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Two centuries of research on phase transitions have repeatedly highlighted the importance of critical fluctuations
that abound in the vicinity of a critical point. They are at the origin of scaling laws obeyed by thermodynamic
observables close to second-order phase transitions resulting in the concept of universality classes, that is
of paramount importance for the study of organizational principles of matter. Strikingly, in case such soft
fluctuations are too abundant they may alter the nature of the phase transition profoundly; the system might
evade the critical state altogether by undergoing a discontinuous first-order transition into the ordered phase.
Fluctuation-induced first-order transitions have been discussed broadly and are germane for superconductors,
liquid crystals, or phase transitions in the early universe, but clear experimental confirmations remain scarce.
Our results from neutron scattering and thermodynamics on the model Dzyaloshinskii-Moriya (DM) helimagnet
(HM) MnSi show that such a fluctuation-induced first-order transition is realized between its paramagnetic and
HM state with remarkable agreement between experiment and a theory put forward by Brazovskii. While our
study clarifies the nature of the HM phase transition in MnSi that has puzzled scientists for several decades,
more importantly, our conclusions entirely based on symmetry arguments are also relevant for other DM-HMs
with only weak cubic magnetic anisotropies. This is in particular noteworthy in light of a wide range of recent
discoveries that show that DM helimagnetism is at the heart of problems such as topological magnetic order,
multiferroics, and spintronics.
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I. INTRODUCTION

Critical phenomena were observed in 1822 in the form of
the critical opalescence of water vapor when Cagniard de la
Tour discovered the critical point of the gas to liquid phase
transition.1 The associated change of the physical properties
is also referred to as continuous (or second-order) transition,
implying that the order parameter characterizing the ordered
state, emerges smoothly. Hence, as recognized by Cagniard
de la Tour a critical point represents a “special state” (état
particulier)2 because the disordered and the ordered phase are
indistinguishable.

The unusual physical properties are thereby generally
referred to as critical phenomena. At the heart of the critical
phenomena is an abundance of low-energy fluctuations of the
order parameter that extend over increasing length scales as the
critical point is approached. The divergence of their so-called
correlation length ξ results in universal scaling laws for observ-
ables that only depend on the symmetries of the critical system
while being independent of its specific microscopic details.
This led to the notion of universality classes—a cornerstone
of modern physics—providing a common framework for a
wide range of systems with the same critical behavior despite
entirely different microscopic character.3

As one of the most remarkable aspects, it has long been
noticed theoretically that an excess of critical fluctuations
may change the nature of the phase transition entirely. If the
phase space available for the critical degrees of freedom is
sufficiently large, the system may evade the critical point to
avoid the large entropy associated with the fluctuations by
realizing a discontinuous first-order transition into the ordered

phase. As a result, the correlation length does not diverge and
the order parameter varies also discontinuously at the transition
which is then accompanied by the release of latent heat.

Theoretically, fluctuation-induced first-order transitions
occur as a consequence of nonanalytic terms in the
Ginzburg-Landau free-energy functional that are generated
by fluctuation-induced corrections. Perhaps the best-known
example concerns thereby the Coleman-Weinberg effective
potential for an order parameter coupled to a fluctuating
gauge field.4 This found important applications in the context
of phase transitions in the early universe addressing cosmic
inflation5 and the problem of baryogenesis.6 However, it is also
relevant for the description of superconductors and smectic-A
liquid crystals.7 In contrast, for an order parameter with a large
number of components N � 4, its self-interaction may already
suffice to drive the transition first-order as pointed out by Bak
and co-workers.8 Finally, Brazovskii9 considered theoretically
critical fluctuations that become soft not only at a single point
in momentum space (as, e.g., for a ferromagnet), but rather on
a finite manifold, notably a sphere. In such a case, the density
of states for critical fluctuations exhibits a one-dimensional
singularity so that interaction corrections are expected to drive
a strong suppression of the correlation length and, eventually,
a fluctuation-induced first-order transition.

Various settings have been proposed in which Brazovskii-
type transitions may be expected, such as weakly anisotropic
antiferromagnets,9 weak crystallization,10 liquid crystals,11,12

diblock copolymers,13 the Rayleigh-Bénard convective
instability,14 pion condensation in nuclear matter,15 and Bose-
Einstein condensates in multimode cavities16 or with spin-orbit
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coupling.17 However, only few experimental realizations of
Brazovskii systems such as diblock copolymers18 were re-
ported so far. The outstanding experimental constraint thereby
are precision measurements of the relevant fluctuations, which
are difficult to resolve.19 Prior to the present study, direct
experimental evidence for a Brazovskii transition hence
represented a major challenge of interest to a wide range of
topics.

In this paper we identify the onset of helimagnetic (HM)
order in a class of cubic materials as a prime example for
a Brazovskii transition using a quantitative comparison of
experiment and theory. Specifically we consider systems in
which the HM order arises from (chiral) Dzyaloshinsky-
Moriya (DM)20,21 spin-orbit interactions in the presence of
weak cubic magnetic anisotropies. Prominent members of this
class of DM-HMs crystallize in the noncentrosymmetric P 213
space group, encompassing the metallic B20 compounds MnSi
and FeGe, the B20 semiconductor Fe1−xCoxSi, and the mul-
tiferroic insulator Cu2OSeO3. These materials have recently
generated tremendous scientific interest, when a new form of
magnetic order—a skyrmion lattice—was discovered.22–25 As
its novel aspect each skyrmion is characterized by a nonzero
topological winding number. Moreover, in the skyrmion
phase of MnSi spin transfer torques have been observed at
record low current densities j = 106 A m−2 making these
materials interesting for spintronic applications.26,27 In the
insulator Cu2OSeO3, magnetic skyrmions possess electric
polarization and the concomitant magnetoelectric coupling
promises interesting multiferroic behavior.28,29

In fact, it was argued in Ref. 22 that the skyrmion lattice
phase only exists due to strong renormalizations attributed to
thermal fluctuations. This motivates a more detailed study of
fluctuation effects on the phase diagram in general. In the
present work we investigated the influence of fluctuations on
the HM transition of MnSi at zero field by means of carefully
designed experiments using a combination of small angle
neutron scattering (SANS), and measurements of the magnetic
susceptibility and specific heat. Notably, we have mapped out
the fluctuations in three dimensions demonstrating that they in-
deed emerge on a Brazovskii sphere. Within Brazovskii theory
the temperature dependence of the correlation length hereby
naturally explains all features observed in the thermodynamic
measurements. As our results are entirely based on symmetry
considerations, they are expected to be of general importance
for DM-HMs.

Our paper is organized as follows. In Sec. II we review the
state-of-the-art on the HM phase transition in MnSi, in Secs. III
and IV we discuss the results of SANS and thermodynamics,
respectively, and Sec. V concludes with a discussion. In
Appendices A and B we present details of the experiments
and the applied theory, respectively.

II. THE HELIMAGNETIC PHASE TRANSITION IN MnSi

In the absence of a magnetic field MnSi exhibits a
HM ground state below Tc ≈ 29 K30–32 characterized by a
hierarchy of energy scales due to the weak spin-orbit coupling
λSO. First, the strong ferromagnetic exchange interaction J

aligns the spins on short length scales. Second, the lack of
inversion symmetry in the P 213 space group allows for a

weak DM interaction, D ∼ O(λSO), that leads to a chiral
twist of the magnetization and stabilizes HM order with a
pitch of 180 Å deep in the ordered phase. Third, weak cubic
anisotropies that arise in higher order in λSO finally lock
the magnetic helix in a cubic 〈111〉 direction.32 Importantly,
this hierarchy of energy/length scales is also reflected in
the nature of critical fluctuations as Tc is approached.33 For
T � Tc the correlation length ξ is short and the fluctuations
have essentially ferromagnetic character. However, as the
temperature is lowered and ξ reaches the order of the DM
length scale ξDM ∼ J/D, the fluctuations start to accumulate
uniformly on a sphere in momentum space of radius Q = D/J

and, as a consequence, the magnetic correlations develop an
oscillating character at the associated length scale. Finally, as
the correlation length increases even further, ξ � ξcub, cubic
anisotropies favor the fluctuations to carry momentum in the
crystallographic 〈111〉 directions.

While the HM transition is expected to be second order on
a mean-field level, interactions between the HM fluctuations
were theoretically predicted to give rise to important correc-
tions driving the transition first order. The precise mechanism,
however, depends crucially on the strength of the interaction
that generates an additional scale, i.e., the Ginzburg length
ξGi,34 see Fig. 1(a). According to the Ginzburg criterion,
interactions can be treated perturbatively in the case of
short correlations ξ � ξGi, while the fluctuations are strongly
interacting if ξ � ξGi. The limit of very weak interactions
ξGi � ξcub � ξDM was considered by Bak and Jensen32 who
argued that in the regime ξ � ξcub an effective field-theoretical
description emerges in terms of an order parameter with N = 8
components corresponding to amplitude and phase of helices
with momenta along the four equivalent 〈111〉 directions.
The residual interaction between order parameter fluctuations
might then drive the transition first order. On the other hand,
if the cubic anisotropies are associated with the smallest
energy scale, i.e., the largest length scale ξcub � ξGi � ξDM,
HM fluctuations are already strongly interacting while they
are still uniformly distributed on a sphere in momentum
space. This scenario coincides with the situation considered by
Brazovskii,9 and an interaction-induced first-order transition
preempts the cubic crossover in this case. For the zero-
temperature HM transition that is observed in MnSi as a
function of pressure, the corresponding Brazovskii scenario
was studied theoretically by Schmalian and Turlakov.35 Fi-
nally, a third scenario arises for very strong interactions
ξcub � ξDM � ξGi, where the fluctuations are already strongly
interacting before they develop a preferred chirality. Here
the physics on length scales ξDM > ξ > ξGi is governed by
the Wilson-Fisher renormalization group fixed point which
eventually becomes unstable at the DM crossover ξ ∼ ξDM.
The fate of the transition in this case, as far as we know, has
not yet been addressed theoretically. However, we demonstrate
below that for MnSi the Brazovskii scenario is realized.

Although MnSi has been the topic of intense scientific
study for decades, the nature of the transition from the
paramagnetic (PM) to the HM phase at zero field is still debated
controversially. Initially, the transition was interpreted to be
of second order based on the specific heat in polycrystals,36

an abundance of paramagnon fluctuations also observed in
neutron scattering,37–39 as well as a pronounced Curie-Weiss
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FIG. 1. (Color online) Helimagnetic (HM) phase transition of MnSi at Tc = 29 K investigated by small angle neutron scattering (SANS).
(a) There are two crossovers for noninteracting fluctuations in a Dzyaloshinskii-Moriya (DM) HM as Tc is approached and the correlation
length ξ increases. Interactions result in an additional Ginzburg length ξGi and depending on its size different scenarios are realized (see text).
(b) The SANS setup used to study the temperature dependence of ξ , where the neutron beam scatters off the magnetic helix. Turning the sample
around the rotation axis parallel to the [112] zone axis (red arrow) the sample can be rocked through the Bragg condition for the magnetic
helix. With this sample orientation the magnetic Bragg condition can be fulfilled for the two magnetic propagation vectors Q1 = [111] and
Q2 = [111] [white arrows in (c)] corresponding to two of the four possible helical Q domains (see text). (c)–(j) Magnetic intensity distribution
of MnSi close to Tc. Below Tc [(c)–(e)] discrete magnetic Bragg spots corresponding to the helical order are visible, whereas above Tc [(g)–(j)]
the magnetic intensity spreads out over a sphere in reciprocal space. The background scattering was determined well above the magnetic phase
transition and was subtracted from all data sets. The black broken lines in (c) indicate weak reflections due to multiple scattering effects along
the [001] and [110] directions. Note that the intensity in (c)–(f) is plotted on a logarithmic scale for a better comparison between the intensities
on the helical satellites and the sphere.

behavior in the magnetic susceptibility up to Tc.40 However,
electron spin resonance41 and a careful analysis of the
temperature dependence of the HM Bragg peaks42 suggested
early on that the transition has a weak first-order character.
A major milestone in the understanding of itinerant-electron
ferromagnets concerned the development of a self-consistent
Ginzburg-Landau theory taking into account the effects of
ferromagnetic itinerant-electron spin fluctuations by Moriya,
Lonzarich and others. In fact, ignoring the much weaker effects
of spin-orbit interactions, the excellent quantitative agreement
of the magnetic ordering temperature and the large Curie-
Weiss moment was demonstrated for the first time in MnSi.43

This excellent quantitative agreement motivated the search

for marginal Fermi liquid behavior at a pressure-induced
quantum phase transition.40 The temperature dependence of
the susceptibility and the observation of itinerant metamag-
netism in the field dependence of the susceptibility44 provided
thereby first evidence of a first-order quantum phase transition.
Surprisingly, for pressures above the critical pressure an
extended regime of non-Fermi liquid behavior has been dis-
covered despite this first-order behavior. This inspired neutron
scattering studies at high pressures45 revealing partial magnetic
order, which in turn triggered a search for spin textures
with non-trivial topology. In particular, the observation of a
broad shoulder at T ∗ ≈ Tc + 1 K, revealed in more detailed
measurements of the specific heat,46 led to the theoretical
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proposal of a skyrmion liquid phase as a generic precursor
phenomenon at essentially each PM to HM transition in DM-
HMs.47 This interpretation was adopted by Pappas et al.48,49

who argued that the so-called chiral fraction determined via
polarized neutron scattering studies provides evidence for a
skyrmion-liquid phase. Similarly, Hamann et al. qualitatively
explained their neutron scattering results as a complex form of
long-range order, a so-called magnetic blue phase, motivated
by an amorphous lattice of skyrmions observed theoretically.50

However, on closer inspection all claims of a skyrmion liquid
are highly debatable since they either involve unconventional
terms in the Landau theory, do not account for the relationship
of chiral fraction with skyrmion liquid, or, last but not least,
were obtained with Monte Carlo calculations on relatively
small system sizes, respectively.

As an alternative, several studies suggested that the unusual
specific heat anomaly in MnSi can be explained in the
traditional framework of HM fluctuations in the presence
of cubic anisotropies. For instance, recently Stishov et al.
demonstrated by means of specific heat, thermal expansion,
electrical resistivity,51,52 and confirmed by ultrasound53 that
the HM transition is indeed first order with a tiny latent
heat. These authors emphasized that the broad shoulder in
the specific heat, noticed earlier,46,47 might be caused by
HM fluctuations. Yet, the origin of the first-order transition
remained unresolved. Moreover, these authors do not consider
the consistency of the interpretation of their data with the
effects of magnetic fields, both, in their studies at ambient
pressures and high pressures. In fact, Bauer et al.54 showed
that the specific heat close to T ∗ exhibits a so-called Vollhardt
invariance,55 i.e., a crossing point that is invariant under
small magnetic fields. Finally, Grigoriev et al.56 interpreted
a corresponding signature at T ∗ in the magnetic susceptibility
and the correlation length as a crossover in the character of the
fluctuations as the HM transition is approached.

III. SANS CLOSE TO THE HELIMAGNET
TRANSITION OF MnSi

We start with a qualitative discussion of our SANS
measurements before turning to a quantitative analysis. Within
the ordered phase, the helices carry momentum Q parallel
to one of the four cubic 〈111〉 directions resulting in the
formation of four domains. In our experiment [Fig. 1(b)]
the sample was oriented such that the Bragg condition is
fulfilled for the two pairs of HM Bragg satellites associated
with the domains Q1 ‖ [111] and Q2 ‖ [111̄] [white arrows
in Fig. 1(c)]. Below Tc only the discrete Bragg satellites are
visible [Figs. 1(c)–1(e)], but when the temperature approaches
Tc [Fig. 1(e)] the magnetic intensity drops significantly and
the Bragg spots start to broaden azimuthally. For T � Tc

magnetic intensity emerges on a ring with a radius that
corresponds to the modulus Q of the helical propagation vector
[Figs. 1(f)–1(j)].

To verify the Brazovskii scenario, we have determined
the magnetic intensity distribution in three dimensions of
momentum space via rocking scans that were carried out by
rotating the sample around its vertical axis [Fig. 1(b)]. In
Figs. 2(a)–2(c) we show representative detector images for
rocking angles ω up to 35◦ for T = 29.6 K. The magnetic

FIG. 2. (Color online) (a)–(c) Dependence of the magnetic
fluctuations on the rocking angle ω up to ±35◦ are exemplarily
shown for T = 29.6 K. The sample was rocked around the [112]
axis [see Fig. 1(a)]. (d) Integrated intensities corresponding to the red
integration regions in (a) as a function of ω for different temperatures
above and below Tc. The integration regions were selected such
that all included points are rotated through the detector plane
with approximately identical velocity. Furthermore, the integrated
intensities have been corrected for the change of neutron absorption
due to the increasing path length through the sample for increasing
angles. The red and green shaded regions denote the integrated
intensity for the critical magnetic fluctuation at 29 and 29.6 K,
respectively.

intensities for all measured rocking angles are similar, showing
that the fluctuations indeed emerge on a sphere. The magnetic
anisotropy on the sphere is investigated in Fig. 2(d), which
shows integrated intensities as function of ω for several
temperatures below and above Tc. The intensity increases
significantly at large ω as soon as the critical magnetic
fluctuations arise at Tc [Fig. 2(d), red triangles]. Here the sharp
peak at the center is due to remanent HM order (red triangles,
see discussion below), but also the intensity of the fluctuating
part [Fig. 2(d), red shaded region] initially exhibits a shallow
maxima at the position of Q1 (ω = 0) due the cubic magnetic
anisotropy. However, as T is further increased the distribution
of magnetic intensity on the sphere becomes more and more
isotropic [Fig. 2(d), green shaded region].

In Fig. 4(a) we show the integrated intensity of all four
domains (black squares) that measures the order parameter of
the HM phase as a function of temperature (see Appendix A on
how the intensities were integrated). The magnetic intensity
features a sharp drop of about two orders of magnitude at
Tc, showing that the phase transition is indeed first order.
For comparison we have also plotted the intensity of the
critical fluctuations just above the transition (blue circles)
demonstrating that the magnetic intensity of the Bragg peaks
at low temperature measuring the static HM order parameter is
entirely recovered above Tc in the form of critical fluctuations
uniformly distributed on a sphere in momentum space.
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FIG. 3. (Color online) Radial q scans through the magnetic fluctuations above Tc = 29 K are shown for all measured temperatures. The
inset in each panel shows the corresponding direction of the scan in reciprocal space. The q scans were extracted from the two-dimensional
detector images in Fig. 1 by performing radial bins with an azimuthal width corresponding to the experimental resolution. The solid lines are
fits to Eq. (1) (see text). The gray shaded region shown in each panel denotes the experimental resolution.

For a quantitative analysis of the SANS data we have
performed fits of the radial q scans shown in Fig. 3. Importantly
we find that the magnetic intensity at T > Tc appearing on the
sphere in momentum space can be quantitatively explained in
terms of critical HM fluctuations. The radial q scans are well
accounted for [see Figs. 3(a)–3(d)] by the modified Lorentzian
profile as derived by Grigoriev et al.39

dσ (q)

d�
= A kBT

[(q + Q)2 + κ2]

× Q2 + q2 + κ2

(q − Q)2 + κ2 + α2
cubQ

2
(
q̂4

x + q̂4
y + q̂4

z − 1/3
) .

(1)

Here q is the reduced wave vector with q = |q| measured
from the neighboring reciprocal lattice vector, αcub measures
the cubic anisotropy, kB is the Boltzmann constant, and A is a
proportionality factor that depends, e.g., on the magnetic form
factor of the Mn ions. Equation (1) describes the intensity of
critical magnetic fluctuations with inverse correlation length
κ = 1/ξ emerging on a sphere with radius Q in reciprocal
space. However, depending on the magnitude of the magnetic
anisotropy αcub, the sphere will have shallow maxima along
the 〈111〉 directions due to the cubic invariant (q̂4

x + q̂4
y + q̂4

z −
1/3), where q̂ = q/q.

We employed simultaneous fits of q scans along the [111],
[111̄], [001], and [110] directions to determine the temperature
dependence of αcub. This is in contrast to Ref. 39 where
αcub was fixed, resulting in an inverse correlation length κ

depending on the direction close to Tc in contradiction to
Eq. (1) [cf. red crosses and triangles in Fig. 4(d)]. Our fits
describe the intensity observed on the entire sphere (not only
along the fitted directions) remarkably well for all observed
temperatures as shown in Appendix A. For T = Tc + 0.1 K
and Tc + 0.2 K the fits improve significantly by adding a
Gaussian profile to Eq. (1) for the scans parallel to [111] and
[111̄] indicating the presence of a tiny fraction of HM order
above Tc. This suggests that remanent droplets of the HM phase
survive above Tc as expected for a first-order transition.19

The results of the fits are summarized in Figs. 4(b)–4(d). Q
does not show any pronounced anomaly close to Tc and keeps

increasing as function of temperature with about the same rate
as observed in the HM phase [Fig. 4(b)]. In the HM phase Q

was determined via fits of the helical satellites using a Gaussian
profile (see Appendix A). At Tc we find Q = 0.039 Å−1,
yielding a DM length scale ξDM = 1/Q ≈ 26 Å.

The cubic anisotropy αcub is shown in Fig. 4(c), whereas it is
negligible at higher temperatures, it reaches a maximum value
of α2

cub ≈ 0.023 at Tc. This yields an estimate for the cubic
length scale ξcub = 1/(αcubQ) ≈ 169 Å. Readers interested
in the uncertainties of this estimate are referred to Fig. 4 where
the error bars of αcub and Q are given. As explained above,
the two lengths ξDM and ξcub give rise to crossovers in the
character of the critical fluctuations, see Fig. 1(a). Whether the
latter cubic crossover develops or not depends on the size of
the correlation length at the first-order transition.

The inverse correlation length κ is shown in Fig. 4(d)
and is well in agreement with previously reported results.39

It assumes a finite value at the transition that is given by
ξc = 1/κc ≈ 200 Å so that it is in fact of similar magnitude as
the cubic length ξcub. This implies that the first-order transition
takes place before the cubic anisotropies have fully developed,
clearly disfavoring a Bak-Jensen scenario.

This is borne out by the value of the Ginzburg length
which is at the origin of the peculiar temperature dependence
of κ as we demonstrate in the following. The temperature
dependence of κ was previously fitted with an ad hoc two-
stage power-law dependence.33,56 We find, however, that it
can be naturally explained in terms of a Brazovskii renormal-
ization. If the singular fluctuation corrections are taken into
account self-consistently, one obtains the Brazovskii equation
for the inverse correlation length9 (see Appendix B for details)

κ2 = κ2
MF + κ3

Gi

κ
, (2)

where κ2
MF ∝ T − TMF measures the distance to the mean-field

transition temperature TMF, and κGi can be identified with the
inverse Ginzburg length ξGi = 1/κGi. The explicit solution to
this cubic equation reads

κ(T ) = κGi

√
[τ + (1 − τ 3 + √

1 − 2τ 3)1/3]2

21/3[1 − τ 3 + (
√

1 − 2τ 3)1/3]
, (3)
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FIG. 4. (Color online) Characteristics of the Brazovskii-type fluctuation-induced first-order transition of MnSi determined by SANS.
Parameters in (b)–(d) were obtained from the magnetic intensity by means of Eq. (1) (cf. Fig. 3). (a) The magnetic intensity on the helical Bragg
reflections (black squares) exhibits a discontinuous jump at Tc as expected for a first-order transition. Above Tc the magnetic intensity of the
helical state is recovered entirely in form of critical magnetic fluctuations arising on a sphere in momentum space (blue circles). (b) Magnitude
of the helical propagation vector Q in the HM phase (black squares) and the radius of the sphere above Tc (blue circles) vs temperature T .
(c) Cubic anisotropy α2

cub vs T . (d) The inverse magnetic correlation length κ = 1/ξ vs T (blue circles). The red markers denote κ according
to previously published results.39 The blue solid line is a fit to Eq. (3) that describes the renormalization of κ(T ) for T → Tc as expected
for a Brazovskii transition (see text). The black solid line highlights that for T � TMF mean-field behavior is obtained. The black circles are
obtained from measurements of the magnetic susceptibility via Eq. (4) as described in the text. (e) The T dependence of κ identifies three
separate regimes above Tc: (i) For ξ < ξDM [κ > Q, see (c)] fluctuations are essentially ferromagnetic as previously shown in Refs. 37 and 38.
(ii) They develop an isotropic chiral character for ξ � ξDM as shown in the inset of (d). (iii) For ξ > ξGi [κ < κGi] the interaction suppresses
the transition temperature resulting in a fluctuation-disordered regime just above the fluctuation-induced first-order transition at Tc. We find for
MnSi Tc ≈ 29 K and TMF ≈ 30.5 K and thus a suppression of 
T = TMF − Tc ≈ 1.5 K.

where τ = (21/3/3)κ2
MF/κ

2
Gi ≡ (T − TMF)/T0. As shown in

Fig. 4(d) (blue solid line) the inverse correlation length that
was experimentally determined from our SANS data in the
temperature range between Tc and 30.5 K is perfectly described
by the Brazovskii Equation (3) with fit values listed in Table I.

The resulting Ginzburg length amounts to ξGi ≈ 53 Å,
demonstrating that the three length scales obey ξDM < ξGi <

ξcub, see Table II and also Fig. 4(e). In turn, the Brazovskii
scenario does indeed hold. At large temperatures T � TMF,
i.e., ξ � ξGi, the system is disordered already on the mean-

field level, and Eq. (3) recovers the mean-field behavior κ ≈
κMF, as shown by the black solid line in Fig. 4(d). However, for
T ≈ TMF, i.e., ξ ≈ ξGi, the strong one-dimensional singularity
of the interaction correction prevents the correlation length
to become infinite and thus impedes the condensation of
long-range order. Consequently, the transition temperature
is suppressed by 
T = TMF − Tc ≈ 1.5 K, see Table I and
Fig. 4(e), giving rise to a fluctuation-disordered regime for
Tc < T < TMF [blue shaded region in Figs. 4(d) and 4(e)].
Finally, the fluctuations trigger a first-order transition into the

TABLE I. Summary of the fit parameters obtained by fitting the inverse correlation length κ(T ) determined via SANS
[see Fig. 4(d)] and the magnetic susceptibility χ (T ) [see Fig. 5(a)] by means of Eqs. (3) and (4), respectively.

Parameter Symbol (Unit) Fit of κ(T ) Fit of χ (T )

Inverse Ginzburg length κGi (Å−1) 0.019(4) 0.018(3)
Mean field temperature TMF (K) 30.6 (1.0) 30.5(5)

T0 (K) 1.1(3) 1.3(2)
Magnitude of magnetic susceptibility χ0 (1) − 0.27(4)
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TABLE II. Estimate of various length scales ξα = 1/κα close to
the helimagnetic transition of MnSi, see text. The chiral DM length
translates to a pitch length of 2πξDM ≈ 160 Å.

Chiral DM length ξDM ≈ 26 Å
Ginzburg length ξGi ≈ 53 Å
Cubic anisotropy length ξcub ≈ 169 Å
Correlation length at Tc ξc ≈ 200 Å

HM state at a critical τc < 0 with a numerical value of order
one, |τc| ∼ O(1), whose description is beyond Eq. (2) but is
explained in detail in Appendix B.

IV. CRITICAL THERMODYNAMICS OF MnSi

We now turn to an analysis of the thermodynamic
measurements. The longitudinal magnetic susceptibility for

temperatures T > Tc and zero magnetic field H = 0 can also
be expressed in terms of the inverse correlation length

χ |T >Tc
= χ0

1 + κ(T )2/Q2
, (4)

where χ0 is a constant, and Q is the length of the helical
propagation vector as before. The inverse of the measured
magnetic susceptibility for H = 0 is shown in Fig. 5(a)
together with a fit to the Brazovskii formula of Eq. (3), which
perfectly accounts for the observed T dependence. The fit
parameters are given in Table I and agree well with the values
extracted from SANS. To highlight the relationship between κ

and χ , we have added the latter in Fig. 4(d) (black circles).
The Brazovskii renormalization of κ leads to a striking

modification of the temperature dependence of the susceptibil-
ity. On the mean-field level κ2

MF ∝ T − TMF, the susceptibility
shows Curie-Weiss behavior and would keep increasing as
the temperature is lowered [cf. red solid line in Fig. 5(a)].

FIG. 5. (Color online) Signatures of the Brazovskii scenario in MnSi as reflected in the thermodynamic observables. (a) The inverse
ac-susceptibility (χ − χ ′)−1 in zero magnetic field vs temperature T . Here χ ′ is a small contribution to χ that depends on the exact position
of the sample in the measurement setup. The blue solid line is a fit of the magnetic susceptibility to Eq. (4). Tc = 29 K has been determined
as the minimum in χ−1. The red solid line shows the (field-cooled) magnetic susceptibility in the mean-field approximation. The green solid
line displays ∂2

T χ (T ) indicating the position of a turning point in χ (T ) [∂2
T χ (T ) = 0, horizontal dashed line] at T ∗ ≈ 30.8 K. Tmin ≈ 29.8 K

denotes the minimum in ∂2
T χ (T ). (b) The magnetic susceptibility χ − χ ′ vs T measured for magnetic fields H = 0 and 0.05 T, respectively.

The blue solid line denotes the magnetic susceptibility calculated via self-consistent Hartree-Fock-Brazovskii (HFB) theory (see text). (c) The
specific heat C vs T for different magnetic fields H . Here Tc and T ∗ indicate the position of the sharp first-order-like feature and a Vollhardt
invariance for which ∂H C(T ) = 0, respectively. We note that the Vollhardt invariance coincides with the turning point in χ . The solid lines are
guides to the eye. The inset shows the magnetic phase diagram of MnSi as determined via χ with H applied along [110]. The green squares
are the positions of the turning point in χ (T ) that coincide with the crossing point in C in the limit H → 0. HM, FP, FD, and PM denote the
helimagnetic, the field-polarized, the fluctuation-disordered paramagnetic, and the mean-field disordered paramagnetic regimes, respectively.
A labels the A phase that shows the skyrmion lattice.22 (d) The magnetic contribution to the specific heat Cmag for three magnetic fields H vs
T , obtained by subtracting the electronic and lattice parts (see text). The solid lines represent calculations for Cmag according to self-consistent
HFB theory. Thermodynamics does not show clear signatures at the temperature TMF itself where ξ ≈ ξGi (cf. Fig. 4), but rather features in χ

and C at T ∗ ≈ 30.8 K whose value is determined by the ratio ξGi/ξDM (see text).
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However, the renormalization of κ weakens this increase
and, in particular, induces a turning point ∂2

T χ |T =T ∗ = 0 at
a temperature T ∗ = 30.8(1) K, that is slightly larger than TMF

(green solid line). To make contact with previous work,56 we
also note that ∂2

T χ exhibits a local minimum at a temperature
Tmin = 29.8(2) K with T ∗ > Tmin. Within Brazovskii theory,
both these temperature scales are determined by the Ginzburg
length ξGi (or, more precisely, by the ratio ξGi/ξDM) and thus
originate from the interaction between chiral fluctuations.

As explained in Appendix B, the self-consistent Hartree-
Fock-Brazovskii (HFB) approximation goes beyond Eq. (3) as
it also describes the fluctuation-induced first-order transition
and the resulting behavior within the ordered phase. Although
a self-consistent Hartree-Fock theory is inadequate for the
description of second-order transitions,57 it is controlled
for Brazovskii systems in the limit of weak interactions,
i.e., ξDM/ξGi � 1. However, as we find ξDM/ξGi ≈ 0.5 for
MnSi, this condition is not well obeyed so that quantitative
corrections to HFB theory can in principle be sizable.

In Fig. 5(b) a comparison between experiment and theory is
shown for the zero-field cooled (ZFC) magnetic susceptibility.
The magnetic susceptibility within the ordered phase T < Tc

is anisotropic and thus depends on the domain population.
In case of zero-field cooling where all 〈111〉 domains are
equally populated, this anisotropy results in the decrease of
χ for T < Tc, giving rise to the peculiar hooked shape that
is nicely reproduced by the HFB approximation. The value
of Tc, however, is slightly overestimated by theory and the
saturation value of the ZFC susceptibility within the ordered
phase differs by approximately 10%. A small field tends to
align Q with the field direction resulting in an enhancement of
the susceptibility at H = 0.05 T in Fig. 5(b) as compared to
zero field.

The specific heat C of MnSi as measured for different
magnetic fields H is shown in Fig. 5(c). At zero field a
sharp first-order spike is observed at Tc. With increasing H

it shifts to slightly lower temperatures, while simultaneously
its magnitude is suppressed, well in agreement with the known
phase diagram shown in the inset of Fig. 5(c). The first-order
peak is accompanied by a broad shoulder with a slope that
decreases with H resulting in a characteristic crossing point
at T ∗ = 30.8 K. At large fields H > Hc2 ≈ 0.55 T,54 the HM
order is suppressed and the first-order transition disappears
while the shoulder develops into a broad feature indicating the
crossover from a PM into a field-polarized regime.

Crossing points of the specific heat in general have been
discussed by Vollhardt55 who pointed out that they are linked
to inflection points of a certain conjugate variable by a Maxwell
relation. In our case, the crossing point in C is related to an
inflection point in the magnetization M ,

0 = ∂HC
∣∣
T ∗ = T ∂2

T M
∣∣
T ∗

H→0≈ T H∂2
T χ

∣∣
T ∗ . (5)

In the limit of small fields where M = χH , this is equivalent
to a turning point of the susceptibility χ which, as discussed
above, is induced by the Brazovskii renormalization of the
correlation length. The turning point in χ and the crossing
point in C are thus different manifestations of the same
phenomenon. The strong renormalization effects arising from
the interaction among chiral fluctuations is therefore also at
the origin of the Vollhardt invariance observed in C. Note that

according to Eq. (5) the turning point of χ stabilizes the
Vollhardt invariance only for small fields H . Indeed, it is
known that for strong H the Vollhardt invariance in MnSi
disappears.52

Figure 5(d) shows the magnetic contribution to the specific
heat Cmag that has been obtained by subtracting the electronic
and lattice contribution using the values established in Ref. 54.
After having fixed all parameters by a fit to the susceptibility,
the self-consistent HFB approximation predicts the behavior
for Cmag as shown by the solid lines. It nicely accounts for the
shoulder and the Vollhardt invariance close to T ∗ and explains
the quasisaturation just above the first-order transition even
though the parameter ξDM/ξGi that controls this approximation
is not particularly small. The HFB approximation becomes
less accurate with increasing field and at H = 0.2 T ceases
to be reliable (see Appendix B). Within the ordered phase
T < Tc, the HFB approximation shows a pronounced additive
contribution to the specific heat reminiscent of the jump
in C on the level of mean-field theory. Interestingly, this
offset is however not observed experimentally which might
be attributed either to an additional higher order M6 term in
the Ginzburg-Landau expansion or to the influence of HM
Goldstone modes.58

V. DISCUSSION AND OUTLOOK

In summary, we showed that the transition from the PM
to the HM phase in MnSi is driven weakly first order
by fluctuations. The first-order nature of the transition is
confirmed by our SANS measurement, and the intensity of
the critical fluctuations for T > Tc is found to be practically
uniformly distributed on a sphere in momentum space with
only small corrections due to cubic anisotropies. This identifies
the Brazovskii scenario as the driving mechanism for the
fluctuation-induced first-order transition and rules out the
scenario proposed by Bak and Jensen. This is corroborated
by the observed suppression of the transition temperature and,
in particular, by the temperature dependence of the measured
correlation length that can be quantitatively described by the
lowest-order self-consistent Brazovskii approximation. We
discussed the relation between the critical fluctuations and
thermodynamic quantities, and, especially, explained how the
Brazovskii renormalization of the correlation length induces an
inflection point in the magnetic susceptibility and a Vollhardt
crossing point in the specific heat. The provided evidence
for these thermodynamic signatures convincingly rules out
alternative explanations in terms of intermediate skyrmion
liquid phases as proposed in Refs. 47–50.

Our study also offers interesting perspectives for future
research. An obvious question to be addressed is the evolution
of the Brazovskii fluctuations with increasing pressure. The
transition temperature of MnSi can be suppressed by applying
a pressure of p ≈ 15 kbar accompanied by the emergence of
partial magnetic order and an unusual extended non-Fermi
liquid phase.45,59 The possible relation of these phenomena
to a quantum version of Brazovskii theory35 is an interesting
open question. Furthermore, as the magnetic field increases the
first-order nature of the transition weakens and it eventually
becomes second order resulting in a tricritical point that is to
be investigated [cf. inset of Fig. 5(c)].
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As our arguments are derived from basic symmetry princi-
ples, i.e., the rotational symmetry that emerges on long length
scales in the limit of weak spin-orbit coupling, we expect
that cubic DM-HMs with weak spin-orbit coupling like the
B20 compounds generically exhibit a fluctuation-induced first-
order transition of Brazvoskii type. However, one may raise
the question whether such transitions also prevail in DM-HMs
with lower symmetry, such as Ba2CuGe2O7 (tetragonal),60

for which critical magnetic fluctuations similar to the ones
in MnSi have been already observed,61 Ba3NbFe3Si2O14

(trigonal),62 and NdFe3(BO3)4 (trigonal).63 Notably, DM-
HMs with lower symmetry are relevant for multiferroics64

and magnetic surfaces and interfaces65–67 that are promising
systems for memory/storage devices.

Our work identifies the cubic DM-HMs as a class of
systems that realize fluctuation-induced first-order transitions
of the Brazvoskii type, whose unequivocal experimental
confirmation has proven elusive in the past. This paves the way
for a more detailed experimental study of such transitions and
their properties, e.g., the nucleation of critical HM droplets.68
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APPENDIX A: EXPERIMENTAL METHODS
AND ANALYSIS

1. Thermodynamics

The specific heat and ac susceptibility were measured with
a Quantum Design Physical Property Measurement System
at temperatures down to 2 K and in magnetic fields up to
9 T. The specific heat was measured with a standard heat-
pulse method, where heat pulses were limited to ≈0.2% to
prevent thermal smearing of the signature of the first-order
transition. For both measurements the magnetic field H was
applied along a 〈110〉 axis. The single crystal employed for
the bulk measurements was grown by optical float zoning as
detailed in Ref. 54 and was cut into a cuboid shape (2 × 2 ×
1.5 mm3) with the two large surfaces aligned perpendicular
to a 〈110〉 axis. The corresponding mass of this sample is
36.75 mg and the RRR is 80.

2. Small-angle neutron scattering (SANS)

The SANS experiment was performed using neutrons with
wavelength λ = 9.7 Å on the beamline MIRA69 situated at the
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II).

The instrumental resolution was selected by a computer-
controlled variable source aperture of rectangular cross section
that was installed after the monochromator and a cadmium
aperture of approximately 15 mm diameter in front of the
sample and is comparable with that of other studies.22,49 The
direct beam was masked by a Cd mask in front of the detector.
For the experiment the single crystal was cooled with a closed
cycle cryostat with sample tube (CCR) available at FRM II.
The single crystal used for the SANS measurement is a disk
of diameter ≈20 mm and 2 mm thickness and was cut from a
ingot that had already been studied before in several neutron
experiments and was grown by the Bridgman technique.38,58

The residual resistivity ratio (RRR) of this sample is ≈80.
In the following, details of the analysis of the SANS data

are presented.

a. Integration of magnetic intensities

We have separated the intensities belonging to the helical
Bragg satellites and the magnetic fluctuations observed on the
sphere by carefully choosing appropriate integration regions
as shown in Fig. 6. Here the segments with the red solid and
white broken border were used to integrate the intensities for
the helical satellites and the ring, respectively.

The segments for the ring have been broken up into six
pieces in order to remove the intensity of the peaks that develop
due to double scattering in the sample (see black broken line
in Fig. 6). The full integrated intensity of the observed ring
was consequently obtained by assuming that the intensity is
isotropically distributed on the ring and scaling the intensity by
π/lR , where lR is the combined arc length of all six segments.
The intensity on the whole sphere can be estimated from
the intensity of the observed ring by considering the angular
resolution of the experiment δω = 4.5◦ = 0.025π (FWHM)
that was extracted from Gaussian fits to rocking scans over the
magnetic satellites (cf. Fig. 2). We note that cold triple axis
measurements on this sample show that the magnetic satellite
reflections are narrow (<0.1◦),58 thus demonstrating that the
measured peak width in our experiment is resolution limited,

FIG. 6. (Color online) The angular sections used for the integra-
tion of the magnetic intensities observed on the magnetic satellite
peaks associated with the helimagnetic order in MnSi (red solid
lines) and magnetic fluctuations observed on a ring (sphere) above
Tc = 29 K (white broken lines) are illustrated. Here (a) and (b) show
examples of the intensity in the helimagnetic phase below Tc and the
fluctuations above Tc, respectively. The black dashed line indicates
a direction along which magnetic Bragg peaks are observed due to
double scattering, and which has therefore not been included in the
integration (see text for details).
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FIG. 7. (Color online) Radial q scans through the helimagnetic
Bragg peaks below Tc = 29 K are shown for all measured tempera-
tures. The inset in each panel shows the corresponding direction of
the scan in reciprocal space. The q scans were extracted from the two-
dimensional detector images in Fig. 1 by performing radial bins with
an azimuthal width corresponding to the experimental resolution. The
solid lines are fits to Gaussian line shapes (see text). The gray shaded
region shown in each panel denotes the experimental resolution.

and the angular resolution in a rocking scan is characterized
by δω. The surface segment of the sphere covered by the ring
at a single position of ω is S = 2

∫ π

0 sin(θ )dθ
∫ δω

0 dϕ = 4δω,
indicating that the integrated intensity of the sphere should
approximately amount to ISphere = 4π

4δω
IR = 40IR , where IR is

the intensity of the ring. ISphere is plotted as the blue circles in
Fig. 4(a).

The integrated intensity on the helical satellites I
1,2
Sat

belonging to domains Q1 and Q2 has been calculated by

subtracting the contribution from the ring to the intensities in
the red solid annular segments (IRS): ISat = IRS − IRlRS/π ,
where lRS is the combined arc length of all four red segments.
The integrated intensity for all four helical domains I all

Sat has
been consequently obtained by multiplying I

1,2
Sat by a factor 2

based on the knowledge that all four domains are generally
equally populated.58 I all

Sat is plotted as the black squares in
Fig. 4(a).

b. Fits of the helimagnetic Bragg peaks below Tc

To obtain the temperature dependence of the magnitude of
the helimagnetic propagation vector Q we have performed fits
of the radial q scans through the helimagnetic Bragg peaks
shown in Fig. 7. The peaks were fitted with a Gaussian line
shape where the peak position determines the distance to the
center of the Brillouin zone and therefore the magnitude of Q.
The temperature dependence of Q is shown in Fig. 4(b).

c. Calculation of the intensity of magnetic fluctuations

The fits of the magnetic fluctuations above Tc to Eq. (1)
have been carried out by doing combined fits of radial q scans
in the four main directions [111], [111̄], [001], and [110]
that characterize the magnetic cubic anisotropy on the ring
(sphere). However, Eq. (1) can be used to obtain the entire
intensity of the fluctuations in all directions on the sphere.
In order to verify how well our fit describes the intensity on
the entire sphere, we have performed a calculation of these
intensities based on Eq. (1) using the corresponding parameters
obtained in the fit (see Fig. 4 for the fit parameters). As
illustrated in Fig. 8 for four representative temperatures, the

FIG. 8. (Color online) A comparison between the calculated (two upper rows) and measured intensities (bottom row) of the magnetic
fluctuations above Tc = 29 K. Here the calculated intensities were obtained by using Eq. (1) that describes magnetic fluctuations arising at
the phase transition between the helimagnetic and the paramagnetic state in a Dzyaloshinskii-Moriya helimagnet. For the calculation the fit
parameters obtained by fits of radial q scans in the four main directions [111], [111̄], [001], and [110] (see Figs. 3 and 4) have been employed.
For calculation II additional Gaussian profiles have been added at the position of the helical Bragg satellites in the helimagnetic phase for
T = 29.1 K (see text for details).
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calculated intensity of the magnetic fluctuations is in excellent
agreement with the experiments. The only temperature where
major disagreement is observed is T = 29.1 K just above Tc

(cf. calculation I in Fig. 8). As reported in the main paper
between Tc and 29.2 K an additional Gaussian shaped intensity
component was observed at the position of the helical satellites
below Tc indicating that remanent droplets of helimagnetic
order survive above Tc. Adding these Gaussian components
according to the fit parameters obtained via the fit of radial q
(assuming isotropic Gaussian linewidth) for the calculation for
T = 29.1 K results in excellent agreement for this temperature
as well (cf. calculation II in Fig. 8).

APPENDIX B: THEORY OF THE FLUCTUATION-INDUCED
FIRST-ORDER TRANSITION IN CHIRAL MAGNETS

In this Appendix we present details of the theoretical
treatment. In Appendix B 1 the Ginzburg-Landau theory for
cubic helimagnets (HM) is introduced and the mean-field
properties are reviewed. Appendix B 2 discusses the appli-
cation of the Hartree-Fock-Brazovskii (HFB) approximation
to helimagnets, and, finally, Appendix B 3 presents estimates
of the model parameters and energy scales for MnSi.

1. Ginzburg-Landau theory of chiral magnets

The classical Ginzburg-Landau theory of a chiral magnet
is given by the free-energy functional F = ∫

d3x f with the
density f = f0 + fcub, where32,70

f0 = 1

2
φ(r − J∇2)φ + Dφ(∇ × φ) + u

4!
(φ2)2 − μ0μφH .

(B1)

We choose dimensionless units for the three component order
parameter field φ, which we normalize such that the coupling
to the magnetic field μ0 H is just given by the magnetization
density μ = μB/f.u. corresponding to a single Bohr magneton
per formula unit that is f.u. = 24.018 Å3 for MnSi. The absence
of inversion symmetry allows for the Dzyaloshinskii-Moriya
(DM) interaction D that couples internal magnetic space and
real space and is proportional to the strength of the spin-orbit
coupling λSO, D ∼ O(λSO), which is small in MnSi. The terms
of second and higher order in spin-orbit coupling are contained
in fcub that, in particular, break the rotation symmetry of
f0 present at H = 0 due to cubic anisotropies. We restrict
ourselves in the following to a single, representative term

fcub = Jcub

2
[(∂xφx)2 + (∂yφy)2 + (∂zφz)

2] + · · · , (B2)

where the coupling constant Jcub ∼ O(λ2
SO).

a. Mean-field theory

The benchmark in the following will be the mean-field
approximation that we review here. The ansatz for a single
conical helix reads

φhel(r) = φ̂0φ0 + �helê
−ei Qr + �∗

helê
+e−i Qr , (B3)

where φ0 is the homogeneous magnetization and �hel is the
complex amplitude of the helical order characterized by the
pitch vector Q. The vectors are given by ê± = (ê1 ± iê2)/

√
2

with the normalized dreibein ê1 × ê2 = Q̂, where Q̂ = Q/Q.

Evaluating the energy density f with this ansatz one obtains
the mean-field potential V = V0 + Vcub, where

V0 = r

2
φ2

0 + (r + JQ2 − 2DQ)|�hel|2

+ u

4!

(
φ2

0 + 2
∣∣�hel

∣∣2)2 − μ0μφ0H (B4)

determines the strength of the amplitudes. The second contri-
bution Vcub reflects the competition between the magnetic field
and the cubic anisotropies to orient the pitch vector Q and the
homogeneous magnetization φ̂0,

Vcub = μ0μφ0H (1 − φ̂0Ĥ ) + u

4!
|�hel|2φ2

0(Q̂ × φ̂0)2

+ Jcub

2
|�hel|2Q2

[
1 − (

Q̂4
x + Q̂4

y + Q̂4
z

)]
. (B5)

In the paramagnetic phase |�hel| = 0, one has φ̂0 = Ĥ and
minimization ∂φ0V = 0 results in the magnetic equation of
state,

rφ0 + u

3!
φ3

0 = μ0μH. (B6)

On the other hand, at zero field H = 0 the homogeneous
magnetization vanishes φ0 = 0. From Eq. (B5) follows that in
the helimagnetic ordered phase |�hel| > 0, even a tiny cubic
anisotropy Jcub, is sufficient to orient the pitch vector along a
cubic symmetry direction. We assume Jcub < 0 as this prefers
the 〈111〉 direction as observed in MnSi.32,70 Minimization
with respect to the pitch length then yields Q = D/Jeff , where
Jeff = J + Jcub/3 and the effective potential for H = 0 then
reduces to

V = δ|�hel|2 + u

3!
|�hel|4, (B7)

where we introduced the helimagnetic tuning parameter

δ = (r − JeffQ
2) ≈ r − JQ2. (B8)

In the last equation we neglected small corrections of relative
order |Jcub|/J � 1. Helimagnetic order develops in the form
of a second-order mean-field transition if the tuning parameter
δ becomes negative at H = 0, i.e., if the parameter r is reduced
below the DM energy density r � JQ2. Minimization of the
effective potential then yields for the amplitude |�hel|2 =
−3δ/u. If the magnetic field H is increased within the
helimagnetically ordered phase and points away from 〈111〉,
the competition between the cubic anisotropy and magnetic
energy in Vcub results in a reorientation of the pitch at a critical
field Hc1 whose precise value depends on the orientation of
the applied field Ĥ with respect to the crystallographic 〈111〉
direction.

b. Fluctuation spectrum and crossover scales

The fluctuations around the mean-field solution are
described by the susceptibility tensor χ−1

0,ij (r,r ′) = δ2S/

[δφi(r)δφj (r ′)] with the action S[φ] = ∫
d3xf/(kBT ), which

reads explicitly

χ−1
0,ij (r,r ′) = 1

kBT

{(
r − J∇2

r

)
δij − 2Dεijn∇rn

+ u

3!
[φ(r)φ(r)δij + 2φi(r)φj (r)]

}
× δ(r − r ′) + χ−1

cub ij (r,r ′), (B9)
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where φ(r) is the mean-field order parameter and χ−1
cub is

the contribution arising from the cubic anisotropies fcub of
Eq. (B2).

In the paramagnetic phase |�hel| = 0, the Fourier transform
of the susceptibility χ−1

0 (k,k′) = χ−1
0 (k)δk,−k′ is diagonal in

momentum space. As shown by Grigoriev et al.,39 inverting
this susceptibility χ−1

0 (k) for magnetic field H = 0 and taking
into account the cubic anisotropy Jcub close to the critical
singularity yields the form of the scattering cross section of
Eq. (1), that was used to analyze the neutron scattering data
with the identification α2

cub = |Jcub|/(2J ).
It is instructive to consider the mean-field fluctuation

spectrum ω0,k that follows from the eigenvalue equation

kBT
∑

k′
χ−1

0,ij (k,k′)vj (−k′) = ω0,kvi(k), (B10)

with eigenvectors vj (k) as a function of momentum k. This
spectrum changes qualitatively as the transition is approached
from high temperatures |�hel| = 0, and it exhibits a series of
crossovers as illustrated in Fig. 1(a). Far above the transition,
the spectrum is approximately that of a ferromagnet above
its Curie temperature ω0,k ≈ r + Jk2. As the temperature is
lowered and r reaches the order of the Dzyaloshinskii-Moriya
energy density

εDM = JQ2 (B11)

fluctuations start to become soft on a sphere in momentum
space with radius Q and the magnetic correlations develop
an oscillating component. The corresponding spectrum has
three branches ωcr

0,k < ω1
0,k < ω2

0,k. The low-energy part has
the Brazovskii form

ωcr
0,k = δ + J (|k| − Q)2, (B12)

where δ is the helimagnetic tuning parameter of Eq. (B8).
The dispersion of the remaining two fluctuation branches are
ω1

0,k = δ + JQ2 + J k2 and ω2
0,k = δ + J (|k| + Q)2. Close to

criticality as δ → 0+, these other modes still have a gap on the
order of the DM interaction energy density εDM = JQ2. The
correction to the critical spectrum (B12) arising from cubic
anisotropies of Eq. (B2) finally becomes important for values
of the tuning parameter on the order of the cubic energy density
δ ∼ εcub, with

εcub = α2
cub εDM = |Jcub|Q2/2. (B13)

The energy scales that determine the crossover in the fluctua-
tion spectrum are converted into the length scales ξDM and ξcub

of Fig. 1(a) via εDM = J/ξ 2
DM and εcub = J/ξ 2

cub.

c. Mean-field magnetic susceptibility

For zero momenta the susceptibility matrix (B9) reduces to
the thermodynamic dimensionless magnetic susceptibility via
the relation χMF

mag,ij = μ0μ
2

kBT
χ0,ij (0,0).

In the paramagnetic phase |�hel| = 0 at zero field, H =
0, one obtains χMF

mag,ij = δij (μ0μ
2)/r . In the helimagnetically

ordered phase |�hel| > 0, on the other hand, the mean-field
order parameter φ(r) carries a finite momentum Q and, as a
result, the susceptibility is nondiagonal in momentum space.

Using the ansatz (B3) we obtain

kBT χ−1
0,ij (k,k′)

= kBT χ−1
0,ij (k)δ0,k+k′

+ u

3
ψ2

helê
−
i ê−

j δ2 Q,k+k′ + u

3
ψ∗2

helê
+
i ê+

j δ−2 Q,k+k′

+ u

3
ψhelφ0(ê−

i φ̂0j + ê−
j φ̂0i)δQ,k+k′

+ u

3
ψ∗

helφ0(ê+
i φ̂0j + ê+

j φ̂0i)δ− Q,k+k′ . (B14)

The part that is diagonal in momenta reads

χ−1
0,ij (k) = 1

kBT

[
(r + Jk2)δij − 2Dεijnikn

+ u

3!
φ2

0(δij + 2φ̂0i φ̂0j ) + u

3
|ψhel|2(2δij − Q̂iQ̂j )

]
+χ−1

cub ij (k). (B15)

The magnetic susceptibility is obtained from the inverse of
the generalized matrix χ−1

0,ij (k,k′) taken at zero momenta. It

is however important to note that χ0,ij (0,0) �= [χ−1
0,ij (0,0)]−1

because the order parameter carries momentum. After invert-
ing the susceptibility matrix, we get for the dimensionless
magnetic susceptibility of a single helimagnetic domain
χMF

mag,ij = μ0μ
2

kBT
χ0,ij (0,0) at zero magnetic field H = 0, i.e.,

φ0 = 0,

χMF
mag,ij = μ0μ

2

JQ2

[
Q̂iQ̂j + 1 − δ/(JQ2)

1 − 2δ/(JQ2)
(δij − Q̂iQ̂j )

]
,

(B16)

where we neglected corrections arising from cubic anisotropies
for simplicity. Moreover, we used the equation of state
|�hel|2 = −3δ/u with the tuning parameter δ of Eq. (B8)
that is negative in the helimagnetically ordered phase δ < 0.
Close to the transition δ → 0− the magnetic susceptibility
becomes isotropic and smoothly connects to the value in
the paramagnetic phase. Deep in the ordered phase δ �
−JQ2, the susceptibility is anisotropic. In particular, the
longitudinal susceptibility χmag = χmag,ij ĤiĤj depends on the
angle between the magnetic field and the pitch vector Ĥ Q̂,

χMF
mag = μ0μ

2

JQ2

[1 − δ/(JQ2)] + (Ĥ Q̂)2[−δ/(JQ2)]

1 − 2δ/(JQ2)
. (B17)

The macroscopic magnetic susceptibility 〈χmag〉 averages over
helimagnetic domains that might possess pitches in different
〈111〉 directions. For field cooling (FC) with H in a 〈111〉
direction, we might expect a single helimagnetic domain
with (Ĥ Q̂)2 = 1 so that 〈χMF

mag〉〈111〉
FC = μ0μ

2/(JQ2) attains the
maximal possible value independent of δ. This is also the value
of the longitudinal susceptibility one expects in the conical
phase at a finite field H > Hc1. For zero-field cooling (ZFC),
on the other hand, we can assume an equal distribution of
domains so that 〈(Ĥ Q̂)2〉 = 1/3 independent of the magnetic
field orientation

〈
χMF

mag

〉∣∣
ZFC = μ0μ

2

JQ2

1 − 4
3δ

/
(JQ2)

1 − 2δ/(JQ2)
. (B18)
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As the helimagnetic phase is entered this susceptibility drops
from the mean-field value at criticality μ0μ

2/(JQ2) and
saturates for δ � −JQ2 to a value that is reduced by a factor
of 2/3.

2. Brazovskii theory for chiral magnets

Close to the critical temperature, chiral magnetic fluctua-
tions become very important and have to be treated in a self-
consistent manner. Corrections arising from the interaction of
modes with the dispersion of Eq. (B12) are singular as these
fluctuations have a quasi-one-dimensional character. As the
momentum dependence is peaked at a finite momentum along
the radial direction, the density of states

ν(ε) =
∫

dk
(2π )3

δ
(
ε − ωcr

0,k

) ≈ Q3

2π2
√

JQ2

1√
ε − δ

�(ε − δ)

(B19)

possesses a one-dimensional singularity as ε approaches the
tuning parameter ε → δ. Brazovskii9 argued that the interac-
tion correction due to fluctuations with such a singular density
of states changes the second-order mean-field transition into a
fluctuation-induced first-order transition.

In the following we discuss in detail the application of
Brazovskii theory to chiral magnets. We start from the two-
particle irreducible (2PI) effective action71–73

�[φ,χ ] = S[φ] + 1
2 Tr log χ−1

+ 1
2 Tr

(
χ−1

0 − χ−1
)
χ + �2[φ,χ ], (B20)

which is a functional of the field configuration φ and the
propagator χ . The action S[φ] = F[φ]/(kBT ) is given by
the free-energy functional of the chiral magnet defined in the
previous section. Here the trace Tr should be taken in the
functional sense. The bare susceptibility was already defined
in Eq. (B9). Finally, �2 is the sum of all 2PI vacuum graphs
evaluated with the renormalized propagator χ , see Fig. 9. The
effective action has to be minimized such that

δ�[φ,χ ]

δφ(r)
= 0,

δ�[φ,χ ]

δχ (r,r ′)
= 0, (B21)

which determines the observable field configuration φ and the
susceptibility χ .

a. Hartree-Fock-Brazovskii (HFB) approximation
for the effective potential

The following approximation consists of two steps. First,
we will limit ourselves for the 2PI vacuum graphs to the lowest
order diagram in Fig. 9(a) corresponding to the Hartree-Fock

FIG. 9. Two-particle irreducible diagrams of (a) first and
(b) second order in the interaction. The interaction is represented
by the dot and the line corresponds to a fluctuation propagator. We
approximate �2 of Eq. (B20) with the lowest order diagram (a).

approximation,

�2 = u

4!kBT

∫
d r{[trχ (r,r)]2 + 2trχ2(r,r)}. (B22)

The second approximation concerns the form of the suscep-
tibility matrix. It was argued by Brazovskii9 that close to the
transition the most singular contribution of the fluctuation
correction is attributed to the part of the fluctuation propagator
that is diagonal in momentum. We thus make the following
ansatz for the susceptibility

χ−1
ij (k,k′) = χ−1

ij (k)δ0,k+k′ + χ−1
0,ij (k,k′)(1 − δ0,k+k′). (B23)

While the off-diagonal part coincides with the one of the bare
susceptibility (B14), we parametrize the diagonal part as

χ−1
ij (k) = 1

kBT
[(JQ2 + Jk2)δij − i2Dεijnkn

+
⊥(δij − n̂i n̂j ) + 
‖n̂i n̂j ], (B24)

with the two variational parameters 
⊥ and 
‖, and the
unit vector n̂. For our purposes it is sufficient to assume
that for 
⊥ �= 
‖ there is only a single preferred orientation
given by n̂. At any finite field H in the paramagnetic phase
|�hel| = 0 or in the helimagnetically ordered phase |�hel| > 0,
for fields H > Hc1, the unit vector n̂ can be identified with
the magnetic field orientation n̂ = Ĥ . For |�hel| > 0 and
H = 0, on the other hand, the orientation is determined by the
pitch orientation of the helimagnetic domain so that n̂ = Q̂.
However, for H ≈ Hc1 within the ordered phase where cubic
anisotropies compete with the magnetic energy to orient the
pitch, see Eq. (B5), two orientations might be present and the
parametrization of Eq. (B24) might be insufficient.

Confining ourselves to the critical regime and anticipating
that the crossover close to criticality associated with the energy
scale εcub of Eq. (B13) is basically preempted by the first-order
transition, we neglect in the following the corrections from
cubic anisotropies to Eq. (B24). Furthermore, we apply the
Brazovskii approximation9

χ−1
0ij (k,k′) ≈ χ−1

0ij (k)δ0,k+k′ , χ−1
ij (k,k′) ≈ χ−1

ij (k)δ0,k+k′

(B25)

in the evaluation of the terms in Eq. (B20), i.e., we neglect
the components off-diagonal in momentum space which are
present in the ordered phase. Equation (B25) together with
Eq. (B22) yields the self-consistent Hartree-Fock-Brazovskii
(HFB) approximation for the effective potential.

For the evaluation of Eq. (B20) it is convenient to define
the function

D(
⊥,
‖) = kBT

∫
dk

(2π )3
log χ−1(k), (B26)

with the susceptibility of Eq. (B24). In the following we will
also need derivatives of this function which we denote by a
corresponding subscript, e.g., D⊥(
⊥,
‖) = ∂
⊥D(
⊥,
‖).
The function D can be separated into a part containing the
leading singularity and a part that is subleading close to
criticality D = Dsing + Dsub. The singular part is given by

Dsing(
⊥,
‖) = Q3kBT√
2π

√

⊥ + 
‖

JQ2
Y

(

⊥ − 
‖

⊥ + 
‖

)
,

(B27)
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where the auxiliary function Y reads explicitly

Y(α) = √
1 + α − 1

π

∫ ∞

−∞
ds

×
(

1 −
√

1 + s2

α
arctan

√
α

1 + s2

)
(B28)

and obeys Y(0) = 1 and Y ′(0) = 1
6 . The subleading part has

the property that its first derivatives have a well-defined limit
as 
⊥,‖ → 0.

Using the mean-field ansatz (B3) for the field configuration,
the effective action � then reduces to the effective potential
� = VVeff/(kBT ) with

Veff(
⊥,
‖,φ0,ψhel,ψ
∗
hel)

= V0(φ0,ψhel,ψ
∗
hel) + 1

2
D(
⊥,
‖)

+ 1

2

[
δ + u

3!

(
φ2

0 + 4|ψhel|2
) − 
⊥

]
D⊥

+ 1

2

[
δ + u

3!

(
3φ2

0 + 2|ψhel|2
) − 
‖

]
D‖

+ u

4!

[
(D⊥ + D‖)2 + 2

(
1

2
D2

⊥ + D2
‖

)]
, (B29)

where V0 is the mean-field potential given in Eq. (B4). We
assume that the part of the mean-field potentialVcub of Eq. (B5)
determining the orientation of the pitch Q̂ and the orientation
of the homogeneous field φ̂0 is already minimized and that in
the ordered phase it yields φ̂0 = Q̂ for finite φ0, which might
exclude the regime close to the pitch-flop transition that we do
not consider in the following for simplicity.

The effective potential Veff now is to be minimized with
respect to 
⊥ and 
‖, φ0 and the complex amplitude ψhel.
Minimization with respect to the susceptibility parameters
∂
⊥Veff = 0 and ∂
‖Veff = 0 yield the two equations


⊥ = δ + u

3!

(
φ2

0 + 4|ψhel|2
) + u

3!
(2D⊥ + D‖), (B30)


‖ = δ + u

3!

(
3φ2

0 + 2|ψhel|2
) + u

3!
(D⊥ + 3D‖). (B31)

Minimization with respect to the amplitudes ∂φ0Veff = 0 and
∂ψ∗

hel
Veff = 0 gives the equation of states[

r + u

3!

(
φ2

0 + 2|ψhel|2 + D⊥ + 3D‖
)]

φ0 = μ0μH, (B32)

[
δ + u

3!

(
φ2

0 + 2|ψhel|2 + 2D⊥ + D‖
)]

ψhel = 0. (B33)

Taking the effective potential Veff at its minimum yields the
free-energy density in the HFB approximation from which
thermodynamic quantities can be evaluated. A numerical
calculation of the specific heat is shown in Fig. 5. One
finds that the singular fluctuation corrections renormalize the
effective potential strongly so that the second-order mean-field
transition is converted into a fluctuation-induced first-order
transition.

b. Magnetic susceptibility at zero field H = 0

With the help of the susceptibility tensor (B23) we
can derive the magnetic susceptibility χmag,ij = μ0μ

2

kBT
χij (0,0),

following the derivation of the previous section. As before,
we limit ourselves to the magnetic susceptibility in zero
field H = 0. In the paramagnetic phase T > Tc the magnetic
susceptibility is isotropic χmag,ij = δijμ0μ

2/(JQ2 + 
), with

 ≡ 
‖ = 
⊥. In the ordered phase T < Tc we obtain for the
magnetic susceptibility of a single domain

χmag,ij = μ0μ
2

JQ2

[
Q̂iQ̂j

1 + 
‖/(JQ2)

+ 1 + 
⊥/(JQ2)

1 + 2
⊥/(JQ2)
(δij − Q̂iQ̂j )

]
, (B34)

where we used that 
⊥ = (u/3)|ψhel|2 which follows from
combining the equation of state (B33) and Eq. (B30). Averag-
ing over domains as before, we thus obtain for the longitudinal
susceptibility in the case of zero-field cooling (ZFC)

〈χmag〉|ZFC

= μ0μ
2

εDM

{
1/(1 + 
/εDM) for T > Tc

1
3

(
1

1+
‖/εDM
+ 2 1+
⊥/εDM

1+2
⊥/εDM

)
for T < Tc,

(B35)

where εDM = JQ2, and 
⊥,
‖ are functions of the tuning
parameter δ that have to be determined by minimizing the
effective potential. Far away from the transition the mean-field
behavior is recovered but close to the transition the Brazovskii
renormalization leads to qualitative modifications as discussed
in the main text. Figure 5(b) shows a comparison with the
experimental data on MnSi.

c. Brazovskii scaling limit in the critical regime

In the presence of fluctuation corrections an additional
energy scale εGi ∼ (ukBT Q2/

√
J )2/3 emerges. As the tran-

sition is approached from high temperatures at H = 0, the
fluctuation corrections become nonperturbative if the tuning
parameter δ reaches the order of δ ∼ εGi, which corresponds
to the Ginzburg criterion for chiral magnets (provided that
εGi < εDM).

It turns out that in the critical regime the effective potential
acquires a scaling form if the Brazovskii energy is much
smaller than the DM energy density εGi � εDM. This scaling
limit is obtained when the function D is approximated by
its singular part Dsing only. For example, in the paramagnetic
phase |ψhel| = 0, at zero field H = φ0 = 0, the equations of
state are automatically satisfied, and Eqs. (B30) and (B31)
reduce to a single equation as 
⊥ = 
‖ ≡ 
 that has a simple
form in the scaling limit given by


 = δ + ε
3/2
Gi√



. (B36)

This equation has the Brazovskii form; the 1/
√


 dependence
of the fluctuation correction reflects the singular density of
states (B19). Equation (B36) defines the Ginzburg energy
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density including prefactors to be

εGi =
(

5

36π

ukBT Q3√
JQ2

)2/3

. (B37)

With the identification 
 = Jκ2, δ = Jκ2
MF and εGi = Jκ2

Gi,
Eq. (B36) reproduces Eq. (3).

d. Corrections to the Hartree-Fock-Brazovskii approximation

The HFB approximation consists of (i) approximating the
2PI vacuum graphs only by the lowest order one [Eq. (B22)]
and (ii) neglecting the off-diagonal components of the suscep-
tibility matrix [Eq. (B25)]. In the following we discuss the
validity of these two approximations separately.

The correction to the Hartree-Fock approximation of �2

corresponds to the next-to-leading diagram shown in Fig. 9(b).
In the scaling limit we find that this diagram results in a singular
correction to the right-hand side of Eq. (B36) of the order

δ
 ∼ ε3
Gi


3/2√εDM
. (B38)

In order to estimate the regime where this correction is
negligible we follow Ref. 9 and demand that δ
/
 � 1.
Close to the fluctuation-induced first-order transition at H = 0,
the parameters are determined by the Ginzburg scale so that

 ∼ εGi and this condition becomes

δ




∼

√
εGi

εDM
= κGi

κDM
� 1. (B39)

The approximation (i) is thus self-consistent as long as the
Ginzburg scale is much smaller than the DM energy scale. In
the case of MnSi, we find κGi/κDM = ξDM/ξGi ≈ 0.5, so that
quantitative corrections due to Fig. 9(b) can be sizable.

The susceptibility matrix [Eq. (B25)] is nondiagonal in
momentum space as the helical order parameter carries
momentum. The approximation (ii) neglects the off-diagonal
components of the susceptibility within the ordered phase. This
approximation will account for the quasi-1D renormalization
arising from the Brazovskii spectrum close to criticality but it
neglects corrections arising from the Goldstone mode within
the helimagnetically ordered phase. These latter corrections
can become logarithmically large in the isotropic limit if
H = 0 and cubic anisotropies are absent. The dispersion of
this Goldstone mode is then anomalously soft74,75 resulting in
the absence of true long-range order as a consequence of the so-
called Landau-Peierls instability familiar from smectic liquid
crystals.34 Importantly, the cubic anisotropies in the present
case will regularize the logarithmic singularities so that true
long-range order sets in at a finite critical temperature. We as-
sume that the cubic anisotropies are small enough, εcub � εGi,
so that they can be neglected in the Brazovskii renormalization
of the effective potential but are sufficiently large in regulariz-
ing the logarithmic singularities within the ordered phase. The
study of the residual logarithmic terms and the modifications
of thermodynamic anomalies in the limit of vanishing cubic
anisotropies will be addressed in a separate publication.

TABLE III. Estimate of microscopic parameters of the Ginzburg-
Landau theory of Eqs. (B1) and (B2) close to the critical temperature,
see text.

Q ≈ 0.039/Å
J ≈ 2.8 meV/Å
|Jcub| ≈ 0.13 meV/Å
u ≈ 0.32 meV/Å3

3. Estimate of parameters and characteristic scales

We discuss in the following the interpretation of thermo-
dynamics of MnSi close to the critical temperature in terms
of the HFB approximation for chiral magnets. In particular,
we discuss the values of the microscopic parameters listed in
Tables III and IV of the Ginzburg-Landau theory of Eqs. (B1)
and (B2) that have been used for the comparison.

The length of the pitch Q ≈ 0.039/Å close to the
transition temperature was determined with the help of our
SANS data, see Fig. 4(b). From the fit of the magnetic
susceptibility to Eq. (4) we obtained χ0 ≈ 0.27 that can
be identified with χ0 = μ0μ

2/(JQ2), from which follows
for the stiffness J ≈ 2.8 meV/Å. This determines the DM
energy density εDM ≈ 4.3 × 10−3 meV/Å3. From the fit to
the magnetic intensity we extracted the cubic anisotropy
parameter α2

cub = |Jcub|/(2J ). It assumes a maximal value
α2

cub ≈ 0.023 at the transition from which we can estimate
|Jcub| ≈ 0.13 meV/Å. For the cubic energy scale we obtain
εcub = Jα2

cubQ
2 ≈ 0.1 × 10−3 meV/Å3. The value for the

interaction u is more difficult to determine. One possible
way is to use the magnetic equation of state of Eq. (B6).
Comparing with magnetization measurements54 on MnSi at
small fields along 〈100〉 at a temperature T = 32 K we obtain
for the interaction constant uArrot ≈ 0.13 meV/Å3. However,
experimentally the magnetic equation of state does not have the
simple mean-field form (B6) probably due to strong Brazovskii
renormalizations and the error for the extracted value of u is
probably large. For this reason we used instead the value that
follows from the Brazovskii fit to the correlation length that
yielded a Ginzburg length κGi ≈ 0.019/Å. This translates to
a Ginzburg energy density εGi = Jκ2

Gi ≈ 1.0 × 10−3 meV/Å3

and, in turn via Eq. (B37), to the value for the interaction
u ≈ 0.32 meV/Å3.

Finally, the temperature dependence of the tuning parameter
was extracted via the Curie-Weiss limit of the magnetic suscep-
tibility. Experimentally one finds sufficiently far above the crit-
ical temperature that the dimensionless magnetic susceptibility
obeys Curie-Weiss behavior χmag = Tχ/(T − TC) with a Curie
temperature

TC ≈ 28.2 K and Tχ ≈ 0.62 K. (B40)

TABLE IV. Estimate of characteristic energy densities, see text.

Units of 10−3 meV/Å3 εDM

εDM 4.3 1
εGi 1.0 0.23
εcub 0.1 0.023
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The values were extracted from the asymptotic behavior of
the fit to the susceptibility in Fig. 5(a). The temperature
dependence of the tuning parameter δ ∝ T − TMF or, equiv-
alently, r of Eq. (B1) was determined by adjusting the

susceptibility so that the observed Curie-Weiss behavior is
recovered. This fixed all microscopic parameters and the
resulting HFB approximation yielded the thermodynamics
displayed in Fig. 5.
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