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We theoretically investigate spin dynamics and L3-edge resonant inelastic x-ray scattering (RIXS) of chromium
with commensurate spin-density wave (SDW) order, based on a multiband Hubbard model composed of 3d and
4s orbitals. Obtaining the ground state with the SDW mean-field approximation, we calculate the dynamical
transverse and longitudinal spin susceptibility by using random-phase approximation. We find that a collective
spin-wave excitation seen in inelastic neutron scattering hardly damps up to ∼0.6 eV. Above the energy, the
excitation overlaps individual particle-hole excitations as expected, leading to broad spectral weight. On the
other hand, the collective spin-wave excitation in RIXS spectra has a tendency to be masked by large spectral
weight coming from particle-hole excitations with various orbital channels. This is in contrast with inelastic
neutron scattering, where only selected diagonal orbital channels contribute to the spectral weight. However, it
may be possible to detect the spin-wave excitation in RIXS experiments in the future if resolution is high enough.
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I. INTRODUCTION

After the discovery of iron-pnictide superconductors whose
parent compounds are antiferromagnetic metal, the spin dy-
namics of itinerant antiferromagnetic systems with multiple 3d

orbitals has attracted much attention. In order to elucidate such
spin dynamics, we focus on another system, chromium, which
is known to show spin-density wave (SDW) states and their
physical properties have been well established theoretically
and experimentally.1–3

Chromium and its alloys have a body-centered cubic
(bcc) structure. There are many first-principles band-structure
calculations of paramagnetic Cr.4–8 The Fermi surfaces of
Cr consist of an octahedral electron pocket at the � point
[the wave vector k = (0,0,0)] and an octahedral hole pocket
at the H point [k = (2π/a,0,0), with a being the lattice
constant], which are almost the same shape. This leads
to a nesting vector that stabilizes a SDW order. Exactly
speaking, these octahedrons are not the same size, and the
incommensurate SDW occurs in Cr. The magnitude of the
nesting vector is slightly less than 2π /a [the nesting vector
is (2π/a)(0.950 ± 0.002,0,0)].9,10 The doping Cr with either
Mn or Fe changes the nesting vector into (2π/a,0,0). When
the Mn (Fe) concentration x in Cr1−xMnx (Cr1−xFex) exceeds
0.003 (0.02), the commensurate SDW state is stabilized.2

The spin dynamics of the incommensurate Cr has been
investigated by inelastic neutron scattering. The incommensu-
rate spin excitations in the low-energy region (<100 meV)
have been clarified experimentally3 and theoretically.11,12

However, spin dynamics in the high-energy region, where
the interplay of collective spin-wave excitation and individual
particle-hole excitation is expected to occur, has rarely been
examined except for the data up to 550 meV with a large error
bar.13

From the theoretical viewpoint, it is necessary to include
all of the 3d orbitals in models for the precise description of
both the collective and individual excitations, as was proven

in the study of the antiferromagnetic phase of iron arsenides.14

For the incommensurate SDW state, it is not easy to perform
band-structure calculations including all of the orbitals since
we need to use a large unit cell. In fact, commensurability
with the vector (2π/a,0,0) has been assumed in the previous
first-principles calculations.15–17 In model calculations for the
commensurate SDW state, with two-band models used, the
detailed band structures have been ignored.18 Therefore, it is
important to perform the study of spin dynamics of Cr by
using a precise band structure, even though the commensurate
SDW state is assumed. The assumption will not affect the
high-energy spin dynamics since the incommensurability seen
in pure Cr is determined by low-energy band structure near the
Fermi level.

In this study we investigate Cr with the commensurate SDW
state by using a multiband Hubbard model composed of 3d

and 4s orbitals. After a self-consistent calculation based on
the SDW mean-field approximation, we obtain the dynamical
spin susceptibility by employing random-phase approximation
(RPA). We find a collective spin-wave excitation undamped
up to ∼0.6 eV. Above the energy, the excitation overlaps
individual particle-hole excitations, leading to broad spectral
weight. From the results of the longitudinal spin susceptibility,
we find that its spectral weight is mainly distributed above the
energy of the spin-wave mode. We expect that these features
may be observed in inelastic neutron scattering experiments in
the near future.

Resonant inelastic x-ray scattering (RIXS) tuned for the L

edge of transition metal has been recognized as a powerful tool
to investigate not only charge and orbital (d-d) excitations but
also spin excitation in the energy and momentum spaces.19 By
using a fast-collision approximation for the RIXS process,
we calculate Cr L-edge RIXS intensity and compare the
spectrum with inelastic neutron scattering spectrum. We find
large spectral weight coming from particle-hole excitations
with various orbital channels. This eventually makes the
collective spin-wave excitation less visible. This is in contrast
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with cuprates where the spin-wave excitation has clearly been
observed in the Cu L-edge RIXS.20,21 However, since there
are remnants of the spin-wave excitation, it may be possible to
observe the excitation in RIXS in the near future.

This paper is organized as follows. In Sec. II the multiband
Hubbard model with five 3d orbitals and a 4s orbital is
introduced together with the SDW mean-field approximation
for the commensurate SDW order parameter. In Sec. III the
dynamical susceptibility is calculated within RPA. Predictions
to inelastic neutron scattering are made. In Sec. IV RIXS
spectra tuned for the Cr L3 edge are calculated based on
a fast-collision approximation. The origin of characteris-
tic spectral distribution is clarified. A summary is given
in Sec. V.

II. COMMENSURATE SDW STATE OF CHROMIUM

We consider a multiband Hubbard Hamiltonian H = H0 +
Hint, where H0 denotes tight-binding hopping terms with five
3d and 4s orbitals and Hint denotes interaction terms for the
3d orbitals. H0 is given by

H0 =
∑
i,j

∑
μ,ν

∑
σ

t(�i,j ; μ,ν)c†i,μ,σ cj,ν,σ , (1)

where c
†
i,μ,σ creates an electron with orbital μ and spin σ at

site i. The matrix element t(�i,j ; μ,ν) represents the hopping
of an electron between the μ orbital at site i and the ν orbital
at site j with the distance of �i,j = r i − rj .

The values of t(�i,j ; μ,ν) are obtained from the band
structure in the paramagnetic phase with the lattice constant
a = 2.883 Å of the bcc lattice. First, the first-principles
band structure is calculated by PWscf,22 where the projector
augmented wave pseudopotentials with Perdew-Wang 91
gradient-corrected functional is used. Then we calculate the

values of t(�i,j ; μ,ν) by Wannier90,23 inputting the PWscf
data. We take 8 × 8 × 8 points in the first Brillouin zone (BZ)
of the bcc lattice and set the orbitals μ and ν to be five 3d

orbitals and a 4s orbital and �i,j to be up to the 25th neighbors.
Hint is given by24

Hint = U

2

∑
i,μ,σ

c
†
i,μ,σ ci,μ,σ c

†
i,μ,−σ ci,μ,−σ

+ U − 2J

2

∑
i,μ �=ν,σ

c
†
i,μ,σ ci,μ,σ c

†
i,ν,−σ ci,ν,−σ

+ U − 3J

2

∑
i,μ �=ν,σ

c
†
i,μ,σ ci,μ,σ c

†
i,ν,σ ci,ν,σ

− J

2

∑
i,μ �=ν,σ

c
†
i,μ,σ ci,μ,−σ c

†
i,ν,−σ ci,ν,σ

+ J

2

∑
i,μ �=ν,σ

c
†
i,μ,σ ci,ν,σ c

†
i,μ,−σ ci,ν,−σ , (2)

where the indices μ and ν run over only 3d orbitals, and U

and J are on-site Coulomb and exchange interaction for 3d

electrons, respectively.
In order to consider the Hamiltonian in the momentum

space, we substitute

ci,μ,σ = 1√
N

∑
k

eik·r i ck,μ,σ (3)

and its Hermitian conjugate into Eqs. (1) and (2), where N is
the number of sites. Imposing the commensurate SDW order
with a ordering vector Q = (2π/a,0,0), we obtain a mean-
field Hamiltonian

H MF = H0 + H MF
U + H MF

J , (4)

where

H MF
U = U

∑
k,σ

∑
μ,ν

∑
m=0,1

{( ∑
ν ′,σ ′

〈nm Q,ν ′,ν ′,σ ′ 〉 − 〈nm Q,μ,μ,σ 〉
)

δμ,ν − 〈nm Q,ν,μ,σ 〉(1 − δμ,ν)

}
c
†
k+m Q,μ,σ ck,ν,σ (5)

and

H MF
J = J

∑
k,σ

∑
μ,ν

∑
m=0,1

[{
− 3

( ∑
ν ′

〈nm Q,ν ′,ν ′,σ ′ 〉 − 〈nm Q,μ,μ,σ ′ 〉
)

− 2

( ∑
ν ′

〈nm Q,ν ′,ν ′,−σ 〉 − 〈nm Q,μ,μ,−σ 〉
)}

δμ,ν

+ (3〈nm Q,ν,μ,σ 〉 + 〈nm Q,ν,μ,−σ 〉 + 〈nm Q,μ,ν,−σ 〉)(1 − δμ,ν)

]
c
†
k+m Q,μ,σ ck,ν,σ , (6)

with the order parameter

〈nm Q,μ,ν,σ 〉 = 1

N

∑
k

〈c†k,μ,σ ck+m Q,ν,σ 〉. (7)

The average 〈· · ·〉 is taken at zero temperature in the present
study. In Eq. (4) constant terms are neglected. We can rewrite
the momentum k with k0 defined within a reduced zone due
to the commensurate SDW order:

k → k0 + m Q. (8)

This leads to the following replacement:∑
k

→
∑

k0

∑
m=0,1

. (9)

We introduce quasiparticle operators γε(k0,σ ) for band ε,
satisfying

ck0+m Q,μ,σ =
∑

ε

ψμ,m;ε(k0,σ )γε(k0,σ ), (10)
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where ψμ,m;ε(k0,σ ) is the eigenvector of H MF for an eigen-
value Ek0,σ,ε . The mean-field Hamiltonian reads

H MF =
∑
k0,σ

∑
ε

Ek0,σ,εγ
†
ε (k0,σ )γε(k0,σ ). (11)

We self-consistently solve mean-field equations to deter-
mine the order parameters. From a self-consistent solution
we obtain Ek0,σ,ε and ψμ,m;ε(k0,σ ). In the self-consistent
calculation we use 50 × 50 × 50 meshes in the first BZ of
the bcc lattice. The chemical potential is determined so that
the number of electrons should be 6.0 per site, i.e., the number
of the valence electrons in Cr.

The values of U and J are unknown. Considering that the
magnetic moment defined by

M =
∑
m,μ

〈nm Q,μ,μ,↑ − nm Q,μ,μ,↓〉 (12)

is sensitive to the choice of U and J , we determine their
value so that the calculated M should be close to the observed
one (0.6 μB, μB is the Bohr magneton) in Cr.25 We obtain
U = 2.5 eV and J = 0.1U . Note that there are several possible
values of U and J , but the conclusions presented in this paper
are independent of the choice of U and J .

The band structure and the density of states calculated by
our method are consistent with previous publications.15–17 We
find that the calculated magnetic moment 0.6 μB is composed
of 0.48 μB in t2g orbitals and 0.12 μB in eg orbitals.

III. SPIN AND CHARGE DYNAMICS

A. Dynamical susceptibility

We define the dynamical susceptibility as

χss ′
λ μ

κ ν

(q,q ′,ω) = i

N

∑
k′,k′′

∫ ∞

0
dt eiωt

〈[
c
†
k′,λ,σ2

(t)ck′+q,κ,σ1 (t),

c
†
k′′+q ′,ν,σ ′

2
ck′′,μ,σ ′

1

]〉
, (13)

where ck,μ,σ (t) is the Heisenberg representation of ck,μ,σ , and
s (s ′) denotes a spin pair σ1σ2 (σ ′

1σ
′
2): s takes ↑, ↓, +, and −

corresponding to (↑,↑), (↓,↓), (↓,↑), and (↑,↓), respectively,
and the same for s ′. In an abbreviated form, q ′ is omitted for
the q = q ′ case as χ (q,ω).

The bare susceptibility is represented with the wave
function and quasiparticle energies,

χss ′
0 λ μ

κ ν

(q,q + l Q,ω)

= − 1

N

∑
p0,m,n,ε,ε′

f (E p0+q,σ1,ε) − f (E p0,σ2,ε′)

E p0+q,σ1,ε − E p0,σ2,ε′ − (ω + iη)

×ψκ,m;ε( p0 + q,σ1)ψ∗
ν,m+n;ε( p0 + q + l Q,σ ′

2)

×ψ∗
λ,m;ε′ ( p0,σ2)ψμ,m+n;ε′ ( p0,σ

′
1)δσ1,σ

′
2
δσ ′

1,σ2 , (14)

where the sum with respect to p0 runs over the reduced zone.
We set η = 0.01 eV.

We calculate the dynamical susceptibilities within the
multiorbital RPA,⎛
⎝χ+−

χ↑↑

χ↓↑

⎞
⎠

=
⎛
⎝χ+−

0

χ
↑↑
0
0

⎞
⎠+

⎛
⎜⎝

χ+−
0 V −+ 0 0

0 χ
↑↑
0 V ↑↑ χ

↑↑
0 V ↑↓

0 χ
↓↓
0 V ↓↑ χ

↓↓
0 V ↓↓

⎞
⎟⎠

⎛
⎝χ+−

χ↑↑

χ↓↑

⎞
⎠,

(15)

where the product of susceptibility χ and interaction V is taken
as a matrix product represented in the orbital basis such as

[χ0V χ ] λ μ

κ ν

(q,ω) =
∑

κ ′,λ′,μ′,ν ′,m

χ0 λ μ′
κ ν ′

(q,q + m Q,ω)

×V μ′ λ′
ν ′ κ ′

χ λ′ μ
κ ′ ν

(q + m Q,q,ω). (16)

The nonzero elements of the interaction matrix V are shown
in Table I.

The transverse spin susceptibility χ+−, the longitudinal
spin susceptibility χz, and the charge susceptibility χn are
given by

χ+−(q,ω) =
∑
κ,μ

χ+−
κ μ
κ μ

(q,ω), (17)

χz(q,ω) =
∑
κ,μ

∑
s=↑,↓

{
χss

κ μ
κ μ

(q,ω) − χss̄
κ μ
κ μ

(q,ω)
}
, (18)

and

χn(q,ω) =
∑
κ,μ

∑
s=↑,↓

{χss
κ μ
κ μ

(q,ω) + χss̄
κ μ
κ μ

(q,ω)}, (19)

respectively, where s̄ denotes ↓ (↑) for s =↑ (↓).

B. Spin and charge excitations in commensurate SDW state

Figure 1(a) shows the imaginary part of the transverse spin
susceptibility Imχ+−(q,ω) in the commensurate SDW state
of Cr from q = (0,0,0) to (2π,0,0). Here the lattice constant
a is taken to be a unit length. We note that this q range
corresponds to a range from q = 2π (−1,1,0) to 2π (0,1,0).
In Fig. 1(a) there appears dispersion with strong intensity
starting from the magnetic zone center q = (2π,0,0). This
is a collective spin-wave excitation. The collective excitation
exhibits a prominent weight up to around 0.6 eV, but gradually
loses its sharpness and weight above 0.6 eV. A possible cause
of this damping is individual particle-hole excitations. To
investigate this we plot the particle-hole excitation spectrum,
i.e., the imaginary part of the bare transverse spin susceptibility
Imχ+−

0 (q,ω) in Fig. 1(c). We find that the collective excitation
gradually penetrates into the particle-hole continuum around
0.6 eV. Therefore, it is clear that the damping is caused by
the particle-hole excitations. A similar origin of damping has
been discussed for iron arsenides based on the same calculation
scheme.14

The spectral weight distribution and dispersive feature in
Fig. 1(c) come from the band structure in the commensurate
SDW phase. Therefore, the threshold energy (∼0.5 eV) of
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TABLE I. The nonzero elements of V ss′
μ λ
ν κ

, where s = (σ1,σ2) and s ′ = (σ ′
1,σ

′
2). Each of the four subscripts takes one

of the 3d orbitals, 4s is not taken into account.

σ1 = σ2 = σ ′
1 = σ ′

2 σ1 = σ2 �= σ ′
1 = σ ′

2 σ1 = σ ′
2 �= σ2 = σ ′

1

μ = ν = κ = λ – −U U

μ = κ �= ν = λ – −J J

μ = ν �= κ = λ −U + 3J −U + 2J J

μ = λ �= ν = κ U − 3J −J U − 2J

particle-hole excitation at q = (0,0,0) may be seen through
the optical process. In fact, the calculated peak of the optical
conductivity induced by the commensurate SDW order26 is
located at 0.6 eV (not shown here), similar to the threshold
energy. This energy is also roughly consistent with an observed
peak position (∼0.45 eV) of the optical conductivity for
commensurate Cr alloys,27 although the calculated one shows
a slightly larger value. The 0.15 eV overestimate of the peak
position in our theory as compared with the experimental value
may come from neglecting the effect of band renormalization
due to correlation. This amounts to a factor of 3/4 for the
band renormalization: The energy scale in our theory should
be multiplied by 3/4 to make a comparison with experiment.
The same factor is obtained from the comparison of the peak
positions of the optical conductivity in the paramagnetic phase
between theory (1.2 eV)26 and experiment (0.9 eV).28

The longitudinal spin excitation is shown in Fig. 1(b).
The strong spectral weight is located above 0.4 eV near
q = (2π,0,0). We find that the main part of the weight

FIG. 1. (Color online) Contour plot of the imaginary part of spin
susceptibility in the commensurate SDW state along the (q,0,0)
direction. (a) Imχ+− (transverse) and (b) Imχz (longitudinal).
(c) Imχ+−

0 (transverse) and (d) Imχz
0 (longitudinal) for the bare

susceptibility. The magnitude of intensity shown by the color bar
in (a) is limited up to 20, but the maximum intensity is 460 at around
q = 2π and ω ∼ 0.1 eV. We use 40 × 20 × 20 meshes in the first BZ
of the bcc lattice.

is distributed above the collective spin-wave energy shown
in Fig. 1(a). This means that, if the experimental setup of
inelastic neutron scattering is properly chosen to detect both
the transverse and longitudinal excitations, a broad and less
dispersive spectral distribution is expected near the magnetic
zone center up to 1 eV. By taking into account the fact that
the magnetic component parallel to the scattering vector does
not contribute to the scattering, this kind of setup may be
achieved for both a longitudinal SDW (L-SDW) phase below
122 K and a transverse SDW (T-SDW) phase between 122
and 311 K in Cr,1 assuming that the high-energy excitations
in the incommensurate phases are similar to those in the
commensurate phase: The momentum transfer q for L-SDW
should be set to near (0,2π,0), while q for T-SDW should be set
to near (2π,0,0) or (0,2π,0). The experimental confirmation
of these features is highly desired.

The difference of the spectral properties between the
transverse and longitudinal excitations naturally comes from
the difference of the bare spin susceptibility as shown in
Figs. 1(c) and 1(d): The spectral weight of Imχz

0 [Fig. 1(d)]
near q = (2π,0,0) is distributed higher in energy than that of
Imχ+−

0 [Fig. 1(c)].
To see the detailed structures of gapless excitations, we

investigate the spectra around the � point, where the spectral
intensity is moderately weak enough to see the whole structure
clearly. We also note that small q region contributes to L-edge
RIXS spectra as discussed in Sec. IV. The imaginary part of
χ+−, χz, and χn near the � point are shown in Figs. 2(a)–2(c),
respectively. The intensity of the transverse mode Imχ+− is
larger than that of the longitudinal mode Imχz below 0.5 eV.

FIG. 2. (Color online) Contour plot of the imaginary part of
dynamical susceptibility near the BZ center. (a) Transverse spin mode
Imχ+−, (b) longitudinal spin mode Imχz, and (c) charge mode Imχn

along the (q,0,0) direction. The magnitude of intensity is shown by
the color bar on the right of each panel. We use 80 × 20 × 20 meshes
in the first BZ of the bcc lattice.
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The velocity of the transverse mode vs is estimated to be
1.8 eV Å. This value is consistent with a theoretically estimated
value based on a band gap (∼1.5 eV Å).12,18 We notice that vs

is smaller than that of the charge mode. This is expected from
the large U limit, where the exchange interaction determining
the spin-wave velocity t2/(U − J ) is smaller than the hopping
integral t that determines the energy scale of charge motion.

IV. RESONANT INELASTIC X-RAY
SCATTERING SPECTRUM

In this section we calculate RIXS spectra in Cr tuned for
the L3 edge. First, we derive the formula of spectral intensity
within a fast-collision approximation, where the dynamical
susceptibilities calculated in the former section are included.
Next, the calculated RIXS spectra are analyzed in terms of
spin, charge, and orbital degrees of freedom.

A. Formulation of RIXS spectral intensity

The L-edge RIXS consists of two processes: The x-ray
absorption and emission by way of an intermediate state
with core holes. The x-ray absorption is accompanied by the
creation of a Cr 2p core hole and an electron in 3d and 4s

orbitals. The 2p core-hole state has a hybridized spin with the
orbital angular momentum due to spin-orbit coupling. When
the electron relaxed through the x-ray emission is not that
excited from 2p, the resulting orbital occupation of 3d and
4s electrons varies from the initial. Note that the spin of the
relaxed electron may be either up or down since the core-hole
spin is hybridized. The final state may thus involve a spin flip.
This means that we can investigate spin excitations in addition
to charge and orbital ones through the L-edge RIXS.19

We introduce a transition operator Dk associated with the
x-ray absorption and emission processes:

Dk =
∑

k′,j,jz,μ,σ

cj,jz

μ,σ (ε)c†k′+k,μ,σ pk′,j,jz
+ H.c., (20)

where pk′,j,jz
is the annihilation operator of Cr 2p core

electrons and c
j,jz
μ,σ (ε) is the dipole-matrix element, with ε

being the unit vector of the polarization of the incoming and
outgoing x ray. The matrix element is given by

cj,jz

μ,σ (ε) = 〈μ,σ |ε · r|2p,j,jz〉, (21)

where |2p,j,jz〉 represents the 2p state with the total angular
momentum j whose z component is jz, and |μ,σ 〉 represents
the 3d and 4s states with orbital μ and spin σ . The values of
c
j,jz
μ,σ (ε) are estimated by using 2p, 3d, and 4s atomic orbitals.

The ratio of the radius part of the 2p-4s element to that of the
2p-3d element is

√
5

8
√

2
∼ 0.20, implying that the 2p-3d dipole

transition is dominating in Cr L-edge RIXS.
By using the second order perturbation involving the x-ray

absorption and emission processes, the intensity of the RIXS
spectrum reads

IRIXS(q = kin − kout,ω = ωin − ωout)

=
∑
f

∣∣∣∣〈f |D†
kout

1

ωin + E0 − HIM + i�
Dkin |0〉

∣∣∣∣
2

× δ(ω − Ef + E0), (22)

where E0 (Ef ) is the energy of the initial (final) state and
HIM is a Hamiltonian that acts on the intermediate state. 1/�

corresponds to the lifetime of a 2p core hole. � is supposed
to be roughly 1 eV from the half width at half maximum
of the electron energy loss spectrum at the 2p threshold.29

Since the value is smaller than the energy difference of Cr
L2 and L3 absorption peaks (∼9 eV), which is determined by
the spin-orbit coupling in 2p states, it is justified to consider
one of the edges for resonance. Hereafter, we take the Cr L3

edge, i.e., j = 3/2. Furthermore, we employ a fast-collision
approximation, in which the core-hole lifetime is assumed to be
very short as compared with the time scale of electron motion.
This is actually a crude approximation since multimagnon
processes caused by a finite core-hole lifetime19,30 are not
included. Nevertheless, the approximation should be applied
as a first step to examine RIXS. The treatment beyond this
approximation is a future problem.

The first-collision approximation leads to a simple expres-
sion of the RIXS spectrum given by

IRIXS(q,ω)

∝ Im

{∑
s,s ′

∑
κ,λ,μ,ν

χss ′
λ μ
κ ν

(q,ω)
∑
jz

cj,jz

κ,σ1
(εin)∗cj,jz

λ,σ2
(εout)

×
∑
j ′
z

c
j,j ′

z
ν,σ4 (εin)c

j,j ′
z

μ,σ3 (εout)
∗
}

, (23)

where εin (εout) denotes the polarization vector of incoming
(outgoing) x ray.

The geometry for our RIXS calculation is illustrated in
Fig. 3. The angle between the momenta of incoming (kin) and
outgoing (kout) x ray is α, and the norms of these momenta
are almost the same. In this geometry, the momentum transfer
q = kin − kout is on the x axis, i.e., q = (q,0,0). We change
q by varying the angle α. The incoming beam is either π

polarized (parallel to the scattering plane; π in) or σ polarized
(perpendicular to the scattering plane; σ in). The outgoing x
ray is chosen to be a summation of both polarizations πout

FIG. 3. The geometry of the scattering process used in the RIXS
calculation. q = kin − kout. The scattering plane is the xz plane, and
q = (q,0,0). We change q by varying the angle α between kin and
kout. σ in (σ out) and π in (πout) denote σ - and π -polarization vectors,
respectively, of incoming (outgoing) x ray.
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FIG. 4. (Color online) Contour plot of the calculated RIXS
spectra of Cr for the commensurate SDW state along the (q,0,0)
direction. High-energy region (1 � ω � 3 eV): (a) π polarization
and (b) σ polarization. Low-energy region (0 � ω � 1 eV): (c) π

polarization and (d) σ polarization.

and σ out, taking into account existing experimental conditions.
The spin is assumed to direct parallel to the z axis, which
is perpendicular to the ordering vector Q. This geometry
corresponds to one of two spin polarizations in the T-SDW
phase between 122 and 311 K in the incommensurate Cr.1

We note that since a characteristic x-ray energy for Cr L3

absorption is 572 eV, the momentum space where Cr L3-edge
RIXS can access is limited to q ∼ 0.53π .

B. Calculated RIXS spectra

The calculated RIXS spectra for the commensurate SDW
state are plotted in Fig. 4 for both the π and σ polarizations
along the (q,0,0) direction. The spectra are symmetric with
respect to q = 0. This is in contrast with the case of iron
arsenides,31 where asymmetric spectral distribution appears.
Such a contrasting behavior is originated from the difference
of geometry for the scattering process: The angle between kin

and kout in iron arsenides is fixed unlike the geometry in Fig. 3.
The high-energy part of the spectra above 1 eV is shown in
Figs. 4(a) and 4(b). The change of incident-photon polarization
induces the shift of the intense spectral cloud at high energy
∼2 eV from q = ±0.34π for the π polarization to ±0.5π

for the σ polarization in the present setup of the scattering
geometry.

The intensity of the spectra increases with increasing energy
and shows a broad maximum at ω ∼ 2 eV. With further
increasing energy, the intensity decreases. This behavior is
common to other types of scattering geometry (not shown).
The main contribution to the broad peak comes from interband
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FIG. 5. (Color online) The line shape of RIXS spectra of Cr in the
commensurate SDW state for (a) π and (b) σ polarization. Each line
is plotted for momentum transfer between (0,0,0) and (21π/35,0,0)
from bottom to top with the increments of π/35.

excitations between different orbitals as discussed below. The
broad peak at ω ∼ 2 eV is expected to appear in RIXS
experiments for Cr.

The low-energy region below ω = 1 eV is shown in
Figs. 4(c) and 4(d). We note that the elastic line at q = (0,0,0)
is omitted from the figures. According to the dynamical spin
susceptibility shown in Fig. 2, we expect low-energy spin and
charge excitations appearing from ω = 0 eV at q = (0,0,0).
However, the presence of high-intensity excitations in the high
energy makes the low-energy spectra less visible in Figs. 4(c)
and 4(d). The present scale of intensity in Figs. 4(c) and 4(d)
makes the excitations less visible because of the presence
of high intensity in the high-energy excitations. However,
the low-energy excitations certainly exist even though their
intensity is small.

In order to make clear the presence of the low-energy
excitations indicated by Fig. 2, we show the line shape of
the RIXS spectra for both polarizations in Fig. 5. We find
dispersive low-energy excitations, starting from near ω = 0 eV
and q = (0,0,0), with the same energy scale as the spin and
charge modes shown in Fig. 2, although it is difficult to identify
each mode.

One may have a question why the spin and charge modes
are less clear in the RIXS spectra. In order to resolve this
question, we should notice a difference in the suffixes of the
dynamical susceptibility between RIXS in Eq. (23) and, for
example, the transverse spin mode in Eq. (17). In Eq. (17) only
κ = λ and μ = ν, i.e., excitations within the same orbital, are
taken from the dynamical susceptibility in Eq. (13), while in
Eq. (23) κ , λ, μ, and ν are independently taken. In order to
see the effect of the difference, we calculate the RIXS spectra
only taking κ = λ and μ = ν in Eq. (23) and showing the
results in Fig. 6. We find that the spectral weight near 1 eV
is dramatically suppressed and the low-energy modes become
clear in intensity. This means that the RIXS intensity near 1 eV
in Fig. 4 is dominated by excitations among different orbitals,
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FIG. 6. (Color online) Contour plot of the RIXS spectra obtained
by restricting the orbital indices in the dynamical susceptibility to
only κ = λ and μ = ν in Eq. (23). (a) The π polarization and (b) the
σ polarization along the (q,0,0) direction.

i.e., off-diagonal orbital excitations. Thus we conclude that
the low-energy collective modes like spin-wave excitation are
overwhelmed by the off-diagonal orbital excitations. We note
that this does not happen in the case of a single-band Hubbard
model describing cuprate compounds.

In order to make clear the possibility of observing the spin-
wave excitation, we comment on the contributions from other
excitations. The energy scale of the spin-wave excitation that
we want to detect is around 0.1–0.4 eV, which is higher than
that of phonons.32,33 Even though multiphonon excitations can
be seen in RIXS,33–35 the phonons do not overwhelm the
spin excitations because of weak electron-phonon coupling
expected in Cr. On the other hand, elastic scattering may
overlap with the spin-wave excitations. However, if the energy
resolution of RIXS is improved, the overlap becomes small
and the spin-wave excitations may be detectable, although
the intensity of the spin-wave excitations is weak due to the
off-diagonal orbital contributions as discussed above.

Finally, we comment on a peak structure around 0.6 eV
near q = 0 in Fig. 5(a). Since the energy position is almost
equal to a peak seen in the optical conductivity,26 we judge the
peak to be due to the SDW-gap formation. We also expect that
this structure may be detected by RIXS with high resolution.

V. SUMMARY

We have investigated the spin dynamics and RIXS for
Cr with the commensurate SDW state by using a multiband
Hubbard model composed of 3d and 4s orbitals. We have
employed a self-consistent calculation of the ground state
based on the SDW mean-field approximation. On top of
the ground state, we have calculated the dynamical spin
susceptibility within RPA. By evaluating the hopping integrals
from the down-folding procedure of first-principles band

calculation, the electronic states in Cr are properly described
by our model. The electronic states in the commensurate SDW
phase obtained by the mean-field theory are also consistent
with those from the previous first-principles band-structure
calculations. Therefore, the calculated dynamical susceptibil-
ities reflect realistic particle-hole excitations. It is well known
that RPA cannot describe the band renormalization effect
due to correlation. The factor of the band renormalization is
estimated to be roughly 3/4 by comparing the peak positions
of the optical conductivity between theory and experiment as
discussed in Sec. III B.

We have found that a collective spin-wave mode appears in
the spin-transverse excitation spectrum. The collective mode
does not damp up to ∼0.6 eV. Above the energy, the excitation
overlaps individual particle-hole excitations, leading to broad
spectral weight. We expect that this feature appears in inelastic
neutron scattering experiments for Cr, even though Cr shows
an incommensurate spin excitations below 0.1 eV. When the
contribution from the longitudinal spin excitation to inelastic
neutron scattering increases, the spectral weight above the
spin-wave mode is expected to be enhanced. This may also be
detected by future experiments.

RIXS tuned for the L edge is a powerful tool to investigate
not only charge and orbital excitations but also spin excitation
in the energy and momentum spaces. By using a fast-collision
approximation for the RIXS process, we have calculated Cr
L3-edge RIXS intensity. We have found large spectral weight
coming from interband excitations between different orbitals.
This eventually masks collective spin-wave excitations within
the same orbital. Even though the excitations are weak in
intensity, it may be possible to detect them if the experimental
resolution of RIXS is high enough.
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