt  1, (3.35)

the z component of the magnetization freezes after the end of
the linear stage of mode growth, and, therefore, the properties
of a final state of the array are determined only by the linear
growth of SW instability. Using expressions (3.31) and (3.34),
this condition can be simplified to the following inequality:

ξ �
(

2γBc
0

Nxx
s − Fzz

κ

kT

μ0M2
s V

)3/2

. (3.36)

As one can see, the limits of the described switching regime
are determined not only by the relative intensity of the thermal
fluctuations, but also by the time rate of decrease of the
applied bias magnetic field. With the decrease of this rate, the
probability of a different (thermal) switching regime increases
due to a smaller value of the equilibrium magnetization at the
end of the SW instability growth. For the typical parameters of
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a dot array (see Sec. IV), the length of the trailing front of the
applied magnetic field pulse has to be shorter than τf  1 μs
to satisfy the above condition.

In the regime of thermal switching, an array reaches its final
state by a sequence of thermal jumps of magnetization. Our
numerical simulations have shown that with the increase of
temperature, the final state of the array becomes less regular.
Also, if the array moves into the regime of thermal switching,
when the duration of the trailing front of the switching pulse
decreases, the average CAFM cluster size in the array does not
increase anymore and can even decrease. Thus, the maximum
cluster size in the final state of the array, which can be
achieved by increasing the duration of the trailing front of
the switching field pulse, is limited by the possible transition
into the regime of thermal switching. In particular, one can not
expect switching of a large array, consisting of millions of dots,
into a perfect periodic ground state by using longer and longer
switching field pulses. Possibly, at a larger time scale (with
switching pulse durations in the millisecond–second range),
the increase of the pulse duration may lead to a more regular
final state of the array since the ideal CAFM state is a true
ground state of a coupled dot array. However, the detailed
investigation of thermal switching regime is beyond the scope
of our present work.

IV. COMPARISON WITH NUMERICAL SIMULATIONS

In order to verify the above-derived analytical results, we
simulated numerically the magnetization dynamics of a dot
array while switching by an applied in-plane magnetic field
pulse. For that purpose, we solved a system of stochastic
Landau-Lifshitz equations (3.8) using the numerical midpoint
rule technique suggested in Refs. 32 and 33. The shape of
a switching magnetic field pulse used in our simulations is
shown in Fig. 1(c). This pulse consists of a rectangular part
of the duration τx > τx,c and overcritical magnitude B0 =
1.1Bc,x , and a linearly decreasing part Be(t) = B0(1 − t/τf ).
For such a pulse shape, the time derivative of a squared SW fre-
quency is equal to ξ = 2γ
0B0/τf . All the results presented in
the following were calculated for an array of cylindrical mag-
netic dots with aspect ratio h/R = 5 arranged in square lattice
with a period a = 4R [see Fig. 1(a)]. The critical field for this
particular geometry is equal to Bc,x = 0.23 μ0Ms , the array
parameter 
0 is 
0 = 0.156ωM , while the SW group velocity
in the transient in-plane FM state near the bottom of spectrum
corresponding the the wave number κ is v(φk) = 0.03aωM .
The other parameters used in our numerical simulations are
Gilbert damping constant αG = 0.01, the amplitude of thermal
fluctuations kT /μ0M

2
s Vd = 3.2 × 10−4 (which corresponds

to permalloy dots at room temperature T = 300 K having the
radius R = 10 nm), and the size of the simulated array of
Nd = 40 × 40 dots with periodic boundary conditions.

First of all, we did five independent simulations of the
switching process in the array and obtained five realizations of
the final state of the array after switching. Then, we calculated
the correlation function K(j ) for each of the simulated final
states and took the average of these results, thus obtaining
the averaged correlation function of the final state of the
array. This result was compared with the analytical calculation
made using Eqs. (3.28) and (3.32). The results of this

FIG. 5. (Color online) Correlation functions (−1)jxK(jx,jy = 0)
of a final state of a magnetic dot array after the application of a
switching field pulse with different durations of the trailing front τf .
Dots: results of numerical simulations, averaged over five runs; lines:
theoretical prediction calculated using Eqs. (3.28) and (3.7).

comparison are presented in Fig. 5 and demonstrate excellent
agreement between the analytical and numerical data. A small
discrepancy between the theory and the numerical simulation
seen at τf ωM = 6000 is caused by the finite-size effects since
in this case a final state has only a few CAFM clusters.
Also, one can simulate switching of a large dot array, thus
replacing the averaging over the calculation realizations by
averaging over a large number of dots. However, in this case
the correlation function will be really statistically averaged
only for the arguments that are much smaller than the size Nd

of the array |j |  √
Nd .

The calculation of the averaged size A of a typical CAFM
cluster in the final state of the array is especially sensitive
to the degree of averaging of the correlation function since
the simulated correlation function Kid (j )K(j ) ≡ |K(j )| for
certain realizations can be negative, while the theoretical one
and the one that is well statistically averaged are always
positive. However, in some cases it is necessary to estimate the
cluster size A from only one particular realization of the final
state of the array. In such a case, we propose to use in Eq. (3.3)
instead of summation over all the possible j the summation
only up to a certain value j ′, at which A(j ′) starts to decrease
with the increase of j , thus dropping the negative “tails” of the
correlation function modulus. This method is based on the fact
that the central part of the correlation function K(j ) (for small
values of the correlation function argument) is already well
averaged due to a sufficiently large size of the array, while the
correlation function of the arguments of the order of array size
is substantially influenced by the finite-size effects. We used
this method for the calculation of the cluster size A in the case
of large duration of the switching pulse tail, when the array in
its final state splits in only a few CAFM clusters.

The dependence of the averaged cluster size A on field
pulse duration is shown in Fig. 6. It is clear from this figure
that both full model (3.28) (blue solid line) and the simplified
expression (3.33) (red dashed line) demonstrate a reasonably
good agreement with the results of numerical calculations
(numerical data for τf ωM = 5500, 6000, from which it seems
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FIG. 6. (Color online) Dependence of the averaged CAFM cluster
size A in the final state of a dot array on the duration of trailing front
τf of the switching field pulse. Black circles: cluster sizeA calculated
using, averaged over five realizations, correlation function K(j ) of
the numerically simulated final states of the array; lines: theoretical
prediction calculated using the full expression (3.28) (blue solid line)
and the simplified expression (3.33) (red dashed line).

the simplified expression fits data better may be less accurate
since for such values the calculated region divides only on
a few clusters). According to the theoretical prediction, the
clusters in a final state of the array increase in size asA ∼ τ

2/3
f .

For all the presented results, the regime with the freezing of
the z component of magnetization is realized. According to
Eq. (3.36), the transition to the regime of thermal switching
starts at τf ωM � 104 (τf � 55 ns for permalloy). For this
value of τf , the averaged cluster size is A ≈ 70 which is, in
fact, close to a maximum cluster size that can be obtained
for the array parameters used in our calculations. This cluster
size may seem small, but, as it will be shown below, such a
quasiregular final state of a dot array has a sufficiently good
microwave properties to be useful in practical applications as
media with dynamically reconfigurable microwave absorption
parameters.

V. MICROWAVE PROPERTIES OF A FINAL STATE

In this section, we discuss the microwave absorption spectra
of a magnetic dot array in the final state after the application
of a switching magnetic field pulse that leaves the array in a
quasiregular CAFM state consisting of several CAFM clusters.
We assume that a spatially uniform external microwave signal
is applied to the dot array and study the absorption of the array
as a function of the frequency of the applied microwave signal.
In such a case, only quasiuniform spin-wave modes with wave
vectors k  π/a can be excited in the array.

If an array of magnetic dots exists in an ideal periodic
ground state, there are several distinct peaks in its microwave
absorption spectrum. The number of these peaks is determined
by the array’s symmetry and, typically, is equal to the number
of magnetic sublattices in the array’s ground state. The width
of each of these absorption peaks, corresponding to different
quasiuniform SW modes and having the central frequency ωp,
is determined by the Gilbert damping constant αG of the dot
magnetic material, by the SW mode frequency ωp, and also by
the SW mode ellipticity ε to give �ωp = 2αGεpωp.12 Here,

we use a traditional definition of the linewidth �ω as a full
width at half maximum (FWHM).

Any irregularities in the array’s periodic ground state lead to
the inhomogeneous broadening of the microwave absorption
lines. In strongly irregular or disordered ground states, the
microwave absorption spectra have a complicated broadened
structure that is difficult to describe using the common notions
of resonance absorption frequency and FWHM.16

However, if a ground state of an array is quasiregular, i.e.,
consisting of well-defined clusters with ideal periodicity, the
microwave absorption spectrum of the array consists of well-
defined absorption peaks, the central frequencies of which
coincide with the resonance frequencies of the SW modes
existing in an ideal periodic demagnetized state (note, however,
that if an array in an ideal periodic ground state has a nonzero
total magnetic moment, as in the FM state, the absorption peak
of the clustered final state will be shifted in comparison with
the ideal state due to the different internal magnetic field). The
influence of the ground-state irregularity in such a quasiregular
array will manifest itself in the changing of the line shape (the
line will no longer have a common Lorentzian shape) and in
the line broadening (see the inset in Fig. 7). We also note
that for a simple square array of identical magnetic dots in the
ideal demagnetized (CAFM) state, there is only one microwave
absorption peak at the frequency ωCAFM [see Eq. (4.12) in
Ref. 12] due to the frequency degeneracy of the collective
SW modes, and it is natural and convenient to describe such a
simple absorption spectrum using the usual FWHM linewidth.

In general, the shape of a microwave absorption is de-
termined as a convolution of resonance lines caused by
the homogeneous damping and inhomogeneous broadening
mechanisms.34 Since different inhomogeneous mechanisms
lead to different resonance line shapes, there is no universal re-
lation between the total absorption linewidth and the linewidths
caused by each absorption mechanism separately. However, if

FIG. 7. (Color online) Dependence of the linewidth of microwave
absorption in the final state of a remagnetized magnetic dot array on
the averaged CAFM cluster size A. Dots: values calculated from
the numerically simulated final states of the 24 × 24 dot array (the
method of absorption spectrum calculation described in Ref. 12); solid
line: analytical calculation using Eq. (5.1). The microwave absorption
linewidth of an array in the ideal periodic CAFM state is shown by a
green dashed line. Inset: example of a microwave absorption spectrum
of a 24 × 24 dot array in a final state after the action of a switching
field pulse with the trailing front duration τf ωM = 2000.

134419-10



THEORY OF GROUND-STATE SWITCHING IN AN ARRAY . . . PHYSICAL REVIEW B 87, 134419 (2013)

both mechanisms lead to the line broadening which is small
compared to the resonance absorption frequency, the total
FWHM is approximately equal to the sum of the homogeneous
and inhomogeneous linewidths �ω = 2αGωCAFM + �ωih.

Obviously, the contribution from the inhomogeneous
broadening �ωih has to depend inversely on the cluster size
in the quasiregular CAFM state. Due to the ground-state
irregularity, a spatially uniform microwave field can excite
SW modes having nonzero wave vectors. The characteristic
values of these wave vectors are of the order of |k| ∼ 1/a

√
A.

By fitting the numerical results we have found that the FWHM
in a final-state demagnetized state of a magnetic dot array can
be approximated by the expression

�ω ≈ 2ωCAFM

(
αG + 1

(a/R)2
√
A

)
. (5.1)

The first (homogeneous) term in this expression has been
derived in Ref. 12 [see Eq. (3.23) and discussion in Sec. IV B
in Ref. 12], while the second (inhomogeneous) term has
been obtained empirically by fitting the numerical data. It is
clear from Eq. (5.1) that the influence of the inhomogeneous
broadening is slowly reduced with the increase of the averaged
cluster size A, and also is inversely proportional to the square
of the interdot separation a. Obviously, for a sufficiently large
separation between the dots, the dipolar coupling between
them becomes negligible and all the array’s properties are
determined by by the magnetic properties of a single dot.

Equation (5.1) gives a reasonably accurate estimation of the
FWHM for the magnetic dot arrays in a quasiregular CAFM
state at zero permanent field in a wide range of the array’s
geometrical parameters (see Fig. 7). Obviously, for strongly
disordered ground states (for which A � 10), this estimation
is not correct since the microwave absorption line in this case
becomes irregular with significant additional absorption lines
related to the defect modes (which appear at the border of
CAFM clusters). Note that our numerical simulations have
shown that the scaling �ωn/h ∼ 1/

√
A is rather general and

remains the same for other array’s geometries (for instance,
for nonsquare lattice of the array). However, the coefficient in
the term describing the inhomogeneous broadening could be
different for different array geometries, in particular for the
cases when SW branches are not frequency degenerate at the
zero wave vector.

As one can see from Fig. 7, the inhomogeneous broadening
becomes smaller than the homogeneous absorption if the aver-
age cluster size is about A � 40, which makes arrays with this
(or larger) cluster size suitable for many practical applications
in microwave technology. Note also that in real samples of
the magnetic dot arrays there will be an additional mechanism
of absorption line broadening related to the imperfections in
the geometry of individual dots. Therefore, from the point of
view of microwave absorption, the arrays in the ideal CAFM
state and in quasiregular states having sufficiently large CAFM
clusters will be practically indistinguishable. For our particular
square geometry of the array lattice, such quasiregular states
can be achieved using field pulses with trailing front duration
of the order of τf ωM � 4000 (τf � 25 ns for permalloy dots).

VI. SUMMARY

In this work, we developed an analytic theory of ground-
state switching in an array of dipolarly coupled magnetic
dots. The final ground state of the array is a quasiregular
demagnetized state consisting of several reasonably large
CAFM clusters. The switching is achieved by application of an
in-plane magnetic field pulse with a sufficiently long trailing
front. Although the theory was developed for one particular
case, i.e., the case of a square array of cylindrical magnetic
dots, the developed formalism can be easily adjusted for a dot
array having a different geometry. The only geometry-related
feature of the considered array of dots is the dispersion relation
of the soft collective SW mode in the array.

We have found that the switching process consists of two
stages: a relatively short process of growth of unstable SW
modes taking place immediately after the transient in-plane
FM state of the array becomes unstable, and a relatively slow
process of magnetization relaxation to the final demagnetized
quasiregular CAFM state, taking place after the SW-related
dynamic magnetization reached a sufficiently high level
m ∼ 1. All the properties of the final ground state of the array
are determined at the first (short) stage of switching.

The statistical properties of the array’s final state are mainly
determined by the SW group velocity in the vicinity of bottom
(soft) point in the SW spectrum in the transient in-plane FM
ground state and by the time derivative of the squared SW
frequency, which is directly proportional to the time rate of
decrease of the applied switching magnetic field. The final
state of the array becomes more regular if the switching field
decreases slower. In particular, the averaged size A of the
CAFM clusters in the final state of the array increases as
A ∼ |dB/dt |−2/3. However, this gradual increase in the
regularity of the final array state is limited by the transition
into a thermal regime of magnetization switching with the
further increase of the switching pulse duration.

The microwave absorption properties of an array in its
final demagnetized state are directly related to the statistical
properties of the final state of the array. When the final state of
the array becomes more regular, the microwave absorption line
of the array becomes narrower and approaches the width of the
absorption line in the ideal periodic CAFM state as 1/

√
A. The

absorption linewidth that is sufficiently narrow for practical
applications of the dynamically reconfigurable arrays of
magnetic dots in microwave technology is achieved when the
switching pulses of a typical duration of 50–100 ns are used.
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APPENDIX

Here, an approximate dispersion relation for the collective
spin waves (SW) in a dipolarly coupled array of magnetic dots
in a transient in-plane ferromagnetic (FM) state is derived. In
general, a dispersion relation for collective SW in a dot array
existing in a FM ground state is12

ω2
k = [

γBe + ωM

(
F

yy

k − Fxx
0

)]
×[

γBe + ωM

(
Fzz

k − Fxx
0

)] − (
ωMF

yz

k

)2
, (A1)

where the coordinate system is chosen in such a way that the
static magnetization of the dot and the external magnetic field
are in the x direction. At the critical field Bc = μ0Ms(Fxx

0 −
Fzz

κ ), the frequency at the bottom of the SW spectrum is zero
ωκ (Bc) = 0. Near these “soft” points one can expand Eq. (A1)
in a Taylor series of the form

ω2
k ≈ 2γ
0(B − Bc) + w(�k), 
0 = ωM

F
yy
κ − Fzz

κ

2
.

(A2)

Obviously, such an approximation is valid if 
0 
= 0, which
corresponds to saddlelike instability.

In any point of the first Brillouin zone aside from the
point where κ = 0, the squared SW frequency ω2

k is a smooth
function of the SW wave vector with a minimum at the
point κ . Thus, near this point the squared SW frequency
can be expanded as ω2

k ∼ (k − κ)2. The case of κ = 0 is not
considered in this work as it corresponds to a trivial switching
of the array into a FM state. Finally, we can represent Eq. (A1)
for the squared SW frequency in the transitional in-plane
ground state in the form

ω2
k ≈ 2γ
0(B − Bc) + [v(φk)|�k|]2, (A3)

where �k = k − κ and φk is the polar angle of the vector �k.
There is no simple expression for the SW group velocity v,
so this velocity has to be calculated numerically from the SW
spectrum at Bc.
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