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We propose and study a renormalization group transformation that can be used also for models with strong
quenched disorder, like spin glasses. The method is based on a mapping between disorder distributions, chosen
such as to keep some physical properties (e.g., the ratio of correlations averaged over the ensemble) invariant
under the transformation. We validate this ensemble renormalization group by applying it to the hierarchical
model (both the diluted ferromagnetic version and the spin glass version), finding results in agreement with
Monte Carlo simulations.
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I. INTRODUCTION

The renormalization group (RG) is a fundamental tool in
theoretical physics.1 It allows to characterize phase transitions
and critical phenomena by computing critical exponents and
universality classes. The real-space RG can be viewed as a
decimation procedure that takes a system made of N dynamical
variables and reduces it to a smaller system, in a way which
preserves, or scales appropriately, some important physical
observables. Such a decimation induces a RG transformation
on the system couplings, and the study of such a transformation
allows one to identify critical points and critical exponents.

Real-space RG transformations have been studied in great
detail for homogeneous models,1 but much less is known for
disordered models that contain quenched randomness in the
Hamiltonian (either random fields and/or random couplings).
This is especially true for strongly frustrated models, like
spin glasses (SG), for which a satisfying RG transformation
is still lacking. For example, for the Edwards-Anderson SG
model2 on a D-dimensional lattice all the attempts to develop
a field theory by performing an ε expansion around the
upper critical dimension Du = 6 have proved to be very
complicated.3,4 These studies have led to the discovery of fixed
points different from the mean-field (MF) ones, however, the
implications of that are not completely clear. In particular the
existence of replica symmetry breaking (RSB) fixed points in
the non-mean-field region D < Du has been shown only very
recently5 and estimates of critical exponents in D = 3 are still
not reliable.

In this framework the development of a (semi)analytical
real-space RG for disordered models would be very welcome.
The outcome of such a RG transformation could be well
compared with Monte Carlo (MC) simulations that provide
accurate estimates of critical temperatures and critical expo-
nents for disordered models (at a much higher computational
cost).

Since the first developments of RG transformations for
models with quenched disorder it was clear that one has
to deal with distributions of couplings.6,7 However, the RG
transformation for an entire coupling distribution is highly
nontrivial. Previous attempts to develop a real-space RG for
disordered systems8 focused on transformations mapping a
single sample of size N to a smaller system (without loss of

generality we can set the size of the smaller system to N/2).
In formulas, we can write the mapping {Jij } → {J ′

ij } as the
one solving a set of equations like

〈Ok({Jij })〉 = 〈O ′
k({J ′

ij })〉 , (1)

where the angular brackets are thermal averages with respect
to the Gibbs-Boltzmann distribution, the primed quantities
refer to the smaller system, and the number of observables
Ok is enough to determine the new couplings {J ′

ij }. Given an
ensemble of systems of size N , the above transformation can
be applied to each of them to obtain an ensemble of systems
of size N/2.

However, we believe that such a mapping is suboptimal for
models with quenched disorder and a better RG transformation
should consider explicitly the average over the quenched
disorder (as was done, e.g., in Ref. 9). What we are proposing
is a mapping between the probability distributions of couplings
P (Jij ) → P ′(J ′

ij ) such that the following equations hold:

〈Ok({Jij })〉 = 〈O ′
k({J ′

ij })〉 . (2)

The overbar represents the average over the quenched disorder
(i.e., the couplings in the present case). The rationale beyond
this choice is that in models with strong disorder (like SG)
sample-to-sample fluctuations may dominate thermal ones.

It is worth noticing that standard RG transformations
working on coupling distributions typically use Eq. (1).
For example, the simplest RG transformation for the bond
percolation problem in two dimensions (p′ = 2p2 − p4) or
even the more complicated one of Ref. 7 can be viewed as
single sample transformations, where p is the bond density
by which the larger samples are generated and p′ is the bond
density of the renormalized samples (one-by-one). Instead,
the new approach in Eq. (2) would prescribe to compute some
physical quantity (e.g., a correlation or a probability of being
connected) in the ensemble of larger systems with bond density
p, and to repeat the same computation in the ensemble of
smaller systems with several bond densities to find the best
value p′ such that the physical observables match in the two
ensembles. The new approach we are proposing resembles in
some way the finite size scaling analysis which is performed
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on Monte Carlo data measured in systems of different sizes.
Obviously, for models where the RG transformation is exact
(like, e.g., the diamond hierarchical lattices10) the old and the
new approaches provide the same answer.

Two simple examples may help elucidate even more the
limits of the RG transformation working sample by sample,
Eq. (1), and thus justify the use of the one in Eq. (2) that
we will call ensemble RG (ERG). In a diluted ferromagnet
with long-range interactions, where the couplings are positive
with probability p and null with probability 1 − p, a single
step of the decimation procedure induced by Eq. (1) typically
generates all nonzero couplings (i.e., p = 1). This is clearly
not very useful if one is willing to follow the RG flow in
the p-T plane. Moreover, in frustrated models the decimated
system is typically much less frustrated than the original one:
The extreme case is the transformation of a four-spins system
in a two-spins system, the last of these being unfrustrated for
any coupling choice. This tendency to reduce frustration makes
the RG using Eq. (1) clearly unfit to describe SG fixed points.

In principle, our ERG scheme can be applied to any
disordered system. We choose here to apply it to the hier-
archical model (HM), which is a particular one-dimensional
long-range model, whose Hamiltonian for N = 2n spins can
be constructed iteratively in the following way:11

Hn(s1, . . . ,s2n) = Hn−1(s1, . . . ,s2n−1 ) + Hn−1(s2n−1+1, . . . ,s2n)

− cn

2n∑
i<j=1

Jij si sj . (3)

In practice Hn is the sum of interactions at n different levels.
We have studied three versions of this model: The ferromagnet
(FM), where Jij = 1; the diluted ferromagnet (DFM), where
a random fraction 1 − p of FM couplings are set to zero; and
the SG version,12 with Gaussian couplings P (J ) ∝ e−J 2/2.

There are many reasons to test a new RG transformation
on the HM. First, by properly tuning the topological factor
c that controls how fast the couplings’ intensity decays with
distance, the HM can emulate a D-dimensional short-range
(SR) model: c � 2−1− 2

D for DFM and c � 2(−1− 2
D

)/2 for SG.13

These relations are exact around the upper critical dimensions
because the long-range HM and the SR D-dimensional model
have the same field theory at leading order. To have a phase
transition at a finite temperature, the c parameter must satisfy
cFM
L = 1

4 < c < 1
2 = cFM

∞ for the DFM and cSG
L = 1

2 < c <
1√
2

= cSG
∞ for the SG. The lower bound values cL correspond

to lower critical dimensions (and thus Tc = 0), while when
c = c∞ the energy is no longer extensive (thus Tc = ∞). For
c > 2− 3

2 = cFM
U in DFM and c > 2− 2

3 = cSG
U in SG, the model

shows mean-field critical properties (like for D > DU in the
SR models). So, tuning a single parameter in the HM, we can
move from the MF region to a non-MF one.

The second reason to choose the HM is that, if the system
is decimated by a standard block-spin transformation, the
new Hamiltonian does not contain any multispin terms (at
variance to what happens on finite dimensional lattices1).
So, considering only pairwise interactions in the RG is not
an approximation for the HM. Moreover, the FM version
can be exactly solved in a time growing only polynomially
with N since the probability distribution of the magnetization

O3
σ  =13

σ  =13
′

σ2
′

σ1
′

σ2
′

σ1
′

O2

′O2

′O1

σ  =12
σ  =11

FIG. 1. Schematic representation of the ERG for a SG HM with
n = 3. Variances (σk) and renormalized variances (σ ′

k) at each level
k are indicated.

satisfies

pn(m) ∝ eβcnm2
∑

mL,mR

pn−1(mL) pn−1(mR) δmL+mR,m, (4)

where mL and mR are the magnetizations of the half systems.
It is worth stressing that Eq. (4) is no more valid for the
SG version of the HM, which does not admit a polynomial
time solution. In Ref. 14, a generalization of Eq. (4) has been
proposed to describe the distribution of the overlap q in the
SG version of the HM; however, we will not make use of this
relation due to the difficulties in its treatment.

II. ENSEMBLE RENORMALIZATION GROUP FOR HM

We describe now in detail how to apply the ERG to the
HM. We assume couplings to remain independent during the
RG, but we allow couplings to have a different probability
distribution Pk(J ) (or a different value Jk in the FM version)
at each level k ∈ {1,2, . . . ,n}: In the original HM all couplings
have the same probability law, but we have seen that the RG
iteration produces different couplings at different levels. In the
analyzed versions, each coupling distribution is parametrized
by K ∈ {1,2} numbers (that is, the mean for FM, the variance
for SG, the fraction of nonzero couplings, and the mean for
DFM), otherwise the search for a solution to Eq. (2) would
become too difficult. We start from an ensemble of systems
with n levels that we want to reduce to an “equivalent”
ensemble of smaller systems of n − 1 levels. The whole
procedure is described in Fig. 1 for a SG HM with n = 3.

(1) First we compute (n − 1)K observables 〈Oj 〉, j ∈
{K + 1, . . . ,Kn} in the larger systems extracted from the
original coupling distribution (in the FM the overbar can be
omitted).

(2) Then we identify the new distributions of couplings
P ′

k(J ′), k ∈ {1, . . . ,n − 1} for the ensemble of smaller sys-
tems, i.e., we determine the new (n − 1)K parameters of the
P ′ distributions by requiring that 〈O ′

i〉P ′ = 〈Oi+K〉P for any
i ∈ {1,2, . . . ,(n − 1)K}.
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(3) Finally we build a new ensemble of systems of the
original size. They are constructed joining with random
couplings extracted from the original distribution Pn(J ) two
smaller systems with couplings extracted from P ′

k(J ′), k ∈
{1,2, . . . ,(n − 1)} found at step 2.

Primed quantities refer to the smaller systems. In this case
the parameters to be determined are the variances of the
Gaussian distributions at each level. The first two steps are
the true renormalization steps, while the last step is required to
obtain a final system size that will allow us to iterate the method
until convergence. In the disordered versions, the assumption
that the renormalized coupling distributions are of the same
type as the original ones is an approximation. However, it can
be easily improved adding extra terms in the distributions. The
thermal averages are computed exactly: This is easy to do in
the FM, thanks to Eq. (4), while in the DFM and in the SG we
do it by exhaustive enumeration, thus limiting us to a small
number of levels in the disordered cases. The average over
the disorder is not exact but taken over ∼105 samples. Step 2
is actually accomplished by minimizing

∑
i(〈O ′

i〉 − 〈Oi+K〉)2,
and we have checked that the reached minimum is always very
close to zero. Since the couplings’ distributions are different at
each level, we do not see any better option than extracting the
new couplings at level n in step 3 from the original distribution
Pn(J ).

The FM version of the HM, for which exact RG equations
can be written, is a benchmark for our numerical implementa-
tion of the ERG. For c = 2− 5

3 , which corresponds to D � 3,
the critical temperature is Tc = 0.848154717 (Ref. 16), and
the critical exponents are η = 4/3, γ = 1.299140730159(1)
(Ref. 17), leading to ν = 1.948711095 using the scaling
relations. To compare this critical exponent ν with the one
for a SR three-dimensional (3D) Ising FM, it can be shown15

that the following equation should be used with a proper c-D
relation:

νLR(c) = DνSR(D) . (5)

In the present case νLR(c = 2−5/3)/3 = 0.649570365 is close
to νSR(3) = 0.6301(4) (Ref. 18).

The observables Ok that we use in the RG equations are the
correlation of the magnetization at level k + 1, normalized by
those at level k, with k ∈ {1, . . . ,n − 1}:

〈Ok〉 = 〈mLk
mRk

〉
〈mLk

mLk
〉 .

The denominator is needed to reduce finite size effects and
to ensure that a solution to the RG equations always exists
(this is not true in general for other observables, like the
magnetization).

Applying the previously described procedure, the flux of
couplings and correlations can be followed, see Fig. 2. If
T � Tc, the renormalized couplings stay for a while close
to the critical fixed point (FP) and then go towards the
high temperature (HT) FP if T > Tc or the low temperature
(LT) FP if T < Tc. We estimate the critical temperature as
the temperature dividing the flows towards the two different
FP. Please note that the HT and LT fixed points are not
characterized by the usual J = 0 and J = ∞ coupling values:
The reason for this is that in step 3 of our procedure we
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FIG. 2. (Color online) Renormalized couplings J ′ in a FM system
with n = 10 levels versus the number of RG steps, for temperatures
slightly bigger (left) and smaller (right) than Tc.

used a new coupling of the original intensity. Nonetheless the
couplings’ flows clearly differentiate HT and LT behaviors.

To extract critical exponents from the RG equations, we
focus on the early regime, when the coupling flows leave the
critical FP. From the Wilson relation an equation relating the
renormalized coupling after x RG steps can be obtained:

J1(x)

T1
− J2(x)

T2
=

(
1

T1
− 1

T2

)
b

x
ν ,

where b = 2 is the scaling factor in our case. Thus, the ν

exponent can be estimated from a fit like the one in Fig. 3. The
values obtained for the critical temperature and the critical
exponents in D � 3 are well comparable with the known
ones: Tc extrapolates to 0.8478(1) in the large n limit and
the measured ν exponent is 2.076(6) for n = 13 [although the
extrapolation of ν to the n → ∞ limit is difficult due to strong
finite size effects, e.g., ν = 2.79(12) for n = 4]. Moreover,
we have checked that our numerical RG recovers the right
bounds on c, namely, Tc → 0 for cL = 1/4 and Tc → ∞ for
c∞ = 1/2.

We consider now the DFM. The Hamiltonian of the model
is always the one in Eq. (3), but the couplings at level k are
independent random variables extracted from the distribution

Pk(J ) = pk δ(J − Jk) + (1 − pk) δ(J ) .

At the beginning pk = p and Jk = 1 for any k, while under
the RG they will differentiate. The number of parameters to be
determined in the ERG is 2(n − 1), and we use the following
observables, with k ∈ {1, . . . ,n − 1}, to fix them:

( 〈mLk
mRk

〉
〈mLk

mLk
〉
)

,

( 〈mLk
mRk

〉
〈mLk

mLk
〉
)2

.

Applying the same procedure as for the pure model, we
are able to draw a flow diagram in the p-T plane for D � 3
and determine the critical line (see Fig. 4). The validity of the
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- 

J 2
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x

FIG. 3. (Color online) Difference between the renormalized
couplings at T1 = 0.84571 and T2 = 0.845716 in the FM HM with
n = 13 levels and D � 3. The fit estimates the ν exponent.
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FIG. 4. (Color online) Phase diagram in the p-T plane for the
DFM at D � 3 as obtained by the ERG and by MC simulations.
Arrows represent the first iteration of the ERG.

phase diagram found with the ERG is confirmed by a set of MC
simulations (explained later in the text) whose Tc estimates are
also shown in Fig. 4. The only disappointment about this phase
diagram is that we do not find an unstable FP along the critical
line as expected for a D = 3 SR model.19 However, this can
be explained by noticing that the α exponent of this model is
very small, α = 0.051288905, and so the crossover from the
pure behavior can be extremely long.

Finally we study the SG version. The Hamiltonian is
always the one in Eq. (3), and the couplings at level k are
distributed with a Gaussian law of zero mean and variance
σ 2

k (at the beginning σ 2
k = 1 for any k). The assumptions

that the renormalized couplings are independent and normally
distributed could be released by adding extra terms in the
coupling distributions,9 but we leave these generalizations for
future work. In the SG case the observables used to fix the
n − 1 variances are normalized SG correlations at different
levels:

〈Ok〉 =
∑

i∈Lk, j∈Rk
〈sisj 〉2√∑

i,j∈Lk
〈sisj 〉2

∑
i,j∈Rk

〈sisj 〉2
.

Because of the computational costs we use n � 4, so the
early regime leaving the critical FP is rather short, and the
stationary regime is soon reached (with respect to the FM
case). This effect is also enhanced by the disorder: Indeed, even
exactly at criticality, the SG ensemble contains many samples
which are not critical, and the couplings of these samples
flow away from the critical values very quickly. So, it seems
unavoidable that disorder increases the instability of critical FP
and consequently the uncertainty on the estimates of the critical
exponents. Nonetheless we can distinguish two temperature
regions separated by a critical temperature TSG [see Fig. 5
for an effective dimension D � 3 and TSG = 0.58(1)], such
that above TSG the correlations and couplings decay towards
zero, while below TSG the correlations and couplings variances
grow, suggesting that the system is in a SG phase. In Fig. 5 we
have plotted only the couplings’ and correlations’ variances
measured at the lowest level k = 1, but (as in the FM, see
Fig. 2) the renormalized variances at the other levels are
related to those at k = 1: For example, σ2 > σ1 if T > TSG

and σ2 < σ1 if T < TSG (remember that the parameters at
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FIG. 5. (Color online) Variances of renormalized couplings (left)
and of SG correlations (right) at the lower level (k = 1) in a SG system
with n = 4 levels and D � 3 versus the number of renormalization
steps x, for many temperatures. We locate the critical temperature at
TSG = 0.58(1).

the lowest level are those which are less influenced by the
coupling of the original intensity at level n because they have
been renormalized more times).

Also in the SG case we are able to estimate the ν exponent
from the flux of the couplings at early times. The procedure
used is the same as that in the FM case and typical fits are shown
in Fig. 6 for D � 8.2 in the mean-field region and for D � 3
below the upper critical dimension. We obtain ν = 4.15(10)
in D � 8.2 and ν = 4.34(6) in D � 3. In Fig. 7 we report
(with the label HM ERG) the estimates of ν as a function
of the exponent σ defined as c = 2−(1+σ )/2: We see that in
the mean-field region (σ < 1

3 ) the results are compatible with
the expected mean-field behavior (ν = D/2 that corresponds
to ν = 1

σ
) and, more interestingly, the critical exponent ν

has a minimum around the upper critical dimension DU = 6,
σU = 1/3, as confirmed by our MC simulations (label HM
MC in Fig. 7) and those in Ref. 12. This minimum was
not observed in previous RG studies,8 while it is present
in SR models: In Fig. 7 we report the DνSR estimates
for the EA model in D = 3,4,5 (Refs. 15, 20, and 21)
following the relation introduced previously: D = 2

σ
. The

same nonmonotonic behavior for the ν exponent has been
also seen in a 1d SG model with long-range (LR) power-law
decaying interactions (Jij ∝ |rij |−(1+σ )/2) (Refs. 15 and 22),
also shown in Fig. 7.
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FIG. 6. (Color online) Difference between the renormalization
flux of the couplings at two different temperatures in a semilog scale
for D � 3 < Du (left) and D � 8.2 > Du (right). The first part, not
affected by finite size effects, has been used to extract the ν exponent,
through a power-law fit.
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FIG. 7. (Color online) The estimation of the ν exponent from the
ERG for different values of c = 2−(1+σ )/2. The curve for σ � 1/3 is
the MF prediction. We also show results from the ε expansion and
from MC simulations of the HM. For comparison, ν values for the
power-law LR model and Dν values for the EA model in D = 3,4,5
are added.

III. MONTE CARLO SIMULATIONS

To check critical temperatures and the critical exponent ν

for the SG version of HM in the non-mean-field region, we
have run MC simulations at several values of c. The couplings
are extracted from both a Gaussian and from a binary ±J

distribution. We have used the parallel tempering algorithm,23

running simultaneously at 20 different temperatures. Two
replicas have been simulated in parallel to measure the
overlap between them. Equilibration has been checked by
the standard method of observing the convergence of the
measured observables (e.g., energy and overlap moments) to
their asymptotic values. We have found that the equilibration
time is τ � 105 − 106 MC steps for the largest sizes at
smaller temperatures and we have acquired data for 5 · τ

MC steps. For the model with Gaussian couplings we have
used n = 6,7,8,9,10, while for the one with ±J couplings,
which is easier to simulate, n = 6,7,8,9,10,11. Averages were
performed over 400 samples for the larger systems up to 2000
samples for the smaller ones.

We have run also standard MC simulations (with nonpar-
allel tempering) for the DFM at several bond concentrations
(p = 0.3,0.5,0.7,0.8).

Critical temperatures have been estimated from the crossing
points of the scale-invariant observables: These crossing points
should approach the critical temperature for large sizes. In
particular we study the dimensionless Binder parameter,24

defined as B = 1
2 [3 − 〈m4〉

〈m2〉2 ] for the DFM and B = 1
2 [3 −

〈q4〉
〈q2〉2 ] for the SG. We can construct also another scale-

invariant observable from the susceptibilities, χFM = m2L

and χSG = q2L, knowing analytically its dimension 2 − η.
In fact the η exponent is not renormalized in LR systems.
Defining c = 2−(1+σ ) for the FM and c = 2−(1+σ )/2 for the SG,
η = 2 − σ in the whole region cL < c < c∞. Thus if we divide
χ by its dimension, the resulting m2L

−1+η or q2L
−1+η should

remain finite at the critical temperature. We can apply the
same argument to the fourth-moment susceptibility, obtaining
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FIG. 8. (Color online) Scale-invariant observables, B, q2L
−1+η,

and q4L
−2+2η for different sizes L = 2n as a function of the

temperature for a SG HM with c = 2− 5
6 and a Gaussian distribution

of the couplings. The crossing points locate the critical temperature
Tc = 0.55(1).

another scale-invariant observable m4L
−2+2η for DFM and

q4L
−2+2η for SG.

In Fig. 8, we plot the three scale-invariant observables,
B, q2L

−1+η, and q4L
−2+2η for different sizes L = 2n as a

function of the temperature for a SG HM with c = 2− 5
6 and

a Gaussian distribution of the couplings. The crosses of the
curves should approach the critical temperature, which we
estimate to be Tc = 0.55(1). Unfortunately the data do not
allow us to estimate the correction to scaling exponent ω.
Nonetheless we can say that the Binder parameter is the
observable that has the largest finite size effects. The critical
temperature is compatible with the one obtained from the ERG
Tc = 0.58(1). Please consider that the estimate from ERG is
obtained with a small number of levels n = 4 (and in a much
faster time). In Fig. 4 we report the critical temperatures of
the DFM obtained by an analysis very similar to the one just
described.

To measure the critical exponent ν we have used the more
accurate data for the model with ±J interactions, which should
be in the same universality class. We use the same observables
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FIG. 9. (Color online) d(q2L
−1+η)/dT at Tc for different sizes as

a function of the size of the system in a log-log scale. The straight
line is the best fit to extract the exponent ν. The system has ±J

interactions and c = 2− 5
6 , D � 3.
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FIG. 10. (Color online) B, q2L
−1+η, and q4L

−2+2η for different
sizes as a function of L1/ν(T − Tc). Curves at different sizes collapse
quite well. The system has ±J interactions and c = 2− 5

6 , D � 3.

previously described to determine the critical temperature that
we estimate as Tc = 0.545(10) for c = 2− 5

6 . Then we look at
the values of d(q2L

−1+η)/dT at Tc. The dimension of this
observable is 1/ν and its finite size scaling form at leading
order around Tc is described by

d(q2L
−1+η)/dT = L1/νF [L1/ν(T − Tc)] .

In Fig. 9 the values for d(q2L
−1+η)/dT at Tc = 0.545 for

different sizes are plotted as a function of the size of the
system in a log-log scale. We have chosen this particular
observable because we have seen that it has the smallest finite
size effects. In this scale 1/ν can be extracted via a linear
fit as the angular coefficient. The straight line is the best fit
that leads to ν = 3.50 ± 0.02. This result should be compared
with the ERG estimate ν = 4.34(6). They are rather different.
However, we know that for the estimate of ν exponent with the
ERG method we have very large finite size effects, especially
in the non-mean-field region (indeed we have an error of 30%
for n = 4 already for the ferromagnetic case). Nevertheless the
important result is that the nonmonotonic behavior of ν with c

is confirmed by the MC simulations.
In Fig. 10 we have plotted the three scale-invariant

observables B, q2L
−1+η, and q4L

−2+2η for different sizes as
a function of L1/ν(T − Tc), with ν = 3.5 and Tc = 0.545. We
can see that the curves at different sizes collapse quite well.

IV. CONCLUSION

In conclusion, we have developed a semianalytical real-
space RG method that can be used for disordered systems.

The method has been applied to the hierarchical model and is
able to find a SG transition also for effective dimension D � 3
in the non-mean-field region. The reliability of the method
has been tested comparing the values of critical temperatures
and critical exponents with those obtained in MC simulations.
The agreement for the critical temperatures is optimal for all
the versions we have studied and the ERG method allows to
compute them in a time much smaller than MC simulations.
The critical exponents obtained with the ERG method are more
affected by finite size effects than critical temperatures. In fact
the error in the ERG estimate for the SG exponents is around
20%. However, such a large error is not unexpected since
we find it also in the ferromagnetic case, where the correct
exponent is recovered only in the n → ∞ limit.

The ERG method is able to reproduce the correct behavior
of the ν exponent, which shows a minimum at the upper critical
value of c = cU (or σ = σU ): Such a behavior is predicted by
the ε expansion of the SG version14 and found in our MC
simulations. This accurate prediction by the ERG makes us
confident that the method is reliable. The present results by
the ERG solve an apparent inconsistency problem between
the ε expansion and another real-space RG approach recently
proposed by the authors of Ref. 8, where the νD exponent
was found to decrease linearly with D, with no minimum
at all around the upper critical dimension. In this work we
have shown that such a minimum in νD exists if a better RG
transformation is used. In particular we have shown that the
right way to do renormalization when disorder is present is
to consider RG on an ensemble of systems and not on single
samples.

This statement can be confirmed also from a comparison
with the method of analysis used in MC simulations. When
exponents are determined using finite size scaling (FSS), we
look at the crossing point of some dimensionless quantities
(like the Binder parameter) averaged over disorder for different
sizes. Indeed FSS is an approximate RG where only a
parameter, the temperature, is varied. In this perspective, our
RG is a generalization of FSS, where we vary more parameters,
and for this reason we can look at more observables. However,
like in FSS, the useful observables are those averaged over the
disorder.
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