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Recent theoretical and numerical evidence suggests that localization can survive in disordered many-body
systems with very high energy density, provided that interactions are sufficiently weak. Stronger interactions can
destroy localization, leading to a so-called many-body localization transition. This dynamical phase transition
is relevant to questions of thermalization in extended quantum systems far from the zero-temperature limit.
It separates a many-body localized phase, in which localization prevents transport and thermalization, from
a conducting (“ergodic”) phase in which the usual assumptions of quantum statistical mechanics hold. Here,
we present numerical evidence that many-body localization also occurs in models without disorder but rather a
quasiperiodic potential. In one dimension, these systems already have a single-particle localization transition, and
we show that this transition becomes a many-body localization transition upon the introduction of interactions.
We also comment on possible relevance of our results to experimental studies of many-body dynamics of cold
atoms and nonlinear light in quasiperiodic potentials.
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I. INTRODUCTION

In one-dimensional systems of noninteracting particles, an
arbitrarily weak disordered potential generically localizes all
quantum eigenstates.1,2 Such a system is always an insulator,
with a vanishing conductivity in the thermodynamic limit.
The question of how this picture is modified by interactions
remained unclear in the decades following Anderson’s original
work on localization.3,4 Relatively recently, Basko, Aleiner,
and Altshuler have argued that an interacting many-body
system can undergo a so-called many-body localization (MBL)
transition in the presence of quenched disorder. At low energy
density and/or strong disorder, interactions are insufficient to
thermalize the system, so the system remains a “perfect” insu-
lator (i.e., with zero dc conductivity despite being excited); at
higher energy density and/or weaker disorder, the conductivity
can become nonzero and the system thermalizes, leading to a
conducting phase.5,6

The MBL transition is rather unique for several rea-
sons. First, in contrast to more conventional quantum phase
transitions,7 this is not a transition in the ground state. Instead,
the MBL transition involves the localization of highly excited
states of a many-body system, with finite energy density.
This means that the transition differs from most metal-
insulator transitions, which are sharp only at zero temperature.8

Furthermore, this MBL transition is of fundamental interest
in the context of statistical mechanics. Local subsystems of
interacting, many-body systems are generically expected to
equilibrate with their surroundings, with statistical properties
of these subsystems reaching thermal values after sufficient
time. Studies of how this occurs in quantum systems have led
to the so-called eigenstate thermalization hypothesis (ETH),
which states that individual eigenstates of the interacting
quantum system already encode thermal distributions of
local quantities.9,10 However, the many-body localized phase

provides an example of a situation in which the ETH is
false, and the ergodic hypothesis of quantum statistical
mechanics is violated.11,12 Since the work of Basko et al., these
intriguing aspects of MBL have motivated many studies aimed
at locating and understanding this transition in disordered
systems.11–23

On the other hand, it is important to note that single-particle
localization does not require disorder. In 1980, Aubry and
André studied a one-dimensional (1D) single-particle tight-
binding model that omits disorder in favor of a potential
that is periodic, but with a period that is incommensurate
with the underlying lattice.24 Harper had studied a similar
model much earlier, but he had focused on a special ratio
of hopping to potential strength.25 Aubry and André showed
that this point actually lies at a localization transition. It
separates a weak potential phase, where all single-particle
eigenstates are extended, from a strong potential phase,
where all eigenstates are localized. In the 1980s and 1990s,
physicists continued to study this quasiperiodic localization
transition for its own peculiarities and because it mimics the
situation in disordered systems in d � 3, where there is also
a single-particle localization transition.26–33 The AA model
was also actively investigated in the mathematical physics
literature because it involves a Schrödinger operator (i.e.,
the “almost Mathieu” operator) with particularly rich spectral
properties. The contributions of mathematical physicists put
the initial work of Aubry and André on more rigorous
footing.34–37 More recently, the AA model has been directly
experimentally realized in cold-atom experiments38,39 and
also in photonic waveguides.40 The possibility of engineering
quasiperiodic systems in the laboratory has inspired new
theoretical and numerical work aimed at understanding the
localization properties of such systems and how they differ
from those with true disorder.41–47
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A. Statement of the problem and summary of the results

In this paper, we ask whether there can be a MBL transition
in an interacting extension of the AA model. More concretely,
suppose we begin with a half-filled, one-dimensional system
of fermions or hard-core bosons in a particular randomly
chosen many-body Fock state, with some sites occupied and
others empty. Such a configuration of particles is typically
far from the ground state of the system. Instead, by sampling
the initial configuration uniformly at random (i.e., without
regard to its energy content), we are actually working in
the so-called infinite-temperature limit. If the particles are
allowed to hop and interact for a sufficiently long time, the
standard expectation is that the system should thermalize: that
is, all microscopic states that are consistent with conservation
laws should become equally likely and local observables
should thereby assume some thermal distribution.48 Can this
expectation be violated in the presence of a quasiperiodic
potential? In other words, can the system fail to serve
as a good heat bath for itself? If so, can this be traced
to the persistence of localization even in the presence of
interactions?

The answer to both of these questions appears to be
“yes.” We use numerical simulations of unitary evolution of
a many-body quasiperiodic system to measure three kinds of
observables in the limit of very late times: the correlation
between the initial and time-evolved particle density profiles,
the many-body participation ratio, and the Rényi entropy. Our
observations are consistent with the existence of two phases
in the parameter space of our model that differ qualitatively in
ergodicity. At finite interparticle interaction strength u and
large hopping g, there exists a phase in which the usual
assumptions of statistical mechanics appear to hold. The initial
state evolves into a superposition of a finite fraction of the
total number of possible configurations, and consequently,
local observables approximately assume their thermal values.
This is the many-body ergodic phase. However, at small
hopping g, there is a phase in which particle transport away
from the initial configuration is not strongly enhanced by
interactions. The system explores only an exponentially small
fraction of configuration space, and local observables do
not even approximately thermalize. This is the many-body
localized phase. Figure 1 presents a schematic illustration of
the proposed phase diagram. Although interactions induce an
expansion of the ergodic regime, the localized phase survives at
finite u, and consequently, there is evidence for a quasiperiodic
MBL transition.49

There has certainly been substantial previous work on
localization in many-body quasiperiodic systems. For instance,
Vidal et al.33 adapted the approach of Giamarchi and Schulz50

to study the effects of a perturbative quasiperiodic potential
on the low-energy physics of interacting fermions in one
dimension. Very recently, He et al.45 studied the ground-state
Bose glass to superfluid transition for hard-core bosons in a
1D quasiperiodic lattice. Our work differs fundamentally from
these and many other studies precisely because it focuses
on nonequilibrium behavior in the high-energy (infinite-
temperature) limit and argues that a localization transition can
even occur in this regime.

g

u

FIG. 1. (Color online) The proposed phase diagram of our
interacting Aubry-André model at high energy density. Interactions
convert the localized and extended phases of the AA model into
many-body localized and ergodic phases and induce an expansion
of the many-body ergodic phase. The phases of the interacting
model differ qualitatively from their noninteracting counterparts. The
differences are explained in Sec. IV.

B. Organization of the paper

We begin our study in Sec. II by introducing our interacting
extension of the standard AA model. Since the MBL transition
is a nonequilibrium phase transition, our goal is to follow
the real-time dynamics. To simplify this task, we describe
a method of modifying the dynamics of our model, such
that numerical integration of the new dynamics is somewhat
easier than the original problem. In Sec. III, we introduce the
quantities that we measure in our simulations and present the
numerical results. Then, in Sec. IV, we argue that our data
point to the existence of many-body localized and many-body
ergodic phases by proposing model late-time states for each
of these regimes and comparing to the numerical results from
Sec. III. Next, in Sec. V, we extract estimates for the phase
boundary from our data, motivating the phase diagram in
Fig. 1. Finally, we conclude in Sec. VI by summarizing our
results, drawing connections to theory and experiment, and
suggesting avenues for future extensions of our work.

We relegate two exact diagonalization studies to the
Appendix. First, we examine the impact of our modified
dynamics upon the single-particle and many-body problems.
Second, we study the many-body level statistics of the
interacting model. We find evidence for a crossover between
Poisson and Wigner-Dyson statistics, consistent with the usual
expectation in the presence of a localization transition.51

II. MODEL AND METHODOLOGY

In this section, we motivate and introduce our model and
our numerical methodology for studying real-time dynamics.

A. “Parent” model

We would like to consider one-dimensional lattice models
of the following general form:

Ĥ =
L−1∑
j=0

[hj n̂j + J (ĉ†j ĉj+1 + ĉ
†
j+1ĉj ) + V n̂j n̂j+1]. (1)
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Here, ĉj is a fermion annihilation operator, and n̂j ≡ ĉ
†
j ĉj is

the corresponding fermion number operator. The three terms
in the Hamiltonian (1) then correspond to an onsite potential,
nearest-neighbor hopping, and nearest-neighbor interaction,
respectively. For now, we leave the boundary conditions
unspecified. In 1D, the Hamiltonians (1) for hard-core bosons
and fermions differ only in the matrix elements describing
hopping over the boundary. With open boundary conditions,
the Hamiltonians (and consequently all properties of the
spectra) are identical.

If we set V = 0 in the Hamiltonian (1) and take hj to be
genuinely disordered, we recover the noninteracting Anderson
Hamiltonian. If we then turn on a finite V = J , we obtain a
model that is related to the spin models that have been studied
in the context of MBL.12,19 Alternatively, suppose we set V =
0 again and take

hj = h cos(2πkj + δ). (2)

With a generic irrational wave number k and an arbitrary
offset δ, we obtain the noninteracting AA model.24 For our
purposes, we would like to use an incommensurate potential
of the form (2), with h = 1 and g ≡ J

h
and u ≡ V

h
left as tuning

parameters to explore different phases of the model (1).
Before proceeding, we should briefly review what is

known about the single-particle AA model. With periodic
boundary conditions and δ = 0, this model is self-dual.24,41

The self-duality can be realized by switching to Fourier space
(cj = 1√

L

∑
q eiqj cq) and then performing a rearrangement of

the wave numbers q such that the real-space potential term
looks like a nearest-neighbor hopping in Fourier space and vice
versa. On a finite lattice of length L with periodic boundary
conditions, such a rearrangement is possible whenever the
wave number of the potential k = �

L
such that � and L

are mutually prime. The duality construction reveals that,
if the AA model has a transition, it must occur at g = 1

2 .
In the thermodynamic limit, there is indeed a transition at
this value for nearly all irrational wave numbers k.26 When
g > 1

2 , all single-particle eigenstates are spatially extended,
and by duality, localized in momentum space; when g < 1

2 ,
all single-particle eigenstates are spatially localized, and by
duality, extended in momentum space. Exactly at g = 1

2 ,
the eigenstates are multifractal.31,32 The spatially extended
phase of the AA model is characterized by ballistic, not
diffusive, transport.24 Recently, Albert and Leboeuf have
argued that localization in the AA model is a fundamentally
more classical phenomenon than disorder-induced Anderson
localization, and that the AA transition at g = 1

2 is most
simply viewed as the classical trapping that occurs when the
maximum eigenvalue of the kinetic (or hopping) term crosses
the amplitude of the incommensurate potential.41

B. Numerical methodology and modification
of the quantum dynamics

Probing the MBL transition necessarily involves studying
highly excited states of the system, and this precludes the
application of much of the extensive machinery that has been
developed for investigating low-energy physics. Consequently,
several studies of MBL have resorted to exact diagonalization

or other methods involving similar numerical cost.11,12,16 We
too use a numerical methodology that scales exponentially in
the size of the system. However, in order to access longer
evolution times in larger lattices, we introduce a modification
of the quantum dynamics. This modification is inspired by a
scheme used previously by two of us in a study of classical
spin chains.15 There, at any given time, either the even spins
in the chain were allowed to evolve under the influence of the
odd spins or vice versa. This provided access to late times that
would have been too difficult to access by direct integration of
the standard classical equations of motion.

By analogy, we propose allowing hopping on each bond in
turn. At any given time, the instantaneous Hamiltonian looks
like

Ĥm = LamJ (ĉ†mĉm+1 + ĉ
†
m+1ĉm) +

L−1∑
j=0

[hj n̂j + V n̂j n̂j+1].

(3)

We will specify the value of am in Sec. II C, where we discuss
our choice of boundary conditions. The state of the system
is allowed to evolve under this Hamiltonian for a time �t

L
,

and this evolution can be implemented by applying the unitary
operator

Ûm = exp

(
−i

�t

L
Ĥm

)
. (4)

One full time step of duration �t consists of cycling through
all the bonds:

Û (�t) =
L−1∏
m=0

Ûm. (5)

Note that, in (3), the hopping is enhanced by L because the
hopping on any given bond is activated only once per cycle,
while the potential and interaction terms always act. Therefore,
the factor of L ensures that the average Hamiltonian over a time
�t has the form (1). The advantage of employing the modified
dynamics is that the Ĥm only couple pairs of configurations,
so preparing the Ûm reduces to exponentiating order VH

two-by-two matrices, where VH is the size of the Hilbert
space. This is generally a simpler task than exponentiating
the original Hamiltonian (1). Our scheme only constitutes
a polynomial speedup over exact diagonalization, but that
speedup can increase the range of accessible lattice sizes by a
few sites.

The modified dynamics raises several important issues
that should be discussed.52 The periodic time dependence of
the Hamiltonian induces so-called “multiphoton” (or “energy
umklapp”) transitions between states of the “parent” model (1)
that differ in energy by ωH = 2π

�t
, reducing energy conser-

vation to quasienergy conservation modulo ωH . We need to
question whether this destroys the physics of interest: Does
the single-particle Aubry-André transition survive, or do the
multiphoton processes destroy the localized phase?

We take up this question in the Appendix, where we
present a Floquet analysis of the single-particle and many-body
problems. We find that, for sufficiently small �t , the universal
behavior of the single-particle AA model is preserved. At
larger �t , multiphoton processes can strongly mix eigenstates
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of the single-particle parent model, increasing the single-
particle density of states and destroying the AA transition.
In the spirit of the earlier referenced work on classical spin
chains,15 our perspective in this paper is to identify whether
MBL can occur in a model qualitatively similar to our parent
model (1). Therefore, to explore dynamics on long-time scales,
we avoid destroying the single-particle transition, but still
choose �t to be quite large within that constraint.

In the Appendix, we also examine the consequences of our
choice of �t for the quasienergy spectrum of the many-body
model. Our results suggest that multi-photon processes do
not, in fact, strongly modify the parent model’s spectrum
for much of the parameter range that we explore in this
paper.53 This means that partial energy conservation persists in
our simulations despite the introduction of a time-dependent
Hamiltonian, and we need to keep this fact in mind when we
analyze our numerical data below.

Finally, we note in passing that several recent studies
have focused on the localization properties of time-dependent
models,54–56 including one on the quasiperiodic Harper
model,57 but that the intricate details of this topic are somewhat
peripheral to our main focus.

C. Details of the numerical calculations

In studies of the 1D AA model, it is conventional to
approach the thermodynamic limit by choosing lattice sizes
according to the Fibonacci series (L = . . . 5, 8, 13, 21, 34 . . .)
and wave numbers for the potential (2) as ratios of successive
terms in the series.26 These values of k respect periodic
boundary conditions while converging to the inverse of the
golden ratio 1

φ
= 0.618033 . . . . For any finite lattice, the

potential is only commensurate with the entire lattice (since
successive terms in the Fibonacci series are mutually prime),
and the duality mapping of the AA model is always exactly
preserved. For our purposes, however, this approach offers
too few accessible system sizes and complicates matters by
generating odd values of L.

Instead, we found empirically that finite-size effects are
least problematic if we use exclusively even L, always keep
the wave number of the potential fixed at k = 1

φ
, and set

am = 1 − δm,L−1 (6)

in Eq. (3), thereby forbidding hopping over the boundary.58

Note that, with these boundary conditions, our model describes
hard-core bosons as well as fermions. The bosonic language
maintains closer contact with cold-atom experiments;38 the
fermionic language is more in keeping with the MBL
literature.5,11

Using the approach described above, we have simulated
systems up to size L = 20 at half-filling. Our simulations
always begin with a randomly chosen configuration (or Fock)
state, so that the initial state has no entanglement across any
spatial bond in the lattice (i.e., each site is occupied or empty
with probability 1). Except in the exact diagonalization studies
of Appendix, we always set �t = 1. We integrate out to
tf = 9999 and ultimately average the evolution of measurable
quantities over several samples, where a sample is specified
by the choice of the initial configuration and offset phase to

TABLE I. For the various simulated lattice sizes L, the particle
number N , the configuration space size VH , and the number of
samples used in the numerics. Note that we always work at half-
filling.

L N VH Samples

8 4 70 500
10 5 252 500
12 6 924 500
14 7 3432 250
16 8 12870 250
18 9 48620 250
20 10 184756 50

the potential (2). The sample counts used in the numerics are
provided in Table I.

III. NUMERICAL MEASUREMENTS

We now introduce the quantities that we measure to char-
acterize the different regimes of our model. We also present
the numerical data along with some qualitative remarks about
the observed behavior. However, we largely defer quantitative
phenomenology and modeling of the data to Sec. IV.

A. Temporal autocorrelation function

One signature of localization is the system’s retention of
memory of its initial state. Since we simulate the reversible
evolution of a closed system, the quantum state of the entire
system retains full memory of its past. Nevertheless, we may
still ask if the information needed to deduce the initial state
is preserved locally or if it propagates to distant parts of the
system. A diagnostic measure with which to pose this “local
memory” question is the temporal autocorrelator of site j :

χj (t) ≡ [2〈n̂j 〉(t) − 1][2〈n̂j 〉(0) − 1]. (7)

Here, the angular brackets refer to an expectation value in the
quantum state. This single-site autocorrelator may be averaged
over sites and then over samples (as defined in Sec. II C) to
obtain

χ (t ; L) ≡
⎡
⎣ 1

L

L−1∑
j=0

χj (t)

⎤
⎦ . (8)

The sample average is indicated here with the large square
brackets. Typically, to reduce the effects of noise, we also
average over a few time steps within each sample (i.e., perform
time binning) before taking the sample average.

We can discriminate three qualitatively different behaviors
of χ versus t in our interacting model. Figure 2 shows
examples of each of these behaviors at interaction strength
u = 0.32. Figure 2(a) is characteristic of the low-g regime,
where the autocorrelator stays invariant over several orders
of magnitude of time, and there is no statistically significant
difference between time series for different L. At higher g,
as in Fig. 2(b), the time series show approximately power-law
decay culminating in saturation to a late-time asymptote. For
the largest systems, the power law is roughly consistent with
the diffusive expectation of t−

1
2 decay. The late-time asymptote
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(c)

FIG. 2. (Color online) Three characteristic time series for the
temporal autocorrelator with u = 0.32 and �t = 1. In each panel,
we show time series for a particular value of the hopping g. Only a
few representative error bars are displayed in each time series. The
legend refers to different lattice sizes L. The reference lines in panels
(b) and (c) show diffusive t− 1

2 decay.

decays with L (as expected from energy conservation59)
suggesting that the power-law decay may continue indefinitely
in the thermodynamic limit. Surprisingly, at still larger g,
there is a third behavior, exemplified by Fig. 2(c). For the
largest lattice sizes, the power-law era is not followed by
saturation but by an extremely rapid decay. The rapid decay
is most evident in the large-g, large-u regime, where the
energy density of the parent model (1) is relatively large. This
implies that this behavior might be tied to the multiphoton
processes induced by periodic modulation of the Hamiltonian;
correspondingly, it also implies that, for fixed g and u, we
might be able to induce the appearance of the rapid decay
by increasing �t . We have tested this numerically, and the
results support the connection to the energy-nonconserving
multiphoton processes. This suggests that there are only two
distinct regimes of the parent model represented in Fig. 2,
differentiated by the L dependence of the asymptotic value
of the autocorrelator. We will proceed under this working
assumption.

The difference between these two regimes is brought out
more clearly in Fig. 3. We focus on a late time t = ttest

and probe χ (ttest; L) as a function of g for different lattice

8
10
12
14
16
18
20

(a)

(b)

(c)

FIG. 3. (Color online) The value of χ in the latest time bin (t =
9980 . . . 9999) plotted against g. In panels (a)–(c), u = 0, 0.04, and
0.64, respectively. The legend refers to different lattice sizes L.

sizes. Figures 3(a)–3(c) show data for u = 0, 0.04, and 0.64,
respectively. All the panels show a “splaying” point of the χ

versus L curves, separating a high-g regime in which χ (ttest; L)
decays with L from a low-g regime in which it does not. The
value of g at this feature decreases monotonically with u. Most
importantly, in each case, this value is robust to changing ttest;
if we halve ttest from the value that appears in Fig. 3, the feature
appears at approximately the same value of g. This property
of the data is very fortunate: in Sec. IV C, we will use the
splaying feature in these plots to put a numerical lower bound
on the transition value of g for different interaction strengths.
Since time scales get very long near the transition, it is difficult
to simulate out to convergence in this regime. Nevertheless,
the fact that the value of g at the splaying feature remains fixed
in time implies that we can deduce the phase structure from
our finite-time observations.

B. Normalized participation ratio

One of the commonly used diagnostics for studying single-
particle localization is the inverse participation ratio (IPR).
This quantity is intended to probe whether quantum states
explore the entire volume of the system and is often defined
as the sum over sites of the amplitude of the state to the fourth
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power:
∑

j |ψj |4. Typically, the IPR is inversely proportional
to the localization volume ξd in a single-particle localized
phase and decays to zero as the inverse of the system volume
in an extended phase.

We now describe how this quantity can be fruitfully
exploited in the many-body context. Let c denote some specific
configuration of N particles in L sites. Then, we can write the
state of the system in the configuration basis as

|�(t)〉 =
∑
{c}

ψc(t) |c〉 . (9)

The configuration-basis IPR is simply

P (t ; L) ≡
[ ∑

c

|ψc(t)|4
]
, (10)

where the square brackets, as usual, denote a sample average.
Interpreting P (t ; L) as the inverse of the number of config-
urations on which |�(t)〉 has support, we now define the
normalized participation ratio (NPR):

η(t ; L) ≡ 1

P (t ; L)VH

. (11)

The quantity η(t ; L) then represents the fraction of configu-
ration space that the system explores. We expect η(t ; L) to
be independent of L at late times in the ergodic phase. In
the many-body localized phase, we expect η(t ; L) to decay
exponentially with L.

In Fig. 4, we plot η(ttest; L) versus g for u = 0, 0.04, and
0.64. The figure reveals an important difference between the
noninteracting and interacting models. At low g, both with and
without interactions, η decays exponentially with L:

η ∝ exp(−κL) (12)

with κ > 0. More surprisingly, η also decays with L at large g

in the noninteracting case; all that happens is that κ becomes
essentially independent of g. With even small interactions,
however, η becomes system-size independent in the large-g
regime, following our ansatz for an ergodic phase. We bring out
this point more clearly in Fig. 5, in which we extract estimates
for the decay coefficient κ for various values of the interaction
strength. Thus, the extended phase of the noninteracting AA
model appears to be a special, nonergodic limit.

Before proceeding, we should caution that, in Figs. 4(b)
and 4(c), the collapse at high g looks very appealing because
of the use of a semilog plot and would not be so striking
on a normal scale. The axes have been chosen to highlight the
exponential scaling at low g, which would not be as apparent if
we simply plotted η versus g. However, regarding the absence
of perfect collapse at high g, note that the raw data for the
IPR differ by several orders of magnitude for different values
of the lattice size L. Given this, the coincidence of the order
of magnitude of η for different values of L is already a good
indication of the proposed scaling, and some corrections to
this scaling should be expected given the modest accessible
system sizes.

C. Rényi entanglement entropy

Unlike the normalized participation ratio, which provides
a global characterization of the time-evolved state, bipartite

8
10
12
14
16
18
20

(a)

(b)

(c)

FIG. 4. (Color online) The value of η in the latest time bin (t =
9980 . . . 9999) plotted against g. In panels (a)–(c), u = 0, 0.04, and
0.64, respectively. The legend refers to different lattice sizes L. See
Eq. (11) for the definition of η. In the ergodic phase η ≈ 0.5.

entanglement is arguably a better proxy for whether a part of
the system can act as a good heat bath for the rest. In the many-
body ergodic phase, we expect the bipartite entanglement
entropy to be a faithful reflection of the thermodynamic en-
tropy. This implies an extensive entropy, pinned to its thermal
infinite temperature value throughout the phase.60 In contrast,
in the many-body localized phase, we expect an extensive
but subthermal entanglement entropy. This expectation is
consistent with the results of three recent papers that focus
on the behavior of entanglement measures in the many-body

0
0.04
0.16
0.32
0.64

FIG. 5. (Color online) Estimates of κ from a fit of η ∝ e−κL in
the latest time bin (tbin = 9980–9999). The legend refers to different
values of the interaction strength u.
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FIG. 6. (Color online) Example time series of the Rényi entropy
for two values of the tuning parameter g. The legend refers to different
values of the interaction strength u. Panel (a) shows data for L = 10
lattices at g = 0.2. Panel (b) shows data for L = 20 lattices at g =
1.1. In the localized regime, we need to use smaller lattices to see
convergence Rényi entropy.

localized phase of the disordered problem.13,19,20 These papers
also study the time dependence of the entropy beginning from
an unentangled product state. In the many-body localized
phase, this growth is found to be slow, generically logarithmic
in time. Since our model lacks disorder altogether, it may
be interesting to explore the entanglement dynamics here as
well. In what follows, we comment on the dynamics, but we
primarily use the late-time entanglement entropy as yet another
tool to help distinguish between the many-body localized and
ergodic phases.

Let subsystem A refer to lattice sites 0,1, . . . ,L
2 − 1, and

let subsystem B refer to the remaining sites in the chain. We
can compute the reduced density matrix of subsystem A by
beginning with the full density matrix ρ̂(t) = |�(t)〉 〈�(t)|
and tracing out the degrees of freedom associated with
subsystem B:

ρ̂A(t) ≡ TrB{ρ̂(t)}. (13)

The sample-averaged order-2 Rényi entropy of subsystem A
is then given by

S2(t ; L) ≡ [− log2(TrA{ρ̂A(t)2})]. (14)

Both S2 and the standard von Neumann entropy are expected
to attain the same values in the ergodic phase; we choose
to focus on the former to save on the computational cost of
diagonalizing the reduced density matrix (13).

Our first task is to examine whether the putative localized
phase of our model exhibits the same behavior that was
observed with time-dependent density matrix renormalization
group (tDMRG).13,19 In Fig. 6(a), we focus on a low value of g

and plot S2 versus ln(t) for L = 10 lattices. At very early times,
the time series all tend to coincide, reflecting the formation of
short-range entanglement at the cut between the subsystems.
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FIG. 7. (Color online) The value of S2
L

at t = 9999 plotted against
g. In panels (a)–(c), u = 0, 0.04, and 0.64, respectively. The legend
refers to different lattice sizes L. In panel (a), the inset plot shows S2

vs g in the low-g regime. In panels (b) and (c), the insets show S2
L

vs
g for low L in the low-g regime.

Afterwards, the noninteracting time series saturates for several
orders of magnitude of time, while the interacting time series
show behavior that is consistent with logarithmic growth. In
order to clearly establish the saturation that follows the slow
growth, we have had to focus on small lattices. Figure 6(b)
shows data for large g. Here, the most striking difference
between the noninteracting and interacting models lies in
the saturation value of the entropy: the interacting model is
substantially more entangled, but the saturation value does not
appear to depend on the value of u. We will see below that
this is another indication that thermalization only occurs in the
interacting, large-g regime.

Figure 7 shows late-time values of the Rényi entropy density
plotted against the tuning parameter g. We first focus on the
high-g regime. In Fig. 7(a), u = 0, and S2(ttest; L) ∝ L for
large g. However, the entropy density is less than 1

2 , which is
the thermal result when the system has ergodic access to all
configurations consistent with particle-number conservation.
The situation is dramatically different in Figs. 7(b) and 7(c),
where u = 0.04 and 0.64, respectively. At high g, the entropy
actually looks superextensive. This is just a finite-size effect
because the entropy is well fit to a linear growth of the form

S2(ttest; L) = mL − Sdef, (15)
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0
0.04
0.16
0.32
0.64

FIG. 8. (Color online) The estimated slope of S2 vs L at late
times as a function of g. The legend refers to different values of the
interaction strength u.

where Sdef is a constant deficit, typically around 1.15–1.3.
In Fig. 8, we show that the slope m ≈ 1

2 at large g in the
interacting problem. This implies that the entropy is thermal
in the L → ∞ limit, where the deficit Sdef is negligible.

Now, we turn to the low-g regime. Without interactions,
the off-diagonal elements in the reduced density matrix (13)
typically contain only a few frequencies originating from
localized single-particle orbitals immediately adjacent to the
cut. The number of relevant orbitals is finite in L. As a
result, the off-diagonal elements can not fully vanish, and
the reduced density matrix never thermalizes. The resulting
entanglement entropy is independent of L as shown in the
inset of Fig. 8(a). In the interacting problem, while the
orbitals immediately adjacent to the cut still have roughly
the same frequencies, the “spectral drift” (i.e., the spread of
these lines due to sensitivity to the configuration of distant
particles) allows for a much larger number of distinct and
mutually incoherent contributions to off-diagonal elements of
the reduced density matrix. These off-diagonal elements can
dephase more efficiently, leading to a partial thermalization.
This is the mechanism that likely underlies the extensive but
subthermal entropy observed by Bardarson et al.19 For small
L, our numerical results in the low-g regime agree well with
this expectation. For larger L, the slow dynamics of the entropy
formation makes it difficult to observe saturation, both in our
work and in the tDMRG study of Bardarson et al.

If the entropy eventually becomes extensive for all L, then
the “crossing” feature that is present in Figs. 7(b) and 7(c)
would become a “splaying” feature, with the entropy density
independent of L at small g. In any case, an interesting property
of the data is that the values of g at the crossing features of the
S2(ttest; L) versus g plots are consistent with the locations of
the splaying features in the corresponding χ (ttest; L) versus g

plots of Fig. 3. This seems to be the case for all u. Thus, these
features may be useful in locating the transition.

IV. MODELING THE MANY-BODY ERGODIC AND
LOCALIZED PHASES

Above, we presented numerical evidence that our inter-
acting AA model contains two regimes that show quali-
tatively distinct behavior of the autocorrelator, normalized
participation ratio, and Rényi entropy. Next, we will propose
and characterize model quantum states that qualitatively (and
sometimes quantitatively) reproduce the numerically observed
late-time behavior in the two regimes. These model states

expose more clearly why the two regimes of our model are
appropriately identified as many-body ergodic and localized
phases.

A. Many-body ergodic phase

To model the behavior of the putative ergodic phase, we
begin by writing a generic model state in the configuration
basis:

|�〉 =
∑
{c}

φc|c〉 =
L
2∑

n=0

∑
{cA,cB}

φ
(n)
AB

∣∣c(n)
A ,c

(n)
B

〉
. (16)

Here, the c refers to configurations of the full chain, whereas
the cA and cB refer to configurations of the subsystems A and B,
as defined in Sec. III C. The superscripts on the configurations
and expansion coefficients refer to the number of particles
in subsystem A. Writing the state in terms of the subsystem
configurations will be useful shortly, but for now we focus on
the statistical properties of the amplitude φc. We assume that
this amplitude is distributed as a complex Gaussian random
variable:

p(φ) = 1

2πσ 2
exp

(
−|φ|2

2σ 2

)
. (17)

Within this distribution, 〈|φ|2〉 = 2σ 2 and 〈|φ|4〉 = 8σ 4. From
these average values, it is possible to deduce that

σ = 1√
2VH

(18)

for normalization and that the IPR is P� = 2
VH

. This, in turn,
implies

η� = 1
2 . (19)

This result is reproduced quantitatively in the numerics in
Fig. 4.

Next, suppose we compute the reduced density matrix of
subsystem A in the state |�〉:

ρ̂A =
∑

n

∑
{cA,cA′ ,cB}

φ
∗(n)
AB φ

(n)
A′B

∣∣c(n)
A

〉〈
c

(n)
A′

∣∣. (20)

To find the Rényi entropy, we need to compute the trace of the
square of this operator:

TrA{ρ̂2
A} =

∑
n

∑
{cA,cA′ ,cB,cB′ }

φ
∗(n)
AB φ

(n)
A′Bφ

∗(n)
AB′ φ

(n)
A′B′ . (21)

When we average over our distribution of amplitudes (17),
only the coherent terms survive61:

TrA
{
ρ̂2

A

} ≈
∑

n

∑
{cA,cB,cB′ }

〈∣∣φ(n)
AB

∣∣2∣∣φ(n)
AB′

∣∣2〉

+
∑

n

∑
{cA,cA′ ,cB}

〈∣∣φ(n)
AB

∣∣2∣∣φ(n)
A′B

∣∣2〉

−
∑

n

∑
{cA,cB}

〈∣∣φ(n)
AB

∣∣4〉
. (22)

The final term accounts for the double counting of terms where
cA = cA′ and cB = cB′ simultaneously. We now introduce the
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notation

γ (P,Q) = P !

Q!(P − Q)!
(23)

and evaluate the expectation values in Eq. (21) to obtain

TrA
{
ρ̂2

A

} ≈ 2

V 2
H

∑
n

γ

(
L

2
,n

)3

. (24)

Finally, using a Stirling approximation to the combination
function and a saddle-point approximation for the sum, we
find the entropy

S2,� ≈ L

2
− log2

(
4√
3

)
≈ L

2
− 1.2. (25)

This is the same form observed in the numerics (15), and the
deficit Sdef lies in the observed range. Asymptotically in L,
the entropy (25) is maximal, and this is exactly the expected
behavior when the particle number thermalizes.

There is an important caveat to note here: We have argued
above that if multiphoton processes do not completely destroy
energy conservation, then this can lead to relic autocorrelations
at late times. This implies that the assumption of independent
random amplitudes can not be exactly correct on a finite lattice.
However, the numerically observed relic autocorrelations
decay with L, suggesting that our assumptions get better as
the system size grows. Therefore, in the thermodynamic limit,
this phase is truly thermal.

B. Many-body localized phase

Our model for the time-evolved state in the localized regime
is founded upon the following intuition: there exists a length
scale ξ , which is analogous to the single-particle localization
length and beyond which particles are unlikely to stray from
their positions in the initial state. Then, if we partition our
lattice of length L into blocks of size ξ , exchange of particles
between blocks is less important than rearrangements of the
particles within each block. Consequently, the total number
of configurations accessed by the state of the full system is
approximately the product of the number of configurations
accessed within each block. This multiplicative assumption
should be very safe in a localized phase. We additionally
assume that, within each block, the dynamics completely
scramble the particle configuration. If a certain block of length
ξ contains n particles in the initial state, then the time-evolved
state contains equal amplitude for each of the possible ways
of arranging n particles in those ξ sites. In keeping with our
numerical protocol, we randomly select the initial state from
the space of all possible Fock states of a certain global particle
number. Then, a block of ξ sites contains n particles with
probability

w(ξ,n) = γ (ξ,n)

2ξ

[
1 + O

(
ξ 2

L

)]
. (26)

We will consider the limit L � ξ � 1, where we can ap-
proximate the probability by the first term. The assumptions
proposed above motivate writing a state of the form

|�〉 = 1√
M

∼∑
{c1,...,c L

ξ
}
z(c1, . . . ,c L

ξ
)|c1, . . . ,c L

ξ
〉, (27)

where the tilde on the sum indicates that it should only
run over configurations that are consistent with the initial
distribution of particles among the blocks. The factors z are
complex phases which depend upon the configuration, and
M is a normalization which is equal to the total number of
configurations represented in the state |�〉.

Before beginning our analysis of the state |�〉, we should
note that, in contrast to our calculations in the ergodic phase,
our goal in the localized regime will be to qualitatively
tie the numerically observed large-L behavior to the existence
of the length scale ξ . Unfortunately, we can not achieve the
quantitative accuracy of the ergodic model state |�〉 with the
localized toy model described above.

We begin by estimating the autocorrelator between the
initial state and the model time-evolved state |�〉. A nonzero
autocorrelator emerges because each block is only at half-
filling on average. Fluctuations away from half-filling (in
either direction) yield a positive typical value of the au-
tocorrelator within a block. Indicating an average over the
distribution (26) with an overline, we find the block value
χblock ≈ 1

L
. This is also the average value for the whole system

when L � ξ :

χ� ≈ 1

ξ
. (28)

Next, to estimate the IPR, we need to compute the
normalization factor M . We begin by estimating the number
of explored configurations in each block. The average of the
logarithm of the number of explored configurations within a
block is

ln(Mblock) ≈ ln

(√
2

πξ
2ξ

)
− 1

2
. (29)

Then, using ln M ≈ L
ξ

ln Mblock, we can estimate M itself as

M ≈ eln M ≈ 2L

(
πeξ

2

)− L
2ξ

. (30)

Using this normalization, we can estimate the NPR η�:

ln η� ≈ − L

2ξ
ln

(
πeξ

2

)
+ 1

2
ln L + 1

2
ln

(π

2

)
. (31)

This qualitatively agrees with the numerically observed be-
havior (12) up to subleading corrections, and in the large-L
limit:

κ ≈ 1

2ξ
ln

(
πeξ

2

)
. (32)

Note that Eqs. (28) and (32) imply a relationship between
the scaling behaviors of χ and κ in the localized regime. This
relationship is not reflected in our numerical data, in part
because we can not truly attain the limit L � ξ � 1. The
numerically computed value of κ , for example, can contain
finite-size corrections of order ln(L)

L
or ξ 2

L
. Also, we must keep

in mind that the state |�〉 is just a toy model that does not
capture fine details of the time-evolved states in this regime.
Thus, we must be content with reproducing the qualitative
behavior of each measurable quantity individually, without
expecting the relationships between these quantities in |�〉 to
be exactly reproduced in the data.
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We now turn to the Rényi entropy, the quantity which
most strikingly distinguishes between the noninteracting and
interacting localized phases. To examine this quantity, we
revert to partitioning the system in half instead of into blocks
of size ξ . As long as ξ � L

2 , the assumptions that we made
above about the blocks of size ξ hold even better for the
subsystems A and B. For example, we can assume that there
are “explored sets” of MA configurations in subsystem A and
MB configurations in subsystem B, respectively, with M =
MAMB. We consider computing the reduced density matrix
ρ̂A, exactly as in Eq. (20) above. If the off-diagonal elements
of this density matrix remain perfectly phase coherent, it can
easily be shown that Scoh

2,� = 0. In reality, there will be a local
contribution to the entropy from particles straying over the
cut between subsystems A and B. This mimics the situation
in noninteracting localized phases. Alternatively, suppose that
dephasing is sufficiently strong that we can proceed by analogy
with the ergodic phase, beginning with Eq. (21) and keeping
only coherent terms as in Eq. (22). Thereafter, the calculation
for the model localized state |�〉 differs from the calculation
for |�〉. We need to consider the statistics of the configuration
probabilities |λAB|2. For |λAB|2 �= 0, we need the configura-
tions on both subsystems to lie within their respective explored
sets; this occurs in subsystem A, for example, with probability

MA

γ ( L
2 ,n)

. This reasoning leads to the “dephased” entropy

S
dp
2,� ≈ − log2

(
1

MA
+ 1

MB
− 1

MAMB

)

≈ − log2

(
2√
M

− 1

M

)

≈ 1

2

[
1 − 1

2ξ
log2

(
πeξ

2

)]
L − 1, (33)

where we have additionally made the approximation that
typically MA ≈ MB ≈ √

M . With only partial loss of
coherence, the entropy would lie between these two limiting
cases: Scoh

2,� � S2,� � S
dp
2,�. Thus, dephasing alone, without

additional particle transport, can induce an extensive entropy.
Indeed, our numerics support the view that the main dif-

ference between the noninteracting and many-body localized
phases is the amount of dephasing. There does not seem to
be a qualitative difference in particle transport. The particle
configuration stays trapped near its initial state, even with
interactions, and the system does not thermalize.

V. TRACING THE PHASE BOUNDARY

In this section, we use the data from Sec. III to extract
estimates of the phase boundary between the localized and
ergodic phases. Estimating the location of the MBL transition
is extremely challenging. Given the numerically accessible
lattice sizes, satisfying finite-size scaling analyses are difficult
to perform. Nevertheless, rough estimates have been made in
the disordered problem,11,12,16,21 so we will now attempt to
extract an approximate phase boundary for our model.

We first consider the autocorrelator. Above, we noted the
“splaying” feature in the late-time plots of the autocorrelator
versus g. The value of g at this feature can be taken as a lower
bound for the transition. For g slightly greater than this value,

TABLE II. Bounds or estimates of the transition value of gc

at various values of u and based on various measured quantities.
The column titled χ gives a lower bound on the transition value
of g based on the autocorrelator. The remaining two columns give
estimates of gc based on κ and m, as defined in Secs. III B and III C,
respectively. See Sec. V for the reasoning behind the estimates. All
values carry implicit error bars of ±0.05 as that is the discretization
of our simulated values of g. This error bar should be interpreted, for
instance, as the error on our estimate of the location of the maximum
value of m. The error on our estimate of gc is, of course, much larger.

u χ κ m

0.04 0.35 0.45 0.45
0.16 0.30 0.40 0.40
0.32 0.25 0.40 0.40
0.64 0.25 0.40 0.35

it is possible that χ only decays with L because ξ > L for
accessible lattice sizes. Considering two lattice sizes (L = 16
and 20) and finding when their values of χ deviate, we find
the values reported in the first column of Table II.

Next, we consider the fitting parameter κ in Eq. (12). In
Fig. 5, we see that there is a region where κ < 0 for finite
interaction strength. Since η � 1, finite-size effects are clearly
dominating the estimate in this region. We can use the value
of g where κ is minimal to track how this region moves as u

is varied. This yields the second column of the table.
Finally, a similar approach can be applied to extract

estimates of gc from the fits (15). There exists a region
where m > 1

2 , but this is mathematically inconsistent in the
thermodynamic limit. Therefore, if we find the value of g that
maximizes m, we can again estimate the location of the region
dominated by finite-size effects, yielding the final column of
Table II.

The estimates of the transition value gc in Table II were
obtained using data for the latest time that we simulated (the
time bin tbin = 9980 . . . 9999 for χ and κ and t = 9999 for
m). However, we have also estimated gc for data obtained at
a half and a quarter of this integration time, finding consistent
results. Thus, the general phase structure of the model is
invariant to changing the observation time, even though not
all measurable quantities have converged to their asymptotic
values. Consolidating the information from the estimates in
Table II, we propose that the phase diagram qualitatively
resembles Fig. 1.

Before proceeding, it is worth noting that our rough
estimates of the phase boundary do not make assumptions
regarding the character of the MBL transition (i.e., whether it
is continuous or first order). In fact, some of our plots [e.g.,
Fig. 7(c)] hint at the possibility of a discontinuous change in
S2 as a function of g in the thermodynamic limit. We are not
aware of any results that rule out a first-order MBL transition,
so we must keep this possibility in mind.

VI. CONCLUSION

Recently, evidence has accumulated that Anderson local-
ization can survive the introduction of sufficiently weak inter-
particle interactions, giving rise to a many-body localization
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transition in disordered systems.5,6,11,12,21 The MBL transition
appears to be a thermalization transition: In the proposed
many-body localized phase, the fundamental assumption of
statistical mechanics breaks down, and the system fails to
serve as its own heat bath.11,12 We have presented numerical
evidence that this type of transition can also occur in systems
lacking true disorder if they instead exhibit “pseudodisorder”
in the form of a quasiperiodic potential.

From one perspective, this may be an unsurprising claim.
For g < 1

2 , the localized single-particle eigenstates of the
quasiperiodic Aubry-André model have the same qualitative
structure as those of the Anderson model, so the effects of
introducing interactions ought to be similar. By this reasoning,
perhaps it is even possible to guess the phase structure of
an interacting AA model using knowledge of an interacting
Anderson model: we simply match lines of the two phase
diagrams that correspond to the same noninteracting, single-
particle localization length.

However, this perspective misses important effects in all
regions of the phase diagram. Most obviously, the AA model
has a transition at u = 0, and it is interesting to see how this
transition gets modified as it presumably evolves into the MBL
transition at finite u. It is also important to remember that
quasiperiodic potentials are completely spatially correlated.
This means that the AA model lacks rare-regions (Griffiths)
effects, and this may have subtle consequences for the
dynamics. Finally, the AA model contains a phase that is
absent in the one-dimensional Anderson model, the g > 1

2
extended phase, and we have seen above that interactions have
a profound effect upon this regime.

Understanding MBL in the quasiperiodic context is espe-
cially pertinent given the current experimental situation. Some
experiments that probe localization physics in cold-atom sys-
tems use quasiperiodic potentials, constructed from the super-
position of incommensurate optical lattices, in place of genuine
disorder. The group of Inguscio, in particular, has recently
explored particle transport for interacting bosons within this
setup.38,39 Meanwhile, the AA model has also been realized
in photonic waveguides, and experimentalists have studied
the effects of weak interactions on light propagation through
these systems. They have also investigated “quantum walks”
of two interacting photons in disordered waveguides.40,62 This
protocol resembles the one we have implemented numerically,
so similar physics may arise. Finally, we note that Basko
et al. have predicted experimental manifestations of MBL
in solid-state materials. In such systems, there is always
coupling to a phononic bath, so the MBL transition is expected
to become a crossover that nevertheless retains interesting
manifestations of the MBL phenomena.63 Whether there exist
quasiperiodic solid-state systems to which the predictions of
Basko et al. apply remains to be understood.

Given the current experimental relevance of localization
phenomena in quasiperiodic systems, we hope that our study
will motivate further attempts to understand these issues.
Unfortunately, our ability to definitively identify and analyze
the MBL transition is limited by the modest lattice sizes
and evolution times that we can simulate. Vosk and Altman
recently developed a strong-disorder renormalization group
for dynamics in the disordered problem,20 but the reliability

of such an approach in the quasiperiodic context is unclear.
A time-dependent density matrix renormalization (tDMRG)
group study of this problem would be a valuable next step.
Tezuka and Garcı́a-Garcı́a have published tDMRG results on
localization in an interacting AA model, but their focus was not
on the thermalization questions of many-body localization.44

It would be worthwhile to pose these questions using a
methodology that allows access to much larger lattices.
However, even tDMRG may have difficulty capturing the
highly entangled ergodic phase,13,19 so an effective numerical
approach for definitively characterizing the transition remains
elusive.
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APPENDIX: EXACT DIAGONALIZATION RESULTS FOR
THE SINGLE-PARTICLE AND MANY-BODY PROBLEMS

This appendix collects exact diagonalization results that
supplement the real-time dynamics study in the main body of
the paper.

1. Floquet analysis of the modified dynamics

The goal of the first part of this Appendix is to examine the
consequences of the modifications to the quantum dynamics
described in Sec. II B. We first verify that the AA transition
survives by diagonalizing the single-particle AA Hamiltonian
[i.e., the Hamiltonian (1) with u = V

h
= 0] and the

single-particle unitary evolution operators (5) for various
choices of the time step �t . Subsequently, we employ the same
approach to examine how varying �t impacts the quasienergy
spectrum of the interacting, many-body model.

a. Robustness of the single-particle Aubry-André transition

To study the single-particle transition, we focus on the
inverse participation ratio

Psp(g; L) =
⎛
⎝L−1∑

j=0

|ψj |4
⎞
⎠ . (A1)
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(a)

(b)

FIG. 9. (Color online) Collapse of single-particle IPR vs g, using
the scaling hypothesis (A2). The legend refers to different lattice
sizes L. In panel (a), we show data for the usual AA Hamiltonian (1).
In panel (b), we show data obtained from diagonalizing the unitary
evolution operator for one time step in the modified dynamics (5). We
use potential wave number k = 1

φ
and 50 samples for all lattice sizes.

The insets show magnified views of the curves for the three largest
lattice sizes in the vicinity of the transition.

Here, ψj denotes the amplitude of the wave function at site j of
an L-site lattice. We enclose the sum in Eq. (A1) in parentheses
to indicate important differences in the averaging procedure
with respect to the many-body inverse participation ratio (10).
In the many-body case, we computed the IPR as a sum over
configurations in the quantum state at a particular time in the
real-time evolution. Then, we averaged over samples, where
a sample was specified by a choice of the offset phase to
the potential (2) and an initial configuration. Throughout this
Appendix, we instead specify a “sample” solely by the offset
phase δ, and we average over eigenstates within each sample
before averaging over samples.

As noted previously, the usual AA model has a transition
that must occur, by duality, at gc = 1

2 . Near the transition, the
localization length is known to diverge with exponent ν = 1.26

Our exact diagonalization results indicate that, at the transition,
Psp(gc,L) ∼ L− 1

2 . Hence, we can make the following scaling
hypothesis for the IPR:

Psp = L− 1
2 f [(g − gc)L]. (A2)

In Fig. 9(a), we show that we can use this scaling hypothesis
to collapse data for the standard AA model. We show data for
L = 8 to 512, with potential wave number k = 1

φ
and open

boundary conditions. For all lattice sizes, we average over 50
samples.

To establish the stability of the AA transition to the modified
dynamics, we must ask the following: Can the IPR obtained
from diagonalizing the unitary evolution operators (5) be
described using the scaling hypothesis (A2)? Figure 9(b)
shows that this is indeed the case for �t = 1. The only

parameter that needs to be changed is gc, which decreases
slightly as �t is raised. This implies that there is a transition
in the Floquet spectrum of the system that can be tuned by
varying �t . It would be a worthwhile exercise to map out the
phase diagram of this single-particle problem in the (g,�t)
plane. We leave this for future work.

b. Properties of the many-body quasienergy spectrum

We now turn our attention back to the effects of the modified
dynamics upon the full, many-body model. In Sec. II B,
we emphasized that our time-dependent model lacks energy
conservation, with multiphoton processes inducing transitions
between states of the parent model (1) that differ in energy
by ωH = 2π

�t
. In this part of the Appendix, we will examine

how varying �t impacts the quasienergy spectrum of the
time-dependent model, using the approach that we applied
to the single-particle case above: we diagonalize the time-
independent Hamiltonian as well as the unitary evolution
operator for one time step of the time-dependent model.

In Fig. 10, we plot the density of states d(�t,E) in
quasienergy space of the parent model and time-dependent
models for different values of �t . We focus on L = 12 systems
at half-filling with fermions (or, since we continue to use the

0.125
0.25
0.5
1
2
4
PM

(a)

(b)

(c)

FIG. 10. (Color online) The density of states vs quasienergy for
L = 12 systems at half-filling with interaction strength u = 0.16. The
legend refers to different values of �t ; the time-independent, parent
model is referred to as “PM.” In panels (a)–(c), g = 0.25, 0.4, and
0.9, respectively.
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boundary conditions described in Sec. II C, hard-core bosons).
We fix the interaction strength to u = 0.16 and tune g to
explore different regimes of the model. In Figs. 10(a)–10(c),
we plot data for g = 0.25, 0.4, and 0.9. According to Table II,
these values of g put the system in the localized phase, near
the transition, and in the ergodic phase, respectively.

We first consider the consequences of varying �t while
holding the other parameters fixed. For sufficiently small
�t , the quasienergy spectrum faithfully reproduces all the
structure of the energy spectrum of the parent model. This
is unsurprising because if ωH is greater than the bandwidth
of the parent model’s spectrum, direct multiphoton processes
will not take place. If we now tune ωH so that it is less than
this bandwidth, the quasienergy spectrum begins to deviate
from the parent model’s spectrum at its edges. This effect
can be seen, for instance, by examining the trace for �t = 1
in Figs. 10(a) or 10(b). For even higher values of �t (i.e.,
lower values of ωH ), multiphoton processes strongly mix the
states of the parent model, resulting in a flat quasienergy
spectrum.

The effect of multiphoton processes can also be enhanced
by broadening the parent model’s spectrum, which can be
achieved by raising g or u. In Fig. 10(c), for instance, multi-
photon processes have significantly flattened the spectrum for
�t = 1, and deviations from the parent model are even visible
for �t = 0.5. Since we always use �t = 1 in our real-time
dynamics simulations, it is perhaps fortunate that g = 0.9 is
well within the proposed ergodic phase for u = 0.16 and that,
near the critical point [i.e., in Fig. 10(b)], the quasienergy
spectrum for �t = 1 still retains much of the structure of the
parent model’s spectrum.

However, there is one more caveat to keep in mind: the
energy content of the system also grows with L. At fixed g, u,
and �t , the properties of the parent and time-dependent models
deviate from one another as the system size grows. If we truly
want to faithfully reproduce the dynamics of the parent model
with the modified dynamics, it may be necessary to scale �t

down as we raise L. However, recall that our goal is simply
to find MBL in a model qualitatively similar to the parent
model (1). Even with this more modest goal in mind, there is
still the danger that, on sufficiently large lattices, multiphoton
processes might couple a very large number of localized states
and thereby destroy the many-body localized phase of the
parent model. Our numerical observations indicate that this
does not happen for the system sizes that we can simulate.
We can keep �t fixed at unity for L � 20 without issues,
accepting the possibility that the sequence of models that we
would in principle simulate on still larger lattices may require
progressively smaller values of �t .

2. Level statistics of the many-body parent model

Localization transitions are often characterized by transi-
tions in the level statistics of the energy spectrum.51 Two of
us previously looked at the level statistics of the disordered
problem and identified a crossover from Poisson statistics in
the many-body localized phase to Wigner-Dyson statistics in
the many-body ergodic phase.11 The intuition that underlies
this crossover is the following: in a localized phase, particle
configurations that have similar potential energy are too far
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FIG. 11. (Color online) The mean of the ratio between adjacent
gaps in the spectrum, defined in (A4). These data were obtained by
exact diagonalization of the parent model (1) for L = 12 systems.
All data points have been averaged over 50 samples, and the legend
refers to different values of the interaction strength u. The mean
value of 〈rn〉 shows a crossover from Poisson statistics (indicated by
the bottom reference line) to Wigner-Dyson statistics (indicated by
the top reference line), for the largest values of u. Representative
error bars have been included in the plot; the absent error bars have
roughly the same size.

apart in configuration space to be efficiently mixed by the
kinetic energy term in the Hamiltonian. Therefore, level
repulsion is strongly suppressed, and Poisson statistics hold.
Conversely, in an ergodic phase, there is strong level repulsion
which lifts degeneracies, leading to Wigner-Dyson (i.e.,
random matrix) statistics.

Along the lines of the aforementioned study of the dis-
ordered problem, we focus on the gaps between successive
eigenstates of the spectrum of the many-body parent model (1):

δn ≡ En+1 − En (A3)

and a dimensionless parameter that captures the correlations
between successive gaps in the spectrum:

rn ≡ min(δn,δn+1)

max(δn,δn+1)
. (A4)

For a Poisson spectrum, the rn are distributed as 2
(1+r)2 with

mean 2 ln(2) − 1 ≈ 0.386; meanwhile, when random matrix
statistics hold, the mean value of r has been numerically
determined to be approximately 0.5295 ± 0.0006.11

In Fig. 11, we present exact diagonalization results for L =
12 lattices at half-filling with potential wave number k = 1

φ
and

the boundary conditions described in Sec. II C above. We show
data for the same parameter range examined in the body of this
paper and average over 50 samples for each value of g and u.
For the largest value of u, the mean value of rn interpolates
between the expected values as g is raised, consistent with the
existence of a localization transition. We have also checked
that the distributions of rn have the expected forms in the
small- and large-g limits in this regime. For smaller values
of u, we can speculate that 〈rn〉 grows with L at large g and
approaches the expected value for very large L. To argue for
a MBL transition on the basis of exact diagonalization, we
would need to study this sharpening of the crossover as L is
raised. This would indeed be an interesting avenue for future
work. For our present purposes, however, we only want to
check consistency with our real-time dynamics data, as we
have done in Fig. 11.

134202-13



IYER, OGANESYAN, REFAEL, AND HUSE PHYSICAL REVIEW B 87, 134202 (2013)

1P. Anderson, Phys. Rev. 109, 1492 (1958).
2E. Abrahams, P. Anderson, D. Licciardello, and T. Ramakrishnan,
Phys. Rev. Lett. 42, 673 (1979).

3L. Fleishman and P. Anderson, Phys. Rev. B 21, 2366 (1980).
4D. Thouless and S. Kirkpatrick, J. Phys. C: Solid State Phys. 14,
235 (1981).

5D. Basko, I. Aleiner, and B. Altshuler, Ann. Phys. (NY) 321, 1126
(2006).

6D. Basko, I. Aleiner, and B. Altshuler, Problems Condens. Matter
Phys. 1, 50 (2007).

7S. Sachdev, Quantum Phase Transitions (Wiley Online Library,
2007).

8V. Dobrosavljevic, Conductor Insulator Quantum Phase Transi-
tions (Oxford University Press, Oxford, UK, 2012), p. 1.

9J. Deutsch, Phys. Rev. A 43, 2046 (1991).
10M. Srednicki, Phys. Rev. E 50, 888 (1994).
11V. Oganesyan and D. Huse, Phys. Rev. B 75, 155111 (2007).
12A. Pal and D. Huse, Phys. Rev. B 82, 174411 (2010).
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the quasiperiodic potential, and A0 and A∞ are positive bounded
amplitudes of the Fourier components at the wave vector k of
the quasiperiodic potential. This ansatz implies a finite correlation
between the random phases θ0 and θ∞. Therefore, one of the Fourier
modes of χ remains correlated as L → ∞, and we expect χ ∼ 1

L
in

the ergodic phase. Note that this argument truly applies only to the
energy-conserving parent model. In fact, in our numerics, there is
only partial energy conservation, and energy-nonconserving events
become more prevalent as u, g, or L is raised. This means that χ

will generically decay faster than 1
L

at large L in the ergodic phase.
60This statement should be interpreted with some care. Quantum

entanglement entropy measures, such as the Rényi entropy that we
define in Eq. (14), carry information about the off-diagonal elements
in the reduced density matrix. These terms have no classical analog
and would not be considered in a thermodynamic calculation. This

difference can result in discrepancies in the subleading behavior. For
instance, consider our calculation of the bipartite Rényi entropy of
the model state |�〉 in Sec. IV A: the quantum Rényi entropy is one
bit lower than the Rényi entropy calculated by classical counting of
configurations. A more precise analog of the classical entropy would
thus be a “diagonal” entropy in which all off-diagonal elements of
the reduced density matrix were neglected.
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