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Influence of short-range spin correlations on the μSR polarization functions in the slow dynamic
limit: Application to the quantum spin-liquid system Yb2Ti2O7
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Here we discuss how to account for short-range spin correlations on the measured muon spin relaxation spectra.
The shape of the zero-field relaxation function is found to be highly sensitive to short-range spin correlations, as
clearly inferred from the analysis of the published longitudinal relaxation function for the pyrochlore quantum
spin-liquid system Yb2Ti2O7 at low temperature. The field distribution at the muon site in this compound is
found to be strongly asymmetric, i.e., to deviate substantially from the usually expected Gaussian function. This
is a clear signature of short-range correlations of the spins. Our analysis yields the characteristic function of the
component field distribution at the muon site of Yb2Ti2O7, a well-defined statistical physics quantity accessible
to theory once an interaction Hamiltonian is available and the muon site is determined. As a by-product of our
study, we have found that the validity of the so-called golden formula due to Kubo is limited.
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A slow spin dynamic has been detected for spin glasses, a
few highly disordered magnetic systems, and some geometri-
cally frustrated magnetic materials using the ac susceptibility,
positive muon spin relaxation (μSR), and neutron spin echo
(NSE) techniques; see for example Refs. 1–7. Key information
of interest is the nature of the short-range spin correlations.
Although of much interest, their microscopic characterization
is difficult because the number of experimental techniques
available for probing these correlations is restricted. The
muon being a local probe is sometimes believed not to
be able to provide information on the extension of these
correlations. However, an experimentally observed shallow
μSR polarization function minimum has been interpreted
as a signature of short-range spin correlations using results
of Monte Carlo simulations.8 Originally the μSR spectra
were analyzed with a phenomenological extension of the
usual Kubo-Toyabe model with no obvious connection with
the numerically inferred short-range correlations.2 Based on
well-established statistical methods, here we show how to
describe analytically the effect of short-range spin correlations.
Our work should help to extract microscopic information on
these correlations. As an example of application, from the
published longitudinal-field polarization function measured
for the quantum spin-liquid system Yb2Ti2O7 we extract the
component field distribution at the muon site and the related
characteristic function for this compound.

The μSR technique best suited to study the magnetic
correlations is the so-called longitudinal one for which the
initial muon beam polarization and the external field Bext, if
any, are parallel.9–11 By definition, they are both parallel to the
Z direction. We complete the laboratory orthogonal reference
frame with the X and Y axes. Results are also obtained with

the transverse geometry for which Bext is still parallel to the
Z axis, but the initial polarization is taken to be along
the X axis. A longitudinal measurement gives access to the
longitudinal polarization function, PZ(t) with PZ(t = 0) = 1.
In the transverse geometry, it is the PX(t) function which is
measured. Two limiting cases have to be distinguished. In the
first case the spin dynamics is fast and the motional narrowing
limit applies. For a single crystal PZ(t) is then an exponential
function12 and therefore is characterized by a spin-lattice
relaxation rate λZ . We are in fact using the nuclear magnetic
resonance language.13,14 In the same fast fluctuation limit and
if Bext is sufficiently intense, the envelope of PX(t) is an
exponential function, the decay of which is given by the spin-
spin relaxation rate λX. For both experimental geometries,
conventional methods based on the use of the frequency and
wave vector dependent susceptibility can then be applied to
describe the effect of the spin correlations.10,15,16 In the other
limit, i.e., in the slow dynamic limit, the dynamics may become
so slow that the magnetic field distribution at the muon sites
which drives the muon spin ensemble is of quasistatic nature.
It is this physical case which is of interest here.

The method used in this work for the description of
short-range correlations is based on well-known concepts of
statistical physics. Usual practice assumes a Gaussian field
component distribution. Implicitly it means that the short-
range correlations are neglected. To account for them here
the distribution is generalized as expressed by Eqs. (19), (20),
(21); see below. This approach should be used if the physics
of the system under study is not well known. On the other
hand, if its Hamiltonian is known it may be more appropriate
to start from the characteristic function of the distribution. Its
definition is given in Eq. (4). To get the text accessible the
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definitions of the two polarization functions are given and a
number of plots are presented. They should be useful when
considering the analysis of experimental data.

In a first step we shall assume the field distribution at the
muon site to be static. The slow dynamic will be introduced
later on. Focusing mainly on the longitudinal geometry,
we shall start by describing the static polarization function,
P stat

Z (t). With the additional temporary assumption Bext = 0,
the local field at a muon site Bloc only arises from the
interaction of the muon spins with the magnetic moments
of the compound under study. The relation between Bloc

and the magnetic moments is linear and is described by a
tensor. The magnetic moments induce a vector field distribu-
tion at the muon sites, Dv(Bloc). With these assumptions,16

P stat
Z (t) =

∫ {(
BZ

loc

Bloc

)2

+
[

1 −
(

BZ
loc

Bloc

)2]
cos(ωμt)

}
×Dv(Bloc)d3Bloc. (1)

The integral extends over all the possible Bloc val-
ues and ωμ = γμ[(BX

loc)2 + (BY
loc)2 + (BZ

loc)2]1/2, where γμ =
851.615 Mrad s−1 T−1 is the muon gyromagnetic ratio. Since
our purpose is to unravel correlation effects, without any
concern of the possible Bloc anisotropy, for simplicity Dv(Bloc)
is taken as the product of the three Cartesian component
distributions:

Dv(Bloc)d3Bloc =Dc
(
BX

loc

)
Dc

(
BY

loc

)
Dc

(
BZ

loc

)
dBX

locdBY
locdBZ

loc,

(2)

where Dc(Bα
loc) is the component field distribution along the α

direction. From this discussion, we derive

P stat
Z (t) = 1

3
+ 2

3

∫∫∫ ∞

−∞
Dc

(
BX

loc

)
Dc

(
BY

loc

)
Dc

(
BZ

loc

)
× cos(ωμt)dBX

locdBY
locdBZ

loc. (3)

Here, for simplicity we assume identical component field
distributions Dc(Bα

loc) (α = X, Y , or Z). We shall stay with
the Cartesian coordinates for this whole work.

The distributions of a many-body system, such as in-
teracting magnetic moments, are often of Gaussian nature.
Since the relation between the moments and Bloc is linear,
Dc(Bα

loc) is also bound to be Gaussian. This leads to the famous
Kubo-Toyabe P stat

Z (t) function for which the mean field value
is obviously zero; i.e., the spontaneous field vanishes.

However, for highly correlated systems deviations from the
Gaussian have been observed. In order to account for them we
consider the characteristic function G(t):17–19

G(t) =
∫ ∞

−∞
exp

(
iγμBα

loct
)
Dc

(
Bα

loc

)
dBα

loc. (4)

Here, for simplicity and without risk of confusion, we write
G(t) rather than Gα(t). This is justified since the Dc(Bα

loc)
functions are taken identical for all α. An elegant solution for
the longitudinal polarization function defined by Eq. (3) was
proposed by Kubo:20,21

P stat
Z (t) = 1

3 + 2
3 [Q(t) + tQ′(t)], (5)

where16

Q(t) = Re{G(t)}. (6)

The real part of G(t) is denoted by Re{G(t)}. From the Fourier
theorem,

Dc
(
Bα

loc

) = γμ

∫ ∞

−∞
exp

( − iγμBα
loct

)
G(t)

dt

2π
. (7)

Referring to its definition given in Eq. (4), G(t) can be
expanded in a Maclaurin series whose coefficients are the
moments of the component distribution:

G(t) =
∞∑

n=0

(iγμt)n

n!

〈(
Bα

loc

)n〉
, (8)

with the nth moment

〈(
Bα

loc

)n〉 =
∫ ∞

−∞

(
Bα

loc

)n
Dc

(
Bα

loc

)
dBα

loc. (9)

However, it is more useful to consider the logarithm of G(t)
as an expansion in cumulants:

ln G(t) =
∞∑

n=1

(iγμt)n

n!
κn, (10)

where κn is the nth cumulant. In terms of the moments, for the
first four cumulants we have the relations

κ1 = 〈
Bα

loc

〉
, κ2 = �2, κ3 = 〈(

Bα
loc − 〈

Bα
loc

〉)3〉
,

(11)
κ4 = 〈(

Bα
loc − 〈

Bα
loc

〉)4〉 − 3�4,

where 〈Bα
loc〉 is the mean field at the muon site, i.e., the first

moment of Dc(Bα
loc), and � is its standard deviation. In fact,

for κ3 and κ4 we have introduced central moments which are
moments about 〈Bα

loc〉.17 Normalizing the cumulant expansion
with �,

ln G(t) = iγμ

〈
Bα

loc

〉
t +

∞∑
n=2

(iγμ�νnt)n

n!
. (12)

Here ν2 = 1 and the parameters νn with n � 3 characterize the
deviation of Dc(Bα

loc) from the Gaussian form. For instance,
ν3 is the skewness and ν4 the kurtosis. They are related to
cumulants.17 Specifically,

ν3 = κ3
/
κ

3/2
2 , ν4 = κ4

/
κ2

2 , (13)

and in general,

νn = κn

/
κ

n/2
2 . (14)

Rather than the kurtosis, the so-called excess kurtosis is
sometimes used. It is defined by ν̃4 = κ̃4/κ

2
2 with κ̃4 =

〈(Bα
loc − 〈Bα

loc〉)4〉. Combining Eqs. (7) and (12) and setting
x = γμt�,

Dc
(
Bα

loc

) = 1

�

∫ ∞

−∞
exp

[
i

〈
Bα

loc

〉 − Bα
loc

�
x +

∞∑
n=2

(iνnx)n

n!

]
dx

2π
.

(15)
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Therefore, instead of Dc(Bα
loc), we need to consider � ×

Dc(Bα
loc). This distribution is a function of (〈Bα

loc〉 − Bα
loc)/�,

and the parameters νn, νn � 3 (ν2 = 1), which account for
the deviation from the Gaussian. When all the νn with n

odd vanish, Dc(Bα
loc) is symmetric and independent of νn

signs. Terms with n odd introduce asymmetry in Dc(Bα
loc) and

therefore induce a finite contribution to 〈Bα
loc〉. In addition, the

polarization function is independent of the νn signs with n odd,
provided the signs of all the νn parameters as well as 〈Bα

loc〉 are
changed simultaneously.

When the νn parameters can be evaluated, i.e., when the
cumulant expansion of the logarithm of the characteristic
function can be written, according to Eq. (15) � × Dc(Bα

loc)
can be derived by Fourier transform. Then it is a simple matter
to obtain numerically P stat

Z (t) from Eq. (3).
Let us assume that no spontaneous field is observed at the

temperature of interest. Then we can study P stat
X (t) with the

transverse geometry. For large enough Bext, P stat
X (t) can be

expressed as follows:16

P stat
X (t) = Re{G(t)} cos(γμBextt) − Im{G(t)} sin(γμBextt),

(16)

where Im{G(t)} is the imaginary part of G(t). Obviously, if
� × Dc(Bα

loc) is even G(t) is real, and it is the envelope of
P stat

X (t). For simplicity we have neglected any frequency shift.
As an example of the computation of � × Dc(Bα

loc) using
the characteristic function, we cite the case of the low-
temperature phase of the classical XY model in two dimensions.
In fact, to compute G(t) at the muon site we need to describe
the linear coupling between the muon spin and the magnetic
moments of the compound. For simplicity we assume the local
field at the muon site to be proportional to the magnetic order
parameter. In addition, we take the constant of proportionality
to be equal to 1. According to Bramwell et al. the probability
density function of the fluctuating magnetic order parameter
of the XY magnetic system is described by the following

characteristic function:22

ln G(t) = iγμ

〈
Bα

loc

〉
t −

∑
q �=0

h(q), (17)

with

h(q) = i

2

√
2

g2

G(q)

N
γμt� − i

2
arctan

(√
2

g2

G(q)

N
γμt�

)

+ 1

4
ln

[
1 + (γμt�)2 2

g2

G2(q)

N2

]
. (18)

Here, we have introduced the Green’s function in Fourier space
G(q) = (4 − 2 cos qx − 2 cos qy)−1 with two-dimensional q
vector: qx = (2π/L)m and qy = (2π/L)n. The parameter L

determines the size of the 2-dimensional magnetic cluster
N = L2 (in the present case L = 64). The indices m and n are
running from −L/2 to L/2, corresponding to the first Brillouin
zone. The constant g2 = ∑

q �=0 G2(q)/N2 = 3.8667 × 10−3.
The first moment 〈Bα

loc〉 is a free parameter in the model
of Bramwell et al. and depends on the reduced temperature
τ = kBT/J : |〈Bα

loc〉| = �/(1 + 0.5g2τ
2).22 Here, J is the

exchange integral between neighboring spins. For highly
frustrated magnetic systems τ can reach values significantly
lower than unity. Thus for τ < 1, we have |〈Bα

loc〉| � �.
Figure 1 displays � × Dc(Bα

loc), the real and imaginary
parts of G(t), and P stat

Z (t) computed from the characteristic
function written above. The short-range correlations described
by the terms with n � 3 and 〈Bα

loc〉 in Eq. (15) have a strong
effect on P stat

Z (t). For 〈Bα
loc〉 = 0 the muon polarization func-

tion slightly differs from the Kubo-Toyabe function [dashed
line in Fig. 1(c)]. For 〈Bα

loc〉 > 0 the minimum in the muon
polarization function P stat

Z (t) deepens and oscillations become
more pronounced. This polarization function resembles that
of an ordered magnetic system with a strong damping.
The situation is different for 〈Bα

loc〉 < 0. The minimum of
P stat

Z (t) becomes shallower than for the Kubo-Toyabe function,
especially for 〈Bα

loc〉 � −0.5� when the maximum of the
component field distribution � × Dc(Bα

loc) is close to Bα
loc = 0.
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FIG. 1. (Color online) (a) The normalized component field distributions � × Dc(Bα
loc) of the low-temperature phase of the two-dimensional

XY model computed using Eqs. (17) and (18) for 〈Bα
loc〉 = −�, −0.5�, 0, 0.5�, and � (from left to right). Note that the field is given in units

of �. For this model the skewness and excess kurtosis are equal to −0.8907 and 4.415, respectively. The corresponding real and imaginary
parts of G(t), solid and dotted lines, respectively, are presented in panel (b), and P stat

Z (t) in panel (c). For better visualization each plot of the
G(t) and P stat

Z (t) functions is shifted by 0.3 units. The time t is in units of 1/(γμ�). The dashed lines refer to functions when the correlations
are neglected; e.g., we plot the Kubo-Toyabe function in panel (c).
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The method we have just described to compute P stat
Z (t)

requires G(t) to be known, and not just few of its first moments.
This is because the bounds of the integral in Eq. (7) run
from minus infinity to infinity, and therefore an extremely
large number of terms of the Maclaurin expansion is needed.
However, G(t) is rarely known theoretically. In fact, it is
usually the purpose of measurements to determine it. Therefore
we need a more general method to account for the short-range
spin correlations. Instead of working with G(t), we directly
consider the component-field distribution. We write

Dc
(
Bα

loc

) = 1

Nδ
exp

[ − g
(
Bα

loc

/
δ
)]

, (19)

where Nδ normalizes Dc(Bα
loc) with

N =
∫ ∞

−∞
exp[−g(x)]dx (20)

and

g(x) = 1
2x2 + 1

3 (η3x)3 + 1
4 (η4x)4. (21)

We only need to consider η3 � 0 and η4 > 0 to cover all
the physical cases. The distribution depends on three free
parameters: δ in units of field and the two unitless parameters
η3 and η4. The eventual asymmetry resulting from the spin
correlations is accounted for by the third-order term gauged
by the asymmetry parameter η3. The fourth-order term alone
is the minimum extension from a Gaussian distribution. It is
required for the convergence of the integral in Eq. (20) if the
third-order term is present. The distribution Dc(Bα

loc) has a
single or several maximums depending on the value of the η3

and η4 parameters. To determine the condition of occurrence
of a single maximum we define the function f (x) through the
relation

dg(x)

dx
= xf (x). (22)

We compute

f (x) = η4
4x

2 + η3
3x + 1. (23)

g(x) has a single minimum at x = 0 provided that the
discriminant of the f (x) polynomial is negative; i.e.,

η3 < 21/3η
2/3
4 . (24)

When this condition is fulfilled Dc(Bα
loc) has a single peak.

Since Dc(Bα
loc) is defined, G(t) can be derived from Eq. (4)

for different {η3,η4} pairs, as well as P stat
Z (t) in zero field

from Eq. (3) or Eq. (5). It is interesting to note that numerical
calculations of the P stat

Z (t) functions with Eq. (5) yield a
result which is distinct from that obtained with Eq. (3) for
all η3 �= 0 or η4 �= 0. For η3 �= 0 this result is obvious, since
Eqs. (5) and (6) do not account for the imaginary part of the
characteristic function. However, the golden formula due to
Kubo [Eq. (5)] is also not valid for η3 = 0 and η4 �= 0, i.e.,
when the imaginary part vanishes (see Fig. 2). Therefore, for
the calculations discussed below we use the standard definition
of the P stat

Z (t) function expressed with Eq. (3). Results are
presented in Figs. 2, 3, and 4.

In Fig. 2 δ × Dc(Bα
loc), G(t), and P stat

Z (t) are displayed
for different η4 values with η3 = 0. Obviously the deviation
of δ × Dc(Bα

loc) and G(t) from Gaussian behaviors increases
with η4. The P stat

Z (t) minimum also deepens, and correlatively
the function presents a structure which could be taken as
an indication of an oscillation just before the 1/3 plateau is
reached. This could be mistaken as a signature of a finite
mean field, although the mean field is zero by construction.
To determine whether such a field does exist the measurement
of its temperature dependence could be useful. In addition,
an estimate of the correlation length of the involved magnetic
structure could help to decide whether or not there is effectively
a finite mean field.16

In Figs. 3 and 4 we show the dependence of the functions
δ × Dc(Bα

loc), G(t), and P stat
Z (t) on η3 for three η4 values.

Systematically, we plot the functions as deduced either directly
from Eq. (19), or setting the mean field to zero; i.e., g[Bα

loc/δ]
is replaced with g[(Bα

loc − 〈Bα
loc〉)/δ] in Eq. (19). Physical

cases with vanishing mean field even in the ordered state
of magnets have been found for geometrically frustrated
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FIG. 2. (Color online) Dependence of the normalized component field distribution δ × Dc(Bα
loc) given by Eq. (19) (a), the related

characteristic function G(t) which is real (b), and zero-field polarization function P stat
Z (t) (c) on η4 with η3 set to zero. The curves are

for η4 = 0, 0.4, 0.8, 1.2, 1.6, and 2.0. The field is in units of δ and the time in 1/(γμδ). The dotted line in panel (c) shows the P stat
Z (t)

function calculated with Eq. (5) for η3 = 0 and η4 = 2.0. The strong deviation from the corresponding result obtained with Eq. (3) is
obvious.
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FIG. 3. (Color online) Dependence of the component field distribution δ × Dc(Bα
loc) [panels (a), (d), (g), and (j)], the real and imaginary parts

of the characteristic function G(t), solid and dotted lines, respectively [panels (b), (e), (h), and (k)], and the related zero-field polarization function
P stat

Z (t) [panels (c), (f), (i), and (l)] on η4 and η3. The drawings in the upper two panels are for η4 = 0.50 with η3 = 0,0.50,0.65,0.70,0.74, and
0.76. In the lower two panels we present data for η4 = 1.0 with η3 = 0,1.00,1.04,1.10,1.16, and 1.22. For each {η3,η4} pair, the mean field
〈Bα

loc〉 is set to zero in the lower panels. The units are as in Fig. 2.

magnetic materials.23–25 A minimum for P stat
Z (t) is always

present at relatively short time. Depending on the parameters
it is more or less deep and wide. Again a structure which could
be mistaken as an indication of an oscillation may precede the
1/3 plateau. It may be taken as a signature of a finite mean
field even if it does not exist. Therefore caution should be
exercised in interpreting μSR data. As explained in Ref. 16,
from the analysis of the oscillation it is possible to estimate
its associated correlation length, and therefore to determine

whether it is reasonable to attribute the structure to a long-range
magnetic ordering.

We have described P stat
Z (t) in zero field, i.e., when Bext = 0.

As explained in Ref. 16, to account for Bext we simply need to
substitute Eq. (2) with

Dv,Bext (Bloc)d3Bloc = Dc
(
BX

loc

)
Dc

(
BY

loc

)
Dc

(
BZ

loc − Bext
)

× dBX
locdBY

locdBZ
loc, (25)

and replace Dv(Bloc) with Dv,Bext (Bloc) in Eq. (1).
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FIG. 4. (Color online) Same caption as in Fig. 3, but for η4 = 1.50 with η3 = 0,1.30,1.45,1.53,1.60, and 1.65.

Up to now we have only discussed P stat
α (t). To account

for the spin dynamics, and therefore to compute Pα(t), the
simplest method is to use the so-called strong collision
model for which Pα(t) is expressed in terms of an integral
equation:16,26,27

Pα(t) = P stat
α (t) exp(−νct) + νc

∫ t

0
Pα(t − t ′)P stat

α (t ′)

× exp(−νct
′)dt ′, (26)

where νc = 1/τc is the magnetic correlation frequency and τc

the magnetic correlation time. The strong collision model is
a reasonable approximation for three-dimensional magnetic
systems, and it is known to break down for one-dimensional
magnetic systems.

Experimentally, PZ(t) and PX(t) are measured. Their
analysis with Eq. (19) gives access to the component-field
distribution described in general by four parameters: νc and the
three parameters for the static field distribution, i.e., δ, ν3, and
ν4. Using Eqs. (11) and (13), the mean field, standard deviation,
skewness, and kurtosis, and therefore excess kurtosis, can be
estimated, and the corresponding characteristic function can
be computed with Eq. (4) using the experimentally determined
component field distribution.

As an example we shall analyze the longitudinal μSR
asymmetry signal measured in the quantum-spin-liquid phase
of the pyrochlore Yb2Ti2O7.3 Controversial experimental
results have been obtained for this pyrochlore oxide. Depend-
ing on the single-crystal sample, magnetic Bragg reflections
at low temperature are present28,29 or absent.30–33 Recent
studies show the variability of the response of the system.34,35

No magnetic reflections are detected for a powder sample

with a well-developed specific-heat anomaly,3 much more
intense than in the best available single crystal.28 In fact, a
Yb2Ti2O7 powder sample only displays short-range magnetic
correlations. This is a characteristic of the compound since
according to neutron diffraction35 only a powder sample is
stoichiometric.

Because a Yb3+ ion in this compound is characterized by a
well-isolated Kramers doublet ground state, and since the Ising
exchange interaction is strong and positive, Yb2Ti2O7 could
be a quantum spin-liquid system discussed in the framework
of the quantum spin-ice model.36 In Fig. 5 we present the
measured asymmetry for the powder sample, i.e., a0P

exp
Z (t).3

It is described by the weighted sum a0P
exp
Z (t) = asPZ(t) + abg,

where the constant abg = 0.069(1) accounts for the muon
stopping in the silver sample holder and in the cryostat. A
weak longitudinal field Bext = 2 mT was applied to quench
the possible effect of the nuclear magnetic moments of the
47Ti, 49Ti, 171Yb, and 173Yb isotopes. For the analysis of the
experimental time spectrum the component field distribution
was evaluated using Eqs. (19)–(21); next, the static muon
polarization function was calculated with Eqs. (25) and (3)
(i.e., considering the small external longitudinal field Bext);
and finally, the spin dynamics was accounted for with Eq. (26).
The result is shown in Fig. 5. Usage of identical component
field distributions for the three directions, i.e., α = {X,Y,Z},
is justified since Yb2Ti2O7 has a cubic crystal structure and the
μSR asymmetry was measured on a powder sample. The fit
yields the following values of parameters: δ = 3.24(15) mT,
η3 = 0.784(3), η4 = 0.50(1), νc = 0.97(6) μs−1, and as =
0.161(4). We have checked numerically that the small Bext

value has a negligible effect on these parameters, since the local
fields probed by the muons are significantly larger (see Fig. 5).
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FIG. 5. (Color online) Analysis of the μSR time spectrum measured at 0.200 K and in a 2 mT longitudinal field for a powder sample of
Yb2Ti2O7 (Ref. 3) a0P

exp
Z (t) is shown in panel (c) (circles). The solid line is the best fit of the data using Eqs. (19), (25), (3), and (26) (see

main text). The real (solid line) and imaginary (dotted line) parts of G(t) are shown in panel (b). Corresponding Dc(Bα
loc) function is depicted

in panel (a).

The inequality given in Eq. (24) is effectively obeyed since
21/3η

2/3
4 = 0.798 > 0.784(3) = η3; then the distribution has a

single maximum. The description of the measured spectrum is
excellent. As expected, Dc(Bα

loc) is found extremely asymmet-
ric; see left panel of Fig. 5. In the middle panel of the figure
are plotted the real and imaginary parts of G(t). Originally the
spectrum was analyzed in terms of three parameters using the
phenomenological model of Noakes and Kalvius:2 a standard
deviation, a ratio of standard deviations, and νc. This model
is not justified physically. In contrast the present model is
based on fundamental statistical principles and introduces four
parameters: a standard deviation, a skewness, a kurtosis, and
νc. We have computed the first four moments of the measured
component field distribution, and deduced from them the mean
field, standard deviation, skewness, and excess kurtosis. We
find 〈Bα

loc〉 = −2.82(3) mT, � = 5.07(10) mT, ν3 = −0.89(4),
and ν̃4 = 3.35(17). Interestingly, 〈Bα

loc〉 is nonzero. This
reflects the field asymmetry with its pronounced tail in the
negative field region. It is only the present analysis which
enables us to unravel information on the field distribution,
such as its asymmetry and the finite 〈Bα

loc〉 value. That could
not be done with the previous phenomenological analysis
of the spectrum.3 A Hamiltonian has been proposed for
the description of Yb2Ti2O7.37,38 It would be interesting to
compute its G(t) function, or at least its first moment, standard
deviation, skewness, and excess kurtosis. To compare the
computational and experimental results, the dipole coupling

between the muon moment and the Yb3+ moments has to
be described. As examples of computation of moments of
Hamiltonian operators, we refer to Bramwell et al. who used
classical mechanics,19and the well-known work of Van Vleck
for the second moment of a nuclear magnetic resonance
line.39

In conclusion, in this report we have proposed two methods
to account for the short-range spin correlations for the two
basic μSR polarization functions in the slow dynamic limit.
In the lucky case for which the characteristic function of
the Hamiltonian of the system under study is known, we
explain how to compute the polarization functions. In most
cases of interest the available information on the system is
quite restricted, and the μSR measurements are expected to
yield useful information. We explain how the polarization
functions can be analyzed to deduce the characteristic function
and to extract parameters such as the standard deviation,
skewness, and excess kurtosis of the Hamiltonian. To round
up our discussion, we analyze the published low-temperature
longitudinal field spectrum measured in the quantum-spin-
liquid phase of Yb2Ti2O7. This enables us to get information
on the field distribution at the muon site, and therefore to
determine the characteristic function and values of the first
four moments.
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sored by the Swiss National Science Foundation.
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