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Ab initio analysis of the defect structure of ceria
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We calculated the formation energies of all simple point defects in cubic fluorite structured CeO2 using density
functional theory within the GGA + U approximation. All possible defect charge states were considered, and
also polarons Ce′

Ce and associates of polarons with oxygen vacancies: (V··
O − Ce′

Ce)
· and (Ce′

Ce − V··
O − Ce′

Ce)
×.

From the individual defect energies, we extracted Schottky, Frenkel, and anti-Frenkel energies: we find that
anti-Frenkel disorder has the lowest energy in ceria. Energies for the reduction and the hydration of ceria are
also computed, and the results are in good agreement with experiment. Finally, point-defect concentrations and
conductivities are predicted for undoped and donor-doped systems as a function of oxygen partial pressure and
temperature. The characteristic slopes found in experiment are reproduced.
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I. INTRODUCTION

Cerium dioxide, or ceria, adopts the cubic fluorite structure
for a wide range of temperatures, hydrostatic pressures, and
dopant concentrations. Over the past decades, ceria doped
with acceptor cations has been studied intensively because
of its high ionic conductivity,1–22 which makes it a candidate
material for the electrolyte in solid oxide fuel cells (SOFC).
The high ionic conductivity arises from oxygen vacancies,
which are highly mobile, and which are created to compensate
the acceptor dopants. Nominally undoped ceria, in contrast,
has attracted little attention,23–29 but this is likely to change
with the demonstration of resistive switching in undoped ceria
and hence its use as the active element in resistive random
access memory (ReRAM).30–32

Pure ceria, being an intrinsic n-type semiconductor,25

exhibits a distinct small polaron conductivity.24,29,33,34 The
polarons are located at cerium ions and formally change Ce×

Ce
to Ce′

Ce. It is generally agreed that these electron polarons are
compensated by positively charged oxygen vacancies under re-
ducing conditions.25,35,36 At small electron concentrations, i.e.,
at low Fermi energies (or equivalently at high oxygen partial
pressures), it is proposed that the electrons are compensated
by doubly charged oxygen vacancies

[Ce′
Ce] = 2[V··

O]. (1)

At higher Fermi energies, it is proposed that the electrons are
compensated by singly charged oxygen vacancies

[Ce′
Ce] = [V·

O]. (2)

At even higher Fermi energies, the singly charged vacancies
are presumably reduced to neutral vacancies; being neutral,
they have of course no impact on global charge neutrality.

Evidently, if one wants to study computationally the
behavior of point defects in ceria, one has to examine both
the polaronic nature of the electronic defects and the different
charge states of the ionic defects, and this has not been the
case in computational studies to date. For example, Keating
et al.29 only considered overall neutral defect clusters, whereas
Hellman et al.28 did not take polarons into account. A
second issue concerning point defects in ceria is the lack of
agreement in the literature on the prevailing defect disorder
type. Keating et al.29 and Nakayama et al.19 find Schottky

disorder to have the lowest energy, whereas it is usually
concluded from experimental studies37–39 that anti-Frenkel
disorder is dominant. In this study, formation energies of ionic
and electronic defects in CeO2 were calculated with density
functional theory and the GGA + U method. We examined
all intrinsic point defects in their different charge states,
and in particular, electron polarons and the association of
such polarons with oxygen vacancies.34 Focusing on these
defects, we are able to describe the experimentally measured
behavior23–25,37,39 of point defects as a function of pO2 in
undoped and donor-doped ceria.

The paper is organized as follows: In Sec. II, we give a
short overview of the framework we used to calculate defect
formation energies and defect concentrations, after which we
describe in Sec. III salient computational details. In Sec. IV,
we present our results: on the calculated bulk properties of
ceria; on the defect formation energies; on Schottky, Frenkel,
and anti-Frenkel energies; as well as on the energies of
reduction and hydration. We also discuss calculated polaron
concentrations and conductivities in this section. Lastly, in
Sec. V we provide a short summary of our results.

II. THEORY

Formation energies of isolated charged defects are calcu-
lated as follows:40–42

�Eform(Xq) = Etot,corr(X
q) − Etot(bulk) −

∑
i

niμi

+ q(EFermi + EVBM). (3)

�Eform(Xq) is the formation energy of the defect X in the
charge state q, Etot,corr(Xq) is the total energy of the supercell
with the defect after correction of finite-size effects, and
Etot(bulk) the total energy of the perfect bulk cell. ni denotes
the number of atoms of type i removed from (ni < 0) or added
to (ni > 0) the bulk cell to form the defect, μi is the chemical
potential of atom i, and EFermi the Fermi energy relative to the
valence band maximum EVBM of the bulk.

In order to minimize finite-size effects, i.e., image-charge
interactions and elastic effects, one can calculate the energies
for different cell sizes and then extrapolate to infinite dilution.
An alternative approach, and one pursued in this study, is to
perform an image-charge correction as proposed by Freysoldt
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et al.43 This yields the converged energy from the calculation
of just one supercell size and is corrected with respect to
image-charge effects, but not with respect to elastic effects.

The concentration [Xq] of a dilute defect Xq in a given
material with a Fermi energy EFermi at a temperature T

and a given oxygen partial pressure pO2 can be calculated
from its Gibbs free energy of formation �Gform employing a
Boltzmann ansatz according to

[Xq] = N (X)exp

(
− �Gform(Xq)

kBT

)
. (4)

The preexponential factor N (X) denotes the concentration of
possible lattice sites for the defect X. The Gibbs free energy of
formation contains contributions from the change of internal
energy �Eform, the change of volume �Vform, and the change
of entropy �Sform in the defect formation process:

�Gform = �Eform + p�Vform − T �Sform. (5)

In Eq. (5), p denotes the hydrostatic pressure and T the
temperature. Since the change of volume �Vform during a
defect formation process in a crystal is small, the volume
term of the Gibbs free energy of formation may be neglected
for ambient (small) pressures. As the calculation of formation
entropies is beyond the scope of this study, we also neglect
the term −T �Sform, even though it can have a significant
impact at higher temperatures. In effect, we make the following
simplification:

�Gform ≈ �Eform, (6)

and thus obtain, instead of Eq. (4),

[Xq] = N (X)exp

(
− �Eform(Xq)

kBT

)
. (7)

According to Eq. (3), the formation energy depends on two
parameters, namely, the chemical potential of the incorporated
or excorporated atoms and the Fermi energy. By varying the
chemical potential numerically within the stability range of
the investigated material and by imposing charge neutrality∑

Xq

q[Xq] = 0, (8)

the Fermi energy can be determined for each value of the
chemical potential. With the Fermi energy, the defect con-
centration at the given chemical potential can be determined
[see Eq. (7)]. The chemical potential of oxygen depends on
the oxygen partial pressure pO2 as shown in Eq. (9) [μ◦

O
being the standard chemical potential of oxygen and (pO2)◦
the reference oxygen partial pressure of 1 bar]:

μO = μ◦
O + kBT ln[pO2/(pO2)◦]. (9)

Thus, using Eq. (7) the concentrations of point defects
can be calculated as a function of temperature and oxygen
partial pressure. At large defect concentrations, that is, as
the concentration of defects approaches the concentration of
available lattice sites, Eq. (7) is no longer valid. In this case, a
Fermi-Dirac–type expression is required:44

[Xq] = N (X)

exp
(

�Eform(Xq )
kBT

) + 1
. (10)

We compare Boltzmann and Fermi-Dirac approaches where
appropriate.

III. COMPUTATIONAL METHOD

The density functional calculations were performed within
the generalized gradient approximation (GGA) according to
Perdew, Burke, and Ernzerhof45 and the projector augmented
wave (PAW) method,46 as implemented in the Vienna ab initio
simulation package (VASP).47,48 The electronic wave functions
were expanded with a basis set of plane waves with kinetic
energies of up to Ekin = 500 eV. For cerium, 12 electrons were
included, corresponding to the electron configuration [Pd]
4f 15s25p65d16s2. For oxygen, 6 electrons were included,
corresponding to the electron configuration [He] 2s22p4.

A 2 × 2 × 2 supercell of the cubic Fm3m fluorite structure
with 96 atoms (768 electrons) was used. The Brillouin zone
integration was carried out with a 2 × 2 × 2 Monkhorst-Pack49

grid in the first Brillouin zone of the cubic supercell. Structural
relaxations were conducted until the Hellmann-Feynman
force acting on each atom was less than 0.005 eV Å−1. A
Hubbard U parameter was employed to account for localized
Ce 4f electrons. A rotationally invariant approach50 was
used with an effective U parameter of U = 5.0 eV, as
recommended in the literature.51 The calculated energies were
corrected with respect to image-charge interactions according
to Freysoldt et al.43

IV. RESULTS AND DISCUSSION

A. Properties of the perfect lattice

We first examine the calculated lattice properties of defect-
free ceria (see Table I). Our aim is to demonstrate that
we can describe the perfect lattice reasonably well. The
equilibrium lattice parameter and the bulk modulus were
calculated by fitting a Birch-Murnaghan52,53 equation of state
to total energies for different cell volumes. The lattice constants
obtained with the GGA functional a0 = 5.468 Å and with the
GGA + U functional a0 = 5.494 Å are slightly larger than
the experimentally found value of a0 = 5.411 Å.54 The differ-
ence can be explained by the characteristic overestimation
of the lattice constant by the GGA functional (even more
pronounced for the GGA + U functional). The bulk moduli
B0 = 172 GPa (GGA) and B0 = 181 GPa (GGA + U ) derived
in this study are, as is also characteristic of these functionals,
smaller than the experimentally found value of 220 GPa.54

As can be seen in Table I, our values for the lattice constant
and bulk modulus are close to other theoretical values in the
literature.19,29,55

TABLE I. Comparison of the lattice constant a0 and bulk modulus
B0 obtained from GGA and GGA + U calculations with literature
data.

Reference Method a0 (Å) B0 (GPa)

This study GGA 5.468 172
This study GGA + U 5.494 181
Ref. 19 GGA 5.463 181
Ref. 29 GGA + U 5.494
Ref. 55 GGA + U 5.49 180
Ref. 54 XRD (expt.) 5.411 220
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TABLE II. Calculated GGA + U formation energies of ionic point defects, polaron-vacancy clusters, and the polaron Ce′
Ce under O-rich

and O-poor conditions at EFermi = 0 eV.

Defect type �Eform O-rich (eV) �Eform O-poor (eV) Defect type �Eform O-rich (eV) �Eform O-poor (eV)

V×
Ce 6.22 10.70 Ce×

i 10.90 6.42
V′

Ce 6.32 10.80 Ce·
i 9.34 4.86

V′′
Ce 6.52 11.00 Ce··

i 7.84 3.36
V′′′

Ce 6.81 11.29 Ce···
i 6.50 2.02

V′′′′
Ce 7.39 11.87 Ce····

i 5.06 0.58
V×

O 3.27 1.03 O×
i 2.79 5.03

V·
O 1.45 − 0.80 O′

i 3.60 5.84
V··

O − 0.27 − 2.51 O′′
i 4.41 6.65

(V··
O − Ce′

Ce)
· 1.31 − 0.93 Ce′

Ce 1.90 1.90
(Ce′

Ce − V··
O − Ce′

Ce)
× 2.80 0.56

The formation energy �E
CeO2
form of the cubic fluorite struc-

tured CeO2 from its constituent elements was calculated within
the GGA formalism, as there is no physical reason to include
a U parameter for metallic Ce. (For detailed discussions of
this issue and associated problems, the reader is referred to
Refs. 56 and 57.) �E

CeO2
form was found to be −10.44 eV. To

correct for the well-known overbinding of the O2 molecule in
GGA calculations, one can subtract 1.36 eV per O2 molecule58

from calculated oxidation energies. This yields a corrected
formation energy of ceria of �E

CeO2
form,corr = −11.80 eV at

T = 0 K and agrees well with the experimentally found value
of the formation enthalpy of −11.28 eV at T = 298 K.59

Ceria is a wide-band-gap semiconductor. The band-gap
energy �Eg lies in the range of 5.5–6.0 eV.60,61 The valence
and conduction bands are formed predominantly by O 2p and
Ce 5d states, respectively.55 Within the band gap there are Ce
4f states, which are unoccupied in the defect-free bulk mate-
rial. Due to resolution limits, it is difficult to experimentally
determine the degree of localization of these f states, but they
are assumed to be localized.51 The energy difference �Ef -VBM

between the lowest unoccupied 4f state and the valence band
maximum (VBM) was experimentally found to be around
3.0 eV.61,62 In this study, �Eg = 5.31 eV and �Ef -VBM =
2.35 eV were obtained with the GGA + U functional, which
is in reasonable agreement with the experimental values.

B. Defect formation energies

The value of the chemical potential of oxygen in ceria μ
CeO2
O

is limited by the phase boundaries of CeO2. At low oxygen par-
tial pressures, CeO2 is bordered by Ce2O3 and at high oxygen
partial pressures by the gaseous O2 phase. From these condi-
tions, a range of the chemical potential of μ

CeO2
O,min = −7.17 eV

under oxygen-poor conditions up to μ
CeO2
O,max = −4.93 eV under

oxygen-rich conditions can be derived for ceria. In Table II, the
calculated GGA + U defect formation energies of ionic point
defects in an oxygen-poor and an oxygen-rich environment are
listed for a Fermi energy of 0 eV. The energies of the interstitial
defects correspond to species placed in the octahedral hole
of the fluorite structure. The only exception is the neutral
oxygen interstitial, for which a configuration with a slight
displacement of the oxygen atom from the octahedral site is
found to be energetically favored (see Sec. IV B3).

1. Polarons

As noted in the Introduction, the correct description of
electronic defects in ceria is a critical issue. It is therefore
necessary to compare the localized electronic defect (electron
polaron) with a delocalized electronic defect (band electron).
The preparation of a delocalized electron was easily achieved
by adding an extra electron to a supercell of the bulk material.
The band electron occupies one of the previously unoccupied f

states within the band gap and its formation energy is computed
to be �Eform = 2.20 eV (for EFermi = 0 eV). Since the charge
is smeared out, a charge correction according to Freysoldt
et al.43 is not possible. The preparation of a polaron, i.e., the
localization of an extra charge on one chosen cerium ion, in
contrast, is not easily achieved. Specifically, before starting the
structural relaxation, we had to displace the neighboring ions
in a fashion resulting from a hypothetical negative point charge
on the cerium ion on which the polaron was to be localized: the
neighboring cerium cations were moved towards this cerium
ion, and the neighboring oxygen ions were displaced in the
opposite direction, i.e., away from this cerium ion. The amount
of the displacement was varied; a starting configuration with
a displacement of d = 1–2 Å was found to result in the
successful preparation of a polaron. As can be seen from
Fig. 1, which shows the partial charge density corresponding
to the highest occupied state of the relaxed configuration,
the additional electron is indeed localized on one cerium
atom. (All plots of the partial charge density shown in this
work were created with the program VESTA.63) The density
of states (DOS) of the supercell with the polaron shown on
the right of Fig. 1 reveals that the polaron induces localized
states within the gap between the valence band maximum
and the Ce 4f states. These do not appear in the DOS of
the supercell with an additional delocalized electron presented
on the left of Fig. 1. In contrast to the band electron, the
localized charge of the polaron causes monopole terms in the
image-charge interactions. A charge correction according to
Freysoldt was therefore performed and yielded a correction
of �Ecorr = 0.06 eV, resulting in a formation energy of
the polaron of �Eform = 1.90 eV (for EFermi = 0 eV). So,
formation of polarons is energetically favored by 0.3 eV
with respect to band electrons, rendering it the dominant
electronic defect in our calculations. This agrees well with
the experimental findings of Tuller et al.24
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FIG. 1. (Color online) DOS of the supercell with (a) an additional
band electron and (b) a polaron. In addition, the charge density of the
highest occupied state of the polaron supercell is shown: all charge is
localized on one cerium ion.

2. Oxygen vacancies and associates of oxygen
vacancies and polarons

It has been reported34,64,65 that association between pos-
itively charged oxygen vacancies and negatively charged
polarons occurs:

V··
O + Ce′

Ce ⇀↽ (V··
O − Ce′

Ce)·. (11)

This defect associate formally resembles a singly charged
oxygen vacancy V·

O. A doubly charged oxygen vacancy can
also form an associate with two polarons

V··
O + 2Ce′

Ce ⇀↽ (Ce′
Ce − V··

O − Ce′
Ce)×, (12)

which formally resembles a neutral oxygen vacancy V×
O. We

prepared, therefore, such vacancy-polaron associates accord-
ing to the procedure detailed in the previous section.

In spite of their formal resemblance, the electronic structure
of the two defect species V×

O and (Ce′
Ce − V··

O − Ce′
Ce)×, for

example, differs considerably, as can be seen from the partial
charge densities shown in Fig. 2. The additional charge for
V×

O is equally distributed over the four nearest cerium ions,
whereas for (Ce′

Ce − V··
O − Ce′

Ce)× it is clearly localized in the
form of two polarons adjacent to the oxygen vacancy. For V·

O,
the charge is similarly distributed over the four nearest cerium
ions, whereas for (V··

O − Ce′
Ce)· it is localized as a polaron

FIG. 2. (Color online) Partial charge densities of the two highest
occupied states of (a) a neutral oxygen vacancy V×

O and (b) a neutral
polaron-vacancy cluster (Ce′

Ce − V··
O − Ce′

Ce)
×. The vacancy position

is indicated by the empty square.

FIG. 3. (Color online) GGA + U formation energy of oxygen
vacancies at T = 0 K including the formation energies of polaron-
vacancy clusters for O-rich (straight lines) and O-poor (dotted lines)
conditions as a function of the Fermi energy, which is set zero at the
valence band maximum. The dashed line indicates the position of the
lowest Ce 4f states.

on one neighboring cerium ion (not shown). The formation
energy of the associate of a doubly charged oxygen vacancy
and one polaron is lower by 0.14 eV than the formation energy
of V·

O (see Table II). Similarly, �Eform of the associate of
a doubly charged vacancy with two polarons is lower than
the neutral oxygen vacancy V×

O by 0.47 eV. Nevertheless,
structural relaxation of a cell with two additional electrons
yields the configuration shown in Fig. 2(a), i.e., without
polaron formation. This emphasizes that care should be taken
in the preparation procedure and in the control of the different
charge states of point defects.

Figure 3 summarizes all the calculated formation energies
of the differently charged oxygen vacancies, with and without
polarons. Formation energies are plotted against the Fermi
energy, with the dashed, vertical line denoting the energy of the
lowest Ce 4f state, i.e., the upper border of the gap between the
valence band and the Ce 4f states. The formation energy falls
below zero for Fermi energies smaller than EFermi = 0.09 eV
in an oxygen-rich environment and smaller than EFermi =
1.25 eV in an oxygen-poor environment. If we make the sim-
plification of Eq. (6), then for �Eform(V··

O) < 0, no negatively
charged point defect can form in sufficient quantities to charge
compensate V··

O. In other words, negative defect formation en-
ergies lead to the principle of electroneutrality being violated.
For this reason, the Fermi energy of ceria cannot fall below the
above-mentioned values at which the formation energy is zero.

Oxygen vacancies in oxides often exhibit a so-called
negative U effect.66,67 This refers to the preferred formation
of neutral oxygen vacancies over singly charged oxygen
vacancies. For the oxygen vacancies without polarons, we find
a small Fermi energy span from 1.71–1.83 eV in which the
singly charged vacancy V·

O is the energetically most favorable
species. However, as shown in Fig. 3, the lowering of the
formation energy of neutral vacancies through the formation
of a cluster with two polarons results in the suppression
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of the formation of singly charged vacancy species. After
inclusion of all relevant oxygen vacancy species, the GGA + U

calculations predict a negative U effect in CeO2. We stress,
however, that this does not necessarily mean that (V··

O − Ce′
Ce)·

is not present in ceria. For example, it is conceivable that
neutral vacancy-polaron associates (Ce′

Ce − V··
O − Ce′

Ce)× are
the dominating defects for high Fermi energies, whereas
(V··

O − Ce′
Ce)·, compensated by electrons, dominate elec-

troneutrality. This possibility is usually ignored in the literature
on this topic.

The binding energies between the polarons and the doubly
charged oxygen vacancies in the two clusters were calculated.
The value for the singly charged cluster is �Ebind = 0.33 eV.
The neutral cluster with two polarons exhibits a binding
energy of �Ebind = 0.36 eV per bound polaron. Bishop
et al.64 have experimentally found �Ebind = 0.20 eV per
polaron-vacancy bond in the neutral cluster. Nakayama et al.34

have recently calculated a polaron-vacancy binding energy
of 0.40 eV per bound polaron in the neutral cluster and a
higher binding energy of 0.49 eV in the cluster with one
polaron. It can be assumed, therefore, that the majority of the
clusters are associated within the temperature range examined
experimentally (and investigated in this work).

Keating et al.29 also calculated the formation energies of
defects in bulk ceria. They did not determine the formation
energies of the defects in all charge states but determined the
formation energies of overall neutral clusters of charged point
defects and oppositely charged polarons. The formation energy
of the neutral cluster of a doubly charged oxygen vacancy and
two polarons calculated in our work �Eform = 0.56 eV in an
O-poor environment agrees very well with the value which
Keating et al. present as the formation energy of an oxygen
vacancy �Eform = 0.57 eV, but which is, strictly speaking,
the formation energy of an associate of a vacancy and two
polarons.

3. Oxygen interstitials

Keating et al.29 report that interstitial oxygen species are
unstable in the octahedral hole of the fluorite structure and
relax into a position near a lattice oxygen ion, forming a
peroxide ion. For the doubly charged oxygen interstitial O′′

i ,
we find that the configuration with a very similar bond length
of dO–O = 1.46 Å is less favorable by 0.96 eV than the
configuration with the interstitial ion in the octahedral position
[dO–O = 2.52 Å]. In the case of the neutral interstitial O×

i , we
find a configuration where the interstitial is slightly displaced
from the octahedral site, but still distant from the nearest
oxygen ion, with dO–O = 2.26 Å. This configuration is lower
in energy by 0.21 eV but cannot be classified as a peroxide
configuration because of the large oxygen-oxygen distance.

4. Summary

To summarize the results so far, we plot in Fig. 4 the
formation energies of all ionic and electronic defects in bulk
ceria as a function of the Fermi energy. The possible Fermi
energies are in the range of EFermi = 1.25–1.90 eV under
oxygen-poor conditions, and are limited by oxygen vacancies
and polarons. Under oxygen-rich conditions, oxygen vacancies
and cerium vacancies confine the Fermi energies of the system
to energies EFermi = 0.09–1.84 eV.

FIG. 4. (Color online) GGA + U formation energies of all ionic
defects and polarons at T = 0 K as a function of the Fermi energy
under (a) O-poor and (b) O-rich conditions. The dashed line indicates
the position of the lowest unoccupied Ce 4f states.

In the context of this work, the preparation of localized
electron holes, probably located on oxygen ions, was not
pursued. We note, however, that Stratton et al.37 reported
the electronic conductivity of U-doped CeO2 to vary, at low
temperatures and high pO2, according to (pO2)−1/2; this
was explained in terms of donor dopants being compensated
by clusters of localized holes and doubly charged oxygen
interstitials:

[D·] = [(O′′
i − h·)′]. (13)

C. Schottky, Frenkel, and anti-Frenkel energies

The Frenkel energy �EFr, anti-Frenkel energy �Ea-Fr, and
Schottky energy �ESch were determined from the individual
defect energies in Table II for the maximally charged defect
states:

Fr: Ce×
Ce

⇀↽ V′′′′
Ce + Ce····

i , (14)

a-Fr: O×
O

⇀↽ V··
O + O′′

i , (15)

Sch: Ce×
Ce + 2O×

O
⇀↽ V′′′′

Ce + 2V··
O + CeO2(surf). (16)

CeO2(surf) refers to the formula unit of CeO2 that is produced
at the surface by Schottky disorder; this energy is approximated
here as the energy of a bulk formula unit. In order to compare
our calculations with GGA literature data, we calculated
energies with both GGA and GGA + U functionals. The
energies listed in Table III (all energies are per defect created)
show that the anti-Frenkel disorder is the energetically most
favorable type of intrinsic ionic disorder in ceria at T = 0 K.

Atomistic calculations with empirical pair potentials (EPP)
performed by Walsh et al.27 show the same trends. The absolute
values per defect of �EFr = 15.94 eV, �Ea-Fr = 3.21 eV,
and �ESch = 5.79 eV, however, are much larger than the
values calculated in this work. GGA calculations performed
by Nakayama and Martin19 yield an anti-Frenkel energy
of �Ea-Fr = 2.02 eV per defect similar to the anti-Frenkel
energies obtained in this study. Larger differences are found
for energies which involve the formation of highly charged
defects, i.e., V′′′′

Ce and Ce····
i . This can be explained by the fact
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TABLE III. Comparison of the calculated Frenkel, anti-Frenkel,
and Schottky energies with literature data. All energies are per created
defect.

�EFr �Ea-Fr �ESch

Reference Method (eV) (eV) (eV)

This study GGA 5.87 2.04 2.18
This study GGA + U 6.23 2.07 2.29
Ref. 27 EPP 15.94 3.21 5.79
Ref. 19 GGA 3.68 2.02 1.20
Ref. 29 GGA + U 1.94 1.19
Ref. 37 expt. (0.1%U ) 1.83

that the energies of Nakayama and Martin are not image-charge
corrected. The calculated corrections for GGA formation
energies in this work are �Ecorr = 1.94 eV per defect for
Frenkel disorder and �Ecorr = 0.77 eV per defect for Schottky
disorder, while it is only �Ecorr = 0.11 eV per defect for
anti-Frenkel disorder. Without the image-charge corrections,
the energies calculated in this work agree well with the
formation energies calculated by Nakayama and Martin for
all three types of disorder. This emphasizes the need to apply
finite-size corrections even in order to extract only qualitatively
correct predictions from ab initio defect calculations.

Even though Keating et al.29 observe peroxide ions in
the case of interstitial oxygen ions, their anti-Frenkel energy
agrees surprisingly well with the anti-Frenkel energy calcu-
lated in this work. The Schottky energy calculated by Keating
et al. in contrast is much smaller than our value. The reason for
this could lie in associative energy contributions in the energies
determined by Keating et al.: both defects of anti-Frenkel
disorder were placed within one supercell; the same is true
for all three defects of Schottky disorder. Whereas in the case
of anti-Frenkel disorder the defects were placed apart, at a
distance of d = 7.17 Å, in order to avoid recombination, the
vacancies forming the Schottky disorder were placed in direct
vicinity. It can therefore be assumed that defect interactions
contribute to the anti-Frenkel and Schottky energies presented
by Keating and co-workers. This is confirmed by the fact that
the anti-Frenkel energy is lower than the sum of the formation
energies of an oxygen vacancy and an oxygen interstitial.
The same is true for the Schottky energy compared with
the sum of the formation energies of a cerium vacancy and
two oxygen vacancies. Frenkel, anti-Frenkel, and Schottky
energies are conventionally calculated for maximally charged,
dilute defects. The energies calculated in this work correspond
to the classic formation energies of ionic intrinsic disorder.

At present, experimental data are only available for
anti-Frenkel disorder in U-doped CeO2. By measuring the
electrical conductivity and oxygen self-diffusion, Stratton
et al.37 determined an anti-Frenkel energy of �Ea-Fr = 1.83 eV
(see Table III) for 0.1% U-doped CeO2. The theoretical
values determined in this study �Ea-Fr(GGA) = 2.04 eV and
�Ea-Fr(GGA + U ) = 2.07 eV differ from the experimental
value by ca. 12%, i.e., the data agree reasonably well. We
conclude that anti-Frenkel disorder is the dominant structural
disorder type in ceria.

D. Energy of reduction

The reduction of ceria involves the removal of oxygen
ions from the lattice and the creation of electronic defects.
As demonstrated in Sec. IV B1, these electronic defects are
localized as electron polarons, and thus the reduction reaction
reads as

2Ce×
Ce + O×

O
⇀↽ V··

O + 2Ce′
Ce + 1

2 O2(g). (17)

The reduction energy can therefore be calculated according to

�ERed = Etot,corr(V
··
O) + 2Etot,corr(Ce′

Ce)

+ 1
2Etot(O2) − 3Etot(bulk). (18)

As in the case of the formation energy of ceria (see Sec. IV A),
a correction for the GGA overbinding of the O2 molecule
was conducted according to Wang et al.58 The calculated
and corrected reduction energy is thus �Ecorr

Red = 4.21 eV.
Tuller experimentally found a reduction enthalpy of �HRed =
4.67 eV for undoped ceria.25 This value agrees very well
with the calculated energy, differing by ca. 10%. For 15%
Sm-doped ceria, Chueh et al.68 reported the reduction enthalpy
to be �HRed = 4.18 eV, which is even closer to our value.
From measurements on epitaxial thin films of 2 mol% Nb-
doped ceria, Göbel et al.39 extracted an oxygen insertion
energy �Hi = �Ha-Fr − �HRed = (−0.35 ± 0.1) eV. This is
in satisfactory agreement with our theoretical prediction of
�Ei= �Ea-Fr − �Ecorr

Red = −0.07 eV.

E. Energy of hydration

Wagner69 observed the dissolution of water into yttria-
stabilized zirconia (YSZ) in H2O atmospheres, and proposed
that the dissolution occurs by the reaction with an oxygen
vacancy to give interstitial protons:

V··
O + H2O ⇀↽ O×

O + 2H·
i. (19)

In order to calculate the energy of this reaction (the hydration
energy), one requires the formation energy of interstitial
hydrogen species. The formation energies of such species in
ceria at EFermi = 0 eV under H-rich conditions are listed in
Table IV. The entries denoted as Hi(oct) refer to interstitial
defects in the octahedral hole of the fluorite structure. The
other entries denoted as Hi(oxy) refer to a different stable
configuration in which the hydrogen moiety is located close to
an oxygen ion with an interionic distance of dO–H = 0.98 Å.
The configuration with the proton close to an oxygen ion
is energetically more stable than that corresponding to the
occupation of the octahedral hole.

Figure 5 shows the formation energies of protonic defects
in both configurations as a function of the Fermi energy.

TABLE IV. Calculated formation energies of interstitial H defects
at EFermi = 0 eV.

�Eform �Eform

Defect type H-rich (eV) Defect type H-rich (eV)

H′
i(oct) 3.75 H′

i(oxy) 2.61
H×

i (oct) 2.42 H×
i (oxy) 0.48

H·
i(oct) 2.00 H·

i(oxy) − 1.04
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FIG. 5. (Color online) Defect formation energies of H interstitials
in a H-rich environment at T = 0 K as a function of the Fermi energy.
The configuration with the hydrogen in the octahedral hole is denoted
“oct” and the one with a hydrogen close to an oxygen atom “oxy.”
The dashed line indicates the position of the lowest Ce 4f states.

For the majority of possible Fermi energies, the positively
charged proton is the preferred defect. At Fermi energies
EFermi = 1.51–2.13 eV, the formation of neutral hydrogen
interstitials is favored and above Fermi energies of EFermi =
2.13 eV negatively charged hydride interstitials become most
favorable. The hydration energy was calculated in the same
manner as the reduction energy:

�Eeff
Hyd = 2Etot,corr[H

·
i(oxy)] − Etot,corr(V

··
O)

−Etot(H2O) − Etot(bulk). (20)

The hydration energy of CeO2 is thus predicted to be �Eeff
Hyd =

+0.68 eV.
The behavior of fluorite structured oxides, such as CeO2

(and ZrO2), contrasts strongly, therefore, with that of per-
ovskite oxides, such as SrCeO3 and BaZrO3, for which the
hydration energy is often negative [e.g., �Eeff

Hyd = −0.82 eV
for 10% Y-doped BaZrO3 (Ref. 70)], and the incorporation of
water takes place spontaneously to fill the majority of oxygen
vacancies. Our calculations predict the dissolution of water
into CeO2 [see Eq. (19)] to be endothermic. This prediction is
in line with experimental findings, in which the solubility of
hydrogen in ceria is reported to be low.71

F. Defect concentrations

All the following defect concentrations were determined
from the GGA + U formation energies from Table II.

1. Pure ceria

The concentrations of all point defects were calculated
for undoped ceria according to Eq. (7). Figure 6 shows the
concentrations at a temperature of T = 650 K. As expected,
oxygen vacancies and electron polarons are the dominant
defects. All other defects, i.e., oxygen interstitials, cerium
vacancies, and cerium interstitials are minority defects, with

FIG. 6. (Color online) Calculated defect concentrations in un-
doped ceria at T = 650 K as a function of the oxygen par-
tial pressure. At large oxygen partial pressures, the doubly
charged oxygen vacancy is the dominant vacancy species. At low
pO2, the neutral polaron-vacancy associate is predominant, while
(V··

O − Ce′
Ce)

· compensates the polarons. The dotted line indicates
defect concentrations calculated with a Fermi-Dirac approach.

equilibrium concentrations smaller than 10−2 cm−3 at this
temperature.

At small deviations from stoichiometry, i.e., at high oxygen
partial pressures, doubly charged oxygen vacancies V··

O are the
prevalent vacancy species. At low oxygen partial pressures, the
cluster of a doubly charged oxygen vacancy and two polarons
is the energetically most favorable species. The neutral cluster
cannot charge compensate the polarons, however. Figure 6
shows that in the region where the neutral cluster is the
dominant vacancy species, the polarons are compensated by
singly charged oxygen vacancies in the form of a cluster of a
doubly charged vacancy and one polaron. Thus, a negative U

effect does not exclude singly charged vacancies from being
stable but it does exclude them from being the dominant point
defect. In Fig. 6, one finds that the predicted oxygen vacancy
concentrations for very low oxygen partial pressures are
greater than the concentration of oxygen lattice sites [N (VO) =
4.825 × 1022 cm−3] in ceria. For higher temperatures, the
polaron concentration also exceeds the concentration of cerium
lattice sites [N (CeCe) = 2.412 × 1022 cm−3], and the effect is
even more pronounced for the oxygen vacancies. This process
is physically impossible for oxygen vacancies and unlikely for
electron polarons, as it would require two polarons to reside
on one cerium site, forming Ce′′

Ce.
There are several reasons for the calculated defect con-

centrations exceeding the lattice site concentrations. The first
reason is the underestimation of the individual defect energies
�Eform(Xq), as evidenced by the calculated reduction energy
being lower than the experimentally determined value (see
Sec. IV D). Second, defect concentrations were calculated
according to Eq. (7), on the basis of Maxwell-Boltzmann
statistics, that is, for low (dilute) defect concentrations. At
high defect concentrations, when the concentration of defects
approaches the concentration of available sites, Maxwell-
Boltzmann statistics is no longer valid: rather, Fermi-Dirac
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statistics should be employed [see Eq. (10)]. Third, long
before such site availability effects become important, we
expect interactions between oxygen vacancy species to play
a role. The inclusion of such effects is beyond the scope
of this study, however, and we confine our analysis, espe-
cially at large deviations from stoichiometry, i.e., at small
oxygen partial pressures, to the implementation of Fermi-
Dirac statistics. The results are indicated with dotted lines in
Fig. 6.

From the laws of mass action and the condition of charge
neutrality, the polaron concentrations are expected to follow
a power-law dependence on oxygen partial pressure with a
characteristic exponent of − 1

6 ≈ −0.167 when the polarons
are compensated by doubly charged oxygen vacancies.37 The
exponent of the predicted concentration curves is exactly
−0.167 in agreement with the expected value. When po-
larons are charge compensated by singly charged oxygen
vacancies, an exponent of − 1

4 is expected. The polaron
concentration curves at large deviations from stoichiometry,
i.e., at low oxygen partial pressures, show a slope of ca.
−0.229. The slight deviation from the theoretically expected
value of −0.25 can be explained by the fact that the slope
was determined only at the onset of the − 1

4 regime, as
lower pO2’s were not accessible due to phase stability.
Overall, the expected power-law dependencies of the polaron
concentrations on oxygen partial pressure are reproduced
well.

We comment here further on the pO2 dependence of the
oxygen vacancy concentration, which has also been deter-
mined experimentally.23 If the oxygen vacancy concentration
is plotted against pO2 in a double logarithmic plot, a kink,
i.e., a change of slopes, is observed. Jiang et al.26 calculated
oxygen vacancy concentrations but only for neutral vacancies,
i.e., low pO2. In their study, they were not able to repro-
duce the experimentally measured kink in oxygen vacancy
concentration versus log10 (pO2), but this is not entirely
surprising because they did not incorporate charged vacancies
in their calculations of concentrations. Following on from this
incomplete description, Hellman et al.28 concluded that the
standard semiconductor formalism was not able to describe
the above-mentioned kink. They claim instead that an unusual
mechanism of charge redistribution between Ce3+ and Ce4+

species, together with high impurity levels, provides the only
explanation for the kink in such a plot. As can be seen in Fig. 6,
this is not true. We consider a huge range of oxygen vacancy
concentrations, from low to high, and we clearly observe a kink
in the oxygen vacancy concentration, which occurs, when at
low pO2, [V··

O] becomes smaller than [(Ce′
Ce − V··

O − Ce′
Ce)×].

The standard semiconductor formalism pursued in this study, if
applied correctly and with finite-size corrections, is also able
to reproduce the experimental kink in the oxygen vacancy
concentration and without resorting to unusual explanations
and unrealistically high impurity concentrations.

2. Donor-doped ceria

Figure 7 shows the calculated concentrations of oxygen
vacancies and polarons of 1 ppm donor-doped ceria at T =
650 K. The small donor content of 1 ppm was chosen in
order to be able to see both the intrinsic and the extrinsic

FIG. 7. (Color online) Defect concentrations in 1 ppm donor-
doped ceria at T = 650 K as a function of the oxygen partial
pressure. For high oxygen partial pressures, the polaron concentration
is fixed by the donor D·, while for intermediate partial pressures,
V··

O compensate the polarons. At very low pO2, the polarons are
compensated by (V··

O − Ce′
Ce)

·. The dotted line indicates defect
concentrations calculated with a Fermi-Dirac approach.

defect regimes within the stability limits of the compound. It
also serves to emphasize that 1 ppm of impurities is sufficient
to alter the overall defect behavior. The transition from the
extrinsic to the intrinsic defect regime can be observed around
an oxygen partial pressure of pO2 ≈ 10−6 bar. At high oxygen
partial pressures, the donor concentration fixes the polaron
concentration. With decreasing oxygen partial pressure, the
concentration of oxygen vacancies increases above the donor
concentration, giving rise to the onset of the intrinsic regime.
The oxygen vacancies are charge compensated by polarons.
All other defects are minority defects over the whole pO2

range. As in the case of the undoped system, the same changes
in the slope of the concentration curves are observed within the
range of investigated oxygen partial pressures. The expected
characteristic exponents of the power-law dependence of the
polaron concentrations in donor-doped ceria, i.e., − 1

4 for low,
− 1

6 for intermediate, and 0 for high partial pressures can be
reproduced from our calculated formation energies.

G. Conductivities

Electronic conductivities σ were calculated from the po-
laron concentrations in undoped ceria at various temperatures
according to

σ = |q| · e · [Ce′
Ce] · (1 − f ) · u. (21)

Here, u is the polaron mobility and f the site fraction of
Ce′

Ce. The term (1 − f ), which reduces the effective mobility
at large polaron concentrations, accounts for the fact that in
order to migrate, a polaron needs a free cerium site (Ce×

Ce)
to migrate to. The conductivity thus reaches a maximum
when 50% of the lattice sites are occupied in the case of
negligible polaron-polaron interactions. The polaron mobility
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FIG. 8. (Color online) Conductivities calculated from the polaron
concentrations of undoped ceria at varied temperatures with mobility
values from Ref. 24. The dotted lines correspond to the Fermi-Dirac
approach [see Eq. (10)], the thin solid lines to the Boltzmann ansatz
[see Eq. (7)], and the thick solid lines to the dilute defect regime.

u is thermally activated:

u = A0

T
exp

(
− EH

kBT

)
, (22)

where A0 is a preexponential factor and EH is the activation
energy of the hopping process. Tuller et al.24 experimentally
determined a polaron mobility of u = 3.9 × 10−3 cm2 V−1 s−1

for CeO1.88 at a temperature of T = 1273 K. With this
value as a first approximation and a temperature activation
of the mobility of EH = 0.44 eV,24 polaron conductivities
were calculated and were compared with conductivities found
experimentally by Stratton et al.37 and Tuller et al.25 (see
Fig. 8). As the mobility of electrons is much larger than
the mobility of ionic defects, the conductivity measured
experimentally is predominantly electronic.

1. Pure ceria

Since the calculated polaron concentrations are too high for
the above-mentioned reasons, the conductivities are expected
to lie above the experimental values as well. A comparison
of our predicted data (see Fig. 8) with experimental data
(see Fig. 1 of Ref. 25) shows that this is indeed the case
for undoped ceria. The calculated conductivities are one
to two orders of magnitude larger than the experimentally
found conductivities. The dotted lines in Fig. 8 show the
conductivities calculated with Fermi-Dirac statistics. At large
temperatures and low oxygen partial pressures, the curves
calculated with Fermi-Dirac statistics deviate from the curves
calculated with Boltzmann statistics. In this case, the model
of dilute defects is no longer valid. Since the method of
determining defect formation energies and concentrations
employed in this work is based on the model of dilute
defects, the calculated data are only valid where Boltzmann
and Fermi-Dirac yield the same results. In this regime, which
is denoted by the thick lines in Fig. 8, the experimental and
calculated data qualitatively agree well, in particular the slopes
of the pO2 dependence.

The changes of the exponent of the power-law dependence
on the oxygen partial pressure observed for the polaron
concentrations also show in the conductivity curves (see
Fig. 8). The slope of the conductivity curves changes from
− 1

6 in the pO2 regime where the polarons are compensated by
doubly charged oxygen vacancies to − 1

4 in the regime where
the polarons are compensated by singly charged vacancies.
The slope of the calculated conductivities reaches a value
of −0.164 in the pO2 region of charge compensation by
doubly charged oxygen vacancies and −0.213 in the regime
of charge compensation by singly charged oxygen vacancies.
The slopes are smaller than the expected slopes because of
the reduced polaron mobility at large polaron concentrations
due to the factor (1 − f ) in Eq. (21). This factor is also
responsible for the observed maximum in the conductivity
curves.

The solid (Maxwell-Boltzmann) and dotted lines (Fermi-
Dirac) end for the same temperature at different partial
pressures, which is due to the fact that for very high Fermi
energies (low pO2), the Boltzmann concentrations become
unphysical and the charge neutrality condition can no longer
be fulfilled. This problem, however, occurs way beyond the
regime of dilute defects, so it does not alter any conclusions
drawn in this paper.

2. Donor-doped ceria

Figure 9 shows the calculated polaron conductivities of
1000 ppm donor-doped ceria at various temperatures. (Exper-
imental data for comparison is shown in Fig. 2 of Ref. 37 and
refers to conductivities measured for 0.1% U-doped ceria.)
The slopes in the conductivity curves found experimentally by

FIG. 9. (Color online) Conductivities calculated from the polaron
concentrations for 1000 ppm donor-doped ceria (e.g., 0.1% U) at
various temperatures with mobility values from Ref. 24. In regime
I, the polarons are charge compensated by the polaron-vacancy
associate (V··

O − Ce′
Ce)

·. In regime II, the polarons are compensated
by V··

O. In regime III, the polaron concentration is fixed by the
donor concentration. The dotted lines correspond to the Fermi-Dirac
approach [see Eq. (10)], the thin solid lines to the Boltzmann
ansatz [see Eq. (7)], and the thick solid lines to the dilute defect
regime.
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Stratton et al.37 are reproduced well by the calculated curves.
We also see three different regimes: In regime I, the slope
is − 1

4 where the polarons are charge compensated by singly
charged oxygen vacancies. In regime II, where the polarons
are compensated with doubly charged oxygen vacancies, the
slope is − 1

6 . In regime III, the polaron concentration is fixed
by the donor concentration.

As observed in the undoped case, due to the high polaron
concentrations and the reduced polaron mobilities, the values
of the slopes tend to be slightly smaller than the slopes of
the concentration curves. In regime I, the slope is −0.162
instead of the expected value of − 1

6 ≈ −0.167. In regime II,
the slope is −0.228 instead of the expected slope of − 1

4 . As
in the undoped system, we observe numerical problems due
to unphysical Boltzmann concentrations. But they do not play
any role for the reasons already mentioned above.

Overall, there is very good qualitative agreement with
experiment as long as the defects can be considered to be dilute,
which is the basic assumption for the calculation of our defect
formation energies. This is achieved only due to the inclusion
of the formation energies of oxygen vacancies in different
charge states, or to be more precise, by explicitly calculating
not only V··

O but also (V··
O − Ce′

Ce)· and (Ce′
Ce − V··

O − Ce′
Ce)×.

V. CONCLUSION

We calculated the formation energies of all intrinsic point
defects in ceria using the GGA + U functional. In particular,
we determined the formation energy of a polaron and of
associates of polarons with the doubly charged oxygen vacancy
V··

O. We found that these associates are energetically favored
with respect to ordinary V·

O and V×
O. Reduction and hydration

energies have been computed and both show good agreement
with experiment. We also calculated defect concentrations and
conductivities, which show the characteristic slopes of the
polaron concentration [Ce′

Ce] for undoped (− 1
4 and − 1

6 ) and
donor-doped (− 1

4 , − 1
6 , and 0) CeO2. These changes of slopes,

which are also found experimentally, are due to the different
charge states of the oxygen vacancy.
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