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While the coherent potential approximation (CPA) is the prevalent method for the study of disordered electronic
systems, it fails to capture nonlocal correlations and Anderson localization. To incorporate such effects, we extend
the dual fermion approach to disordered systems using the replica method. The developed method utilizes the
exact mapping to the dual fermion variables, and includes intersite scattering via diagrammatic perturbation
theory in the dual variables. The CPA is recovered as a zeroth-order approximation. Results for single- and
two-particle quantities show good agreement with a cluster extension of the CPA; moreover, weak localization
is captured. As a natural extension of the CPA, our method presents an alternative to existing nonlocal cluster
theories for disordered systems, and has potential applications in the study of disordered systems with electronic
interactions.
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I. INTRODUCTION

Disorder, due to doping, impurities, or structural defects,
is universally present in electronic materials.1–9 It introduces
scattering of charge carriers and significantly affects their
motion, and often plays a crucial role in determining the
transport properties of materials. The most prominent example
of such effects is the Anderson localization transition,1 where
the scattering of electrons from random impurities prevents
their propagation across the sample. To properly describe this
phenomena, one needs to take into account quantum coherent
multiple scattering effects of the charge carriers.

The simplest and the most commonly used theoretical
method to study disordered systems is the coherent potential
approximation (CPA).10–12 It is a single-site self-consistent
mean-field approximation, in which the real system is replaced
by an effective medium described by a local coherent potential
(momentum independent self-energy) which comprises the
effects of the random potential on the motion of the electrons.
While the CPA is a successful effective medium theory
for the description of one-electron properties, especially in
realistic calculations of random alloys,11–14 it is far from
a complete theory for disordered systems. For example,
its single-site nature leaves out disorder-induced nonlocal
correlation effects involving different scatterers, which are
responsible for finer details in the density of states. The most
significant drawback of the CPA is, however, its failure to
capture backscattering effects on the electron transport, and
hence, electron localization.

A natural extension of a single-site theory is to use a
finite sized cluster self-consistently embedded in the averaged
effective medium. Cluster extensions of the CPA such as
the molecular CPA15 or the dynamical cluster approximation
(DCA)16 provide systematic improvements to the CPA, by cap-
turing nonlocal correlations within the cluster.14 For example,
in the DCA, the self-energy acquires momentum dependence
by taking into account multiple scattering effects within the
cluster. As a result, the DCA captures fine structures and band
tails in the density of states. It systematically restores some set
of the maximally crossed diagrams known to be responsible

for Anderson localization; however, it does not capture the
transition itself.16

The goal of this paper is to provide a systematic im-
provement upon the existing effective medium theories for
disordered electronic systems, which will satisfy the following
criteria: It recovers the CPA as a limiting case; like the DCA,
it provides systematic nonlocal correction to the CPA; it
properly describes the single-particle quantities with detailed
structures in the density of states; unlike the CPA, it can provide
finite vertex corrections from backscattering processes to the
conductivity in low dimensions (d � 2); and it can also be
used to study interacting disordered systems.17

The method we pursue here is the dual fermion (DF)
formalism,18–20 originally developed for interacting systems
without disorder. It is complementary to existing nonlocal
cluster approaches. It treats local correlations explicitly in
the “impurity” solver, and nonlocal correlations perturbatively.
So, if a geometric series of relevant diagrams is included, it
has a potential to capture localization. Here we present such
a DF method for disordered noninteracting systems, as an
alternative effective medium theory which provides important
nonlocal physics beyond the CPA.

The DF formalism is based on a set of auxiliary variables
(dual fermions) which are introduced into the path integral
representation of the lattice partition function via a canonical
transformation.18,21,22 It maps the lattice onto an impurity
embedded in a self-consistently determined DF lattice. The DF
lattice problem is treated via a perturbation theory involving
the DF bare Green function, which is the difference between
the lattice and impurity Green functions, and the impurity
full vertex as the effective bare DF interaction.23 For systems
with disorder, the DF mapping has to be done differently. In
particular, as observables are calculated by taking derivatives
of the free energy, the DF formalism for the disordered
case needs to be constructed from the disorder-averaged free
energy 〈ln Z〉av instead of from the partition function Z as in
Refs. 18 and 19.

In this paper we employ the replica method24 to deal with
such averaging. We extend the DF method to systems with
disorder, and construct the DF mapping directly on the Green
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function. We demonstrate that our method shows remarkable
agreement for the single-particle Green function with the
results obtained from large-cluster DCA calculations. It
successfully accounts for weak localization in the conductivity
with finite vertex corrections. The developed scheme presents a
powerful nonlocal alternative to the existing cluster extensions
of the CPA, with a broad venue of applications, including
the possibility of treating both electron-electron interactions
and disorder on equal footing, or even replacing the CPA in
electronic structure calculations.

This paper is organized as follows. Section II outlines
the model and the details of the replica based dual fermion
formalism. Here we also discuss constraints the replica limit
introduces on the topology of the single- and two-particle
diagrams. In Sec. III we present and discuss our numerical
results for the single-particle Green function, which are
benchmarked with the CPA and DCA data. We then provide
a conductivity calculation with finite vertex corrections to
the CPA. In Sec. IV we present our conclusions and future
perspectives.

II. FORMALISM

A. Replica method

We consider the Anderson model of noninteracting elec-
trons subjected to a random diagonal disorder potential. It is
described by the Hamiltonian,

H = −
∑
〈ij〉

tij (c†i cj + H.c.) +
∑

i

vini, (1)

where tij is the electronic hopping probability (4t = 1 sets
the unit of energy), and c

†
i (ci) is the creation (annihilation)

operator for an electron on site i. The disorder is modeled
by the local random potential vi , a site-dependent random
quantity, with a uniform (“box”) disorder distribution, p(vi) =
1
W

�(W
2 − |vi |), where W measures the strength of the disorder.

We emphasize that the DF formalism developed here can be
equally applied to other disorder distributions P (v).

The disorder-averaged lattice Green function is given by

〈Gk(wn)〉av = − δ

δηwk

〈ln Z(vi,ηwk)〉av|ηwk=0, (2)

with 〈(. . .)〉av = ∫
dvp(v)(. . .) indicating a disorder averaged

quantity, and ηwk is a source field.
In the replica method, the relation ln Z = limm→0

Zm−1
m

is employed, with m being the number of replicas.16,25,26

Hence, the disorder-averaged Green function of Eq. (2) can be
rewritten in terms of the mth power of Z instead of a logarithm.
As discussed in Refs. 16 and 25, taking the replica limit,
m → 0, eliminates closed loop diagrams in the perturbation
series expansion for the disorder-averaged Green function. As
a result, it properly accounts for the effect of the partition
function in the denominator of the unreplicated theory.

Using Grassmann functional integrals for quantum averag-
ing, and the replica method for disorder averaging, we rewrite
Eq. (2) as

〈Gk(w)〉av= − lim
m→0

1

m

δ

δηwk

〈∫
Dc̄Dce−S[cα,c̄α ]

〉
av

∣∣∣∣
ηwk=0

,

(3)

where Dc ≡ ∏
wkα dcα

wk , and α is the replica index. The lattice
action,

S=
∑
wkα

c̄α
wk(−iwn+εk − μ + ηwk)cα

wk+
∑
iα

vi

∫ β

0
dτnα

i (τ ),

(4)

where wn = (2n + 1)πT are the Matsubara frequencies, εk is
the lattice bare dispersion, and μ is the chemical potential.
Averaging over the distribution p(v) in Eq. (4), we obtain

S =
∑
wkα

c̄α
wk(−iwn + εk − μ + ηwk)cα

wk +
∑

i

W (ñi), (5)

where W (ñi) is the elastic, effective interaction between
electrons of different replicas. It is local in space and nonlocal
in time, and may be expressed through cumulants 〈vl〉c
as16

e−W (ñi ) =
∫

dvip(vi)e
−vi

∑
α

∫
dτnα

i (τ )

= e− ∑∞
l=2

1
l! 〈vl〉c(

∑
α

∫
dτnα

i (τ ))l . (6)

B. Dual fermion mapping

To construct the DF formalism for disordered electronic
systems, we follow the original DF procedure.18 The DF
mapping is performed in three major steps.

First, we introduce an effective single-site impurity refer-
ence problem by formally rewriting the original action as

S =
∑

i

Simp[cα,c̄α] −
∑
wkα

c̄α
wk(
w − εk − ηwk)cα

wk, (7)

with an effective impurity action [containing the disorder
vertex, W (ñi)],

Simp =
∑
αw

c̄α
iw(−iw − μ + 
w)cα

iw + W (ñi). (8)

Here 
w is a local, and yet unknown, hybridization function
describing the interaction of the impurity with the effective
medium. As in the original DF formalism,18 it is assumed
that all the properties of the impurity problem, i.e., the single-
particle Green function,

gimp(w) = − lim
m→0

1

m

m∑
α=1

∫
Dc̄Dc e−Simpcα

wc̄α
w, (9)

and the two-particle Green functions,

χimp(w,w′) = − lim
m→0

1

m

m∑
α,β=1

∫
Dc̄Dc e−Simp × cα

wc
β

w′ c̄
β

w′ c̄
α
w,

(10)

can be calculated. In our case, these are local CPA quantities.
Our task is to express the original lattice Green function
and other properties via such quantities of the CPA impurity
problem. What has been accomplished so far in Eq. (7) is
that the local part of the lattice action has been moved to the
effective impurity.

In the second step of the DF procedure, we introduce the
auxiliary (“dual” fermions) degrees of freedom. In doing so,
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we transfer the nonlocal part of the action in Eq. (7) to the
dual variables. As a result, the original real fermions carry
information about the local part only. The transformation to
dual fermions is done via a Gaussian transformation of the
nonlocal part of Eq. (7),

ec̄α
wkA

2
wkc

α
wk = A2

wk

λ2
w

∫
Df̄Df e

−λw(c̄α
wkf

α
wk+f̄ α

wkc
α
wk)− λ2

w

A2
wk

f̄ α
wkf

α
wk

,

(11)

with A2
wk = (
w − εk − ηwk), and λw yet to be specified.

With such a transformation, the lattice Green function of
Eq. (3) can be rewritten as

〈Gk(w)〉av = − lim
m→0

1

m

δ

δηwk

(
w − εk − ηwk)

λ2
w

×
∫

Df̄Df e− ∑
wkα λ2

wf̄ α
wk(
w−εk−ηwk)−1f α

wk

×
∫

Dc̄Dc e− ∑
i Si

site[c̄α
i ,cα

i ;f̄ α
i ,f α

i ]|
ηwk=0 , (12)

in which the replicated action for site i is of the form,

Si
site = Simp +

∑
αw

λw

(
c̄α
iwf α

iw + f̄ α
iwcα

iw

)
. (13)

In Eq. (12) the intersite coupling is transferred to a coupling
between dual fermions.

In the third step of the DF mapping, we integrate out the
real fermions from the local site action Si

site for each site i

separately, i.e.,
∫ ∏

αw

dc̄α
i dcα

i e−Ssite[c̄α
i ,cα

i ;f̄ α
i ,f α

i ]

= Zimpe
− ∑

wα λ2
wgimp(w)f̄ α

iwf α
iw−V

α,β

d,i [f̄ α
i ,f

β

i ], (14)

in which Zimp is the partition function for the replicated
impurity system. As in the clean case,18–20 formally this can
be done up to infinite order, which makes the mapping to the
DF variables exact. Choosing for convenience λw = g−1

imp(w),

the lowest order of the replicated DF potential V
α,β

d,i [f̄ α
i ,f

β

i ]
(nonantisymmetrized) reads as

V
α,β

d,i

[
f̄ α

i ,f
β

i

] = 1
2γ (w,w′)f̄ α

iwf̄
β

iw′f
β

iw′f
α
iw, (15)

where the CPA full vertex,

γ (w,w′) = −χimp(w,w′) − χ0,imp(w,w′)
gimp(w)2gimp(w′)2

, (16)

with χ0,imp(w,w′) = gimp(w)gimp(w′). In general,18–20 the DF
vertex V

α,β

d,i [f̄ α
i ,f

β

i ] contains n-body correlation terms intro-
duced by disorder, but in the following discussion we will
limit ourselves to the leading quartic term with four external
DF fields only.

After taking the derivative with respect to the source field
ηwk , the Green function of Eq. (12) reads

〈Gk(w)〉av = (
w − εk)−1 + 〈Gd,k(w)〉av

(
w − εk)2gimp(w)2
, (17)

where we define the averaged DF Green function as

〈Gd,k(w)〉av = − lim
m→0

1

m

m∑
α′=1

∫
Df̄Df e− ∑

wkα S0
d

× e− ∑
iαβw V

α,β

d,i [f̄ α
i ,f

β

i ]f α′
wkf̄

α′
wk, (18)

and S0
d = f̄ α

wk[− (
w−εk )−1+gimp(w)
g2

imp(w) ]f α
wk is the noninteracting DF

action.
Notice, that for the case of noninteracting dual fermions

when dual potential is zero, Eq. (17) reduces to the CPA
solution for the lattice Green function with 〈Gk(w)〉av =

1
g−1

imp+
w−εk

. Hence, the CPA is the zeroth-order approximation

within our framework.

C. Dual fermion diagrammatics

While the local CPA solution is recovered as a zero-order
approximation of the dual fermion potential, nonlocal correc-
tions to the CPA self-energy require higher order corrections
in V

α,β

d,i . This is achieved with a standard diagrammatic
perturbation expansion of the interacting part of the DF
action in Eq. (18). The DF diagrams are constructed similarly
to the standard Matsubara diagrams, except that now the
lines are renormalized DF Green functions, and the vertex
is approximated by the full CPA vertex.

Notice that a nontrivial and crucial difference between the
disordered and clean cases is that here the interaction between
replicas is off-diagonal, which puts certain constraints on
the topology of the Green function graphs. In particular, all
diagrams with closed fermion loops vanish [e.g., diagram (a′),
(b′), and (c′) of Fig. 1]. This is because each closed fermion
loop contains one free replica summation which gives an extra
factor of m in Eq. (18), and thus equals to zero when m → 0.25

III. RESULTS

A. Calculation procedure.

The calculation procedure we use here is similar to the
clean DF case.18 It is composed of two major steps. First,
after solving the impurity (CPA) part, we obtain the averaged

a)( ( (

(

(((

((

b)

b′)a′) αα

β β

γ γ

αα

β β

γ γ
α α

ββ

γ

αα

ββ

γ

c)

c′)

αα

β β

γ γ γ

αα

β β

γ γ γ

c′′) c′′′)
αα

β β

γ γ γ

c′′′′)
ααα

β β

γ γ γ
α

β β

γ γ γ

FIG. 1. (Color online) The dual fermion self-energy diagrams up
to the third order in the perturbation series. The replica limit imposes
a constraint on the topology of the diagrams, i.e., all diagrams with
closed electron loops, e.g., diagrams (a′), (b′) and (c′) of Fig. 1 vanish
in the replica limit. Here, γ is the CPA full vertex. Diagram (a) is
local, and vanishes to satisfy the DF self-consistency condition for
determining the hybridization function 
w .
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impurity Green function gimp(w) = ∫
dvp(v) 1

iwn+μ−
(w)−v

and corresponding impurity vertex γ . These quantities are
used in the second step to construct the input for the DF
diagrammatic expansion. Here the DF self-energy is calculated
self-consistently using standard diagrammatic perturbation
theory. After this, the real lattice Green function from Eq. (17)
is recalculated such that the nonlocal correlations are now
included. Next, the new hybridization function 
(w) is con-
structed to parametrize the impurity problem. This is repeated
until self-consistency is reached, namely

∑
k Gd,k(w) = 0,

with all local diagrams (e.g., diagram a) in Fig. 1 being zero.

B. Single-particle properties.

This section presents our main results. The diagram (b)
of Fig. 1 is the lowest nonvanishing contribution to the dual
self-energy, with �d (wn,k) = − T 2

N2
c

∑
q,k′ γ 2

wn,wn
Gd (wn,k +

q)Gd (wn,k
′ + q) × G(wn,k

′) It already provides some nonlo-
cal corrections to the CPA solution. However, for our analysis
we consider an infinite ladder diagram summation to capture
quantum coherence effects from multiple impurity scatterings.
In Fig. 2 we present results for the imaginary part of the
local single-particle Green function of Matsubara frequency
ImGloc(wn) obtained from a fully self-consistent infinite ladder
diagram summation, in both the particle-hole (p-h) and the
particle-particle (p-p) channels for the DF self-energy.

To benchmark our results for the effect of nonlocal
correlations to the CPA, we compare our DF data with CPA
results and DCA results for cluster size Nc = 20. The DCA
method has been extensively described in the literature, so here
we only briefly outline its main points. As mentioned already in
the introduction, the DCA16,27 is a nonlocal mean-field theory
where the original lattice is mapped to the periodic cluster
of size Nc = Ld

c embedded in a self-consistently determined
host. As a result, the coarse-grained lattice Green function and
self-energy acquire a cluster resolved momentum dependence.
Hence, in the DCA, multiple intersite scattering effects which
contribute nonlocal corrections to the self-energy are treated
explicitly within the cluster, while the long-range effects are
treated on a mean-field level. Notice, that for Nc = 1, the DCA
reduces to the local CPA.

Our results for the local Matsubara Green function (left
panel) and the local density of states (DOS) (right panel)
calculated at T = 0.02 in one dimension d = 1 with real and
dual fermion lattice size L = 100 (large enough to reflect the
thermodynamic limit) at various values of disorder strength
W = 0.25,1.25,2.0 are shown in Fig. 2. The data for the local
Matsubara Green function (left panel) of Fig. 2 show that
inclusion of intersite correlations leads to corrections to the
CPA Green function. Both the DF and DCA results show good
agreement at small and large disorder strength and differ from
the CPA data in qualitatively the same way. The local DOS
(right panel) also displays satisfactory agreement between the
DF and DCA results. Indeed, for weak disorder (W = 0.25),
the results from the CPA, DCA, and DF calculations are
practically the same. As the disorder strength increases, the
nonlocal corrections become important (with finite momentum
dependence of the self-energy) and the differences between
the CPA and the DF density of states are more pronounced.
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FIG. 2. (Color online) The imaginary part of the local Matsubara
Green function ImGr=0(wn) in d = 1 at T = 0.02 (left panel)
and the total density of states (right panel) for different disorder
strengths: W = 0.25,1.25,2.0 (4t = 1). For comparison, we present
data obtained with the CPA, a finite cluster DCA (Nc = 20), and the
DF methods. Inclusion of intersite correlations leads to corrections to
the CPA Green function (left panel) and the appearance of additional
structures at larger disorder in the total density of states (right panel).
In each case, the DF method captures the features of the DCA density
of states and is in nearly exact agreement with DCA Green function.

The DF successfully captures such correlations by producing
additional features14 which are also in good agreement with
the fully converged DCA result, especially for large disorder
strength (W = 2.0).

C. Two-particle properties: nonlocal vertex
corrections beyond CPA.

While the CPA provides a good qualitative description of
the one-electron properties, it fails to capture backscattering
effects on the transport of electrons.23,28 In the CPA, the
two-particle vertex is local and does not depend on the transfer
momentum between incoming and outgoing particles. Hence,
the CPA conductivity has contributions from the bare p-h
bubble only. However, the vertex corrections are crucial for
a proper calculation of the conductivity. In low dimensions,
they lead to Anderson localization.23,28 Thus, for a proper
description of the disordered transport one needs to go beyond
the CPA level in order to incorporate these backscattering
contributions and spatial quantum coherence effects.
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= +

k + q

Γd

iωn

iωn
k

k′ + q

k′

++
Γd

F d

F d

Γd

Γd,pp F d,pp

γ

FIG. 3. (Color online) Irreducible DF p-h horizontal vertex �d

calculated using the parquet equation with crossing contributions
from the p-h “vertical” and p-p channels. The fully irreducible vertex
is approximated by γ . �d,pp and F d,pp are the irreducible and full p-p
vertices, respectively.

In our scheme, the full vertex is nonlocal, so we expect to
obtain finite vertex corrections describing “weak” localization
effects.3 As our formalism is best converged on Matsubara
frequencies, we calculate the low temperature dc conductivity
σdc as29,30

σdc = β2

π
�xx

(
q = 0,τ = β

2

)
, (19)

where β = 1/kBT , the current-current correlation function
�xx(q = 0,τ ) = 〈jx(q,τ )jx(−q,0)〉 in the x direction with the
current density operator j = ∑

k enkvx(k), and the electron
group velocity vx = ∂ε(k)/∂kx is obtained from the bare
dispersion ε(k). To get such lattice density-density correlation
functions, we need to calculate the DF two-particle Green
function18,20 χd = −χd

0 − χd
0 Fdχd

0 , with χd
0 = GdGd . For

the disordered case, one has to remember that in the DF vertex
Fd all diagrams containing closed loops are zero due to the
replica constraint.

As usual, the full dual fermion vertex Fd is obtained
from the Bethe-Salpeter equation20,23,31 Fd = �d + �dχd

0 Fd ,
where �d is the irreducible DF vertex in the p-h horizontal
channel (c.f. Fig. 3). To calculate this quantity, we use the
parquet equation which accounts for the crossing contributions
from the p-p and the “vertical” p-h channels.23 Here, the
fully irreducible vertex is approximated by the impurity
full vertex γ . This procedure allows us to incorporate the
important maximally crossed diagrams28 in our analysis. The
resulting full conductivity can be decomposed into two parts,
σ = σ0 + 
σ , where σ0 is the mean-field Drude conductivity
coming from the bare bubble χ0, and the second (two-particle
contribution) part 
σ incorporates the vertex corrections.

Our results for the CPA and DF dc conductivity σdc

in dimensions d = 1 and d = 2 are presented in Fig. 4.
Including finite vertex corrections, which vanish in the CPA,
the data show that the disorder DF method is able to capture
weak localization effects leading to a net decrease of the
conductivity. In d = 1, as the disorder strength increases, the
DF vertex corrections are more pronounced, while in d = 2
they are much weaker, as expected.3 Hence, our disorder
DF formalism is able to improve upon another drawback of

0 0.5 1 1.5 2 2.5
disorder strength, W

0

0.5

1

1.5

2

σ dc

CPA
DF

0 0.5 1 1.5 2
disorder strength, W

0

0.5

1

1.5

σ dc

CPA
DF

d=1 d=2

FIG. 4. (Color online) Conductivity as a function of the disorder
strength using the CPA and DF methods. Results are shown
for d = 1 and d = 2 at T = 0.02. Our results show that vertex
corrections incorporated in the DF approach allow one to capture
weak localization leading to the decrease of the conductivity.

the CPA, i.e., it can incorporate the quantum coherence and
backscattering effects in the transport properties.

IV. CONCLUSIONS

We present an extension of the dual fermion approach18

for studying disordered electronic systems using the replica
method. The developed disorder DF formalism is a nonlocal
alternative to the existing cluster effective-medium theories
beyond the local CPA level. In our approach, the nonlocal
intersite correlations are treated via diagrammatic perturbation
theory of the dual fermion system, and the CPA is recovered as
a zero-order approximation for the DF potential. Our results for
the single-particle Green function show that the disorder DF
formalism provides significant corrections to the CPA results.
Comparing our data with finite-cluster DCA results we find
a rather good agreement. In particular, the disorder DF and
DCA methods modify the CPA single-particle Green function
in qualitatively the same fashion, and they both capture detailed
structures in the local density of states. While in the DCA the
multiple intersite scattering effects are treated only within a
finite cluster, our method allows one to treat spatial correlations
on all length scales by summing a geometric series of dual
fermion diagrams in the perturbation expansion.

Analysis of the two-particle quantities shows that our dis-
order DF formalism can successfully capture nonlocal vertex
corrections, which are completely missed in the CPA scheme.
Hence, the presented DF formalism is more appropriate for
a proper description of transport in disordered electronic
systems. In particular, we find that our method incorporates
finite weak localization corrections from backscattering and
spatial quantum coherence effects to the conductivity, the
precursor effect of Anderson localization.

With all these findings, we believe that our DF disorder
scheme is a promising tool for studying a wide variety
of physical phenomena, including the interplay of weak
localization effects and strong electron interactions, which
may be treated on equal footing in our method. Work in this
direction17 and generalization to cluster cases32 is in progress.
As a possible candidate to replace CPA, its application to
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study nonlocal effects in electronic structure calculations is
also envisioned.
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